
Representing and Scheduling Looping Behavior Symbolically

Steve Haynal, Forrest Brewer
University of California, Santa Barbara

haynal@umbra.ece.ucsb.edu, forrest@ece.ucsb.edu

Abstract
This paper presents a very general, exact technique for

scheduling looping data-flow graphs. In contrast to the
conventional technique using loop iteration variables and
integer linear programming, the new technique uses
implicit symbolic automata techniques to represent the
problem instance. The new technique has several advan-
tages, such as incremental refinement, efficient variable
usage and ability to accommodate practical design con-
straints. A small case study demonstrates the flexibility
and viability of this technique.

1. Introduction
Implicit symbolic techniques have progressed tremen-

dously in recent years and have gained mainstream accep-
tance in formal model checking and verification. In
contrast, conventional high-level synthesis techniques have
relied on ad-hoc modeling and on heuristics more akin to
compiler technology than to hardware synthesis. In this
work, our goal is to apply systematic approaches and tech-
nologies borrowed from model checking to problems of
high-level synthesis. To these techniques, we add the
expressive capabilities of non-deterministic finite autom-
ata. NFA’s have efficient implicit representation and are
used throughout the formulation to represent information
behavior, protocols and interfaces, and arbitrary design
subsystems. Using these tools, we reformulate the loop-
dominated data-flow scheduling problem as constrained
search among all implicit automata-based executions.

This technique has potential as well as some drawbacks.
The potential lies in the ability to accommodate arbitrary
automata-based constraints on timing, behavior, capacity,
and other chosen properties of the design while maintain-
ing systematic solutions. Surprisingly, many types of
scheduling optimizations, such as loop pipelining, are cap-
tured implicitly by the technique. The drawbacks are with
representation growth. However, by careful choice of
encoding and representation we have shown that this tech-
nique is practical to at least the scale offered by alternative
exact methods and indeed the performance exceeds that of
comparable published heuristics[3]. Furthermore, the sys-
tematic formulation provides a formal route to abstraction
and hierarchical representation of larger designs.

In this paper, we present a brief example followed by a
technical description of model construction in sections 1.2-

2.2. An overview of model exploration is described in sec-
tions 3.1-3.3. Finally, a small case study is presented as
results in section 4.

1.1. Motivational Example
Algorithm 1 is an example functional description. For

each loop iteration, the subsystem implementing this algo-
rithm reads three input values and writes one result. Fur-
thermore, an earlier addition requires the result of the
multiplication,rv2 , and hence a data dependency between
different loop iterations exists. Consequently,rv2 must be
initialized upon entering the loop.

Algorithm 1: Example functional description
rv2 = 0;
while (TRUE) {

i0,i1,i2 = read();
rv0 = i0 + i1; # Operation v0
rv1 = rv0 + rv2; # Operation v1
rv2 = rv1 × i2; # Operation v2
write(rv2); }

Figure 1 represents algorithm 1 as a data flow graph,
DFG. Each vertex represents an operation. Each directed
edge represents a data dependency. The reverse edge from
v2 to v1 represents a data dependency between different
loop iterations. (Read/write operations and associated data
dependencies were not included. Interface protocols, ports,
and their dependenciesare included in the case study.) All
operations or DFG vertices must be executed once per loop
iteration in the class of problems presented here. Some
behaviors require operations to execute only once, as in a
pre-computation of a coefficient. This is modeled by com-
bining cyclic models from this paper with earlier acyclic
models[2].

Correctly scheduling this DFG requires assigning each
operation to a time-step while observing several criteria.
First, all data dependencies must be observed. Second,
resource bounds, such as one available adder, must be
adhered to. Finally, a scheduling objective, such as mini-
mize iteration latency, typically guides schedule selection.

If one single time-step adder and one single time-step
multiplier are available, then the example’s only minimum
iteration latency schedule is shown in figure 2. Although

Figure 1: Data flow graph of example

v0 v1 v2

thedelay, or required time-steps for a single loop iteration,
is three, theiteration latency, or time-steps between succes-
sive loop iterations, is only two. Thisloop pipelining is
possible because operations from successive iterations may
overlap as seen withv2 andv0.

1.2. Automata-Based Solutions
Symbolic scheduling first constructs a composite mod-

eling automaton,CMA , that encapsulates all causal sched-
ules for a given DFG. OnceCMA is constructed,
exploration techniques are used to find particular schedules
meeting some objective function. For the example, the
desiredCMA is explicitly shown in figure 3. (In practice,
CMA is represented implicitly with ROBDDs.) Eachedge
in this non-deterministic state graph represents a time-step.
Operations assigned to a time-step are identified through
edge labeling. Loop pipelining is possible because succes-
sive iterations are distinguished. If an operation is labeled
with no ‘~’, such asv0, thenv0~represents the same oper-
ation in the successive iteration and vice versa. Operations
labeled with ‘~’ are referred to asodd iteration operations
and those without ‘~’ aseven. In figure 3, the minimum
iteration latency schedule is highlighted with dashed edges.
Two iterations (for both iteration senses) are scheduled in
one complete traversal of this cyclic dashed path. Edges
denote scheduled activities while states encode in which
sense operands currently exist in the design. In general, any
cyclic path throughCMA which executes all operations is
a valid steady-state schedule of the loop.

2. Constructing Composition Models
The first step in constructingCMA is to model each

DFG operation with a smallmodeling NFA,MA . In the
working example, a single time-step operation such asv0 is
modeled by the automaton shown in figure 4. Each labeled
edgeidentifies the scheduling ofv0 in one particular itera-
tion sense. Eachstateencodes what iteration sense was last
scheduled. For this particular choice of state encoding, ‘0’
representsv0 last scheduled in the odd iteration sense and
vice versa for ‘1’. In practice,MA often need to be more
complex than figure 4.MA have been generalized to repre-
sent complex function units (pipelined, etc.) as well as
local and global sequential constraints (IO protocols).

Every operation in the DFG is modeled by its own
instance of aMA . The Cartesian product of allMA form
an initial CMA . Although figure 3 showsCMA after edge
pruning, the state of eachMA is still represented by one bit
in eachCMA state vector orderedv2,v1,v0. To illustrate,
consider the transition from state 100 to state 001. The bit
representingv2 changes from 1 to 0 which identifies that
v2~ is scheduled on that edge. Also, the bit representingv0
changes from 0 to 1 which identifies thatv0 is scheduled.

2.1. Dependency and Capacity
Every path in the example traverses av0 edge before a

v1 edge sincev1 depends on the result produced byv0. In
the initial completely connectedCMA , an edge exists from
state 000 to state 010. However, the transition from 0 to 1 in
thev1 bit position indicates that operationv1 is scheduled
yetv0 is a 0 or ‘~’. The result operand thatv1depends upon
is not available in the correct iteration sense andv1can not
be scheduled. This edge and other acausal edges are pruned
from CMA by dependency refinements.

CMA contains a symbolic transition relation∆ ∈ CMA
where each transition, either global or for localMA , may
be represented by a present state, next state pair, (ps,ns). In
the example,v1’s evenintra-iteration dependency onv0 is
built by the implication (0,1)v1 ⇒ (1,−)v0. In words, if the
MA for operationv1 takes its eveninput transition (0,1),
then theMA for operationv0 must have its resultknown
(1,-) in the present state and in the even iteration sense.
This same intra-iteration dependency must also be built in
theodd iteration sense. Furthermore,v1’s eveninter-itera-
tion dependency onv2 is built by the implication
(0,1)v1 ⇒ (0,-)v2. This too must be built for both iteration
senses. Dependency implications are built for all edges in
the DFG and intersected withCMA’s transition relation∆
to prune all acausal edges.

Operationv0 has no dependencies. It is possible thatv0
may schedule in the even iteration sense and then in the odd
iteration sense beforev1 has a chance to use the first even
iteration result. A capacity implication ensures that a par-
ticular result is consumed by all dependents before the next
iteration result may be generated. The capacity implication
of v0 onv1 is built as (0,1)v0 ⇒ (−,0)v1.

2.2. Resource Bounds
Since bothv0andv1 require an adder resource and only

one adder resource is available, it is illegal to assign these
operations to the same time-step. Enforcing this corre-
sponds to removing edges fromCMA where bothv0 and
v1 are active (bits for v0 and v1 are changing simulta-
neously). This is enforced by enumerating all combinations
of 0 up tobound activetransitions for a particular resource
class and intersecting this filter with∆ to prune all edges
violating resource bounds. Although this constraint
appears to be exponential, it requires only 2× n × bound

Figure 2: Minimum iteration latency schedule

v0 v1 v2

v2v0 v1

v2v1v0

1 42 3 5 6 7 ...

Figure 3: Explicit CMA for working example

000010

001011

101111

110 100

v1

v2 v0~

v2~ v0

v2

v1~
v0~

v0

v2~

v2~
v2

v0v0~

Figure 4: Single cycle modeling NFA

v0

v0~
S0 S1

nodes, wheren is the number of operations requiring this
resource class, when represented as a ROBDD. Thiscon-
currencyconstraint may be generalized to limit intercon-
nect, guide multiplexing and limit required local storage.

3. Composition Model Exploration
The dashed path of figure 3 shows a minimum iteration

and control-step latency schedule. Composition model
exploration finds a set of all such minimum length repeat-
able paths using symbolic techniques. We begin with a
loop-cut setwhich includes states guaranteed to be on the
optimal steady-state loop path. (Initially, we ignore a pre-
amble in favor of a true optimal steady-state solution.) To
determine a loop-cut set, first realize that any valid steady-
state solution will execute every loop operation at some
time-step during one iteration. Consequently, we may
chose any operation to serve as theloop cut. All edges in
CMA where the loop-cut operation is scheduled in the
even sense form an even transition loop-cut set. All succes-
sor states for transitions in this set create the loop-cut start-
ing state set,LCS. For example, picking operationv2as the
example’s loop cut results inLCS= {110,111}.

3.1. Candidate Loop Schedules
Candidate loop schedules are generated through sym-

bolic exploration ofCMA . To facilitate this, a termination
set,LCS~, is determined. Remember that two symmetric
iterations of the example are represented by the dashed
path in figure 3. In fact, states in the even iteration sense
have a symmetricdual in the odd iteration. For example,
states 110 and 001 are duals. Because of this choice of
encoding, a dual state is found by bitwise complement. The
dual ofLCS is LCS~= {001,000}.

Since only a steady-state solution foroneiteration of the
loop is desired, exploration proceeds until states inLCS~
are reached. At each step of this breadth first ROBDD tra-
versal, atime-stepset is preserved. All time-step sets form
an ensemble time-stepset. For the example, an ensemble
time-step set is {110,111}0, {100}1, {000,001,101}2.
When states inLCS~are reached, a reverse pruning leaves
only paths from some states inLCSto some states inLCS~.
In the example, the pruned loop candidate ensemble time-
step set is {110}0, {100}1, {000,001}2.

3.2. Loop Candidate Closure
Not all of the loop candidates are repeatable. The exam-

ple’s loop candidate ensemble time-step set contains a path
from 110 to 100 to 000. Unfortunately, there is no path
from 000 which completes an iteration in two steps. (This
can be determined by considering the dual.) Loop candi-
date closure is a fixed-point pruning of the loop candidate
ensemble. Forward and backward pruning proceed until
time-step set 0 equals (as duals) time-stepn. After loop
candidate closure is applied to the example, the closed loop
ensemble time-step set is {110}0, {100}1, {001}2. If loop
candidate closure fails, another time-step set is added to an

unpruned ensemble time-step set copy and loop candidate
closure is attempted again.

Figure 5 illustrates loop closure abstractly. The setsLCS
andLCS~ are equal although in opposite senses. There are
two paths,a to a~ andd to d~,which are directly repeatable
after five time-steps. They are repeatable since by symme-
try paths also exists froma~ to a and fromd~ to d. These
represent steady-state schedules with iteration and control-
step latency of five. A schedule which favors minimizing
iteration latency at the expense of control depth is encapsu-
lated in the path fromb to c~ and by symmetry fromc~
back tob. This path has average iteration latency of only 4
but requires more control steps.

3.3. Single Loop Schedules
AlthoughCMA and the closed loop ensemble time-step

set contain a wealth of schedules to choose from, it is
sometimes desirable to find a path from some states
directly to its duals~ as it represents a FSM with number of
control steps equal to the minimum iteration latency. To do
this, we pick an arbitrary states from time-step 0 of the
closed loop ensemble and attempt loop closure with this
single state asLCS. If loop closure is successful, a closed
path froms to s~ exists. In the worst case, this procedure
may be costly as it explicitly examines every state from
time-step set 0. Fortunately, in all examples we have sched-
uled, the solution density is high enough that a successful
candidate was found between one to twenty attempts.

4. EWF Case Study
The elliptic wave filter, EWF, is a common looping

DFG benchmark reported in the literature[2][4][6] with 8
multiplication and 26 addition operations. We use this
benchmark as a case study to demonstrate how a designer
might interactively use symbolic scheduling. (Readers
interested in a more complete set of results should refer to
paper [3].)

Suppose a designer needs to implement EWF using a
particular standard cell and IP-block library. Given the
nature of EWF, the designer decides to explore reuse of the
IP block shown in figure 6. Internally, this IP block con-
tains an optimized 3-stage pipelined floating-point multi-
plier, a floating-point ALU, a small ROM and one
multiplexer. The timing of the multiplier’s third stage and
the ALU is such that they may be chained in one clock
cycle. The output of the ROM is hardwired to one input of
the multiplier. The multiplexer allows one external input to
bypass the multiplier and directly feed the ALU. Depend-
ing on the control settings of the bypasses, this IP block
may implement three functions: multiply by coefficient,
multiply by coefficient and accumulate, and add.

Figure 5: Closed paths from LCS to LCS~
d
c
b
a

d
b~
c~
a~5

5
3
5LCS LCS~

The designer codes the EWF algorithm at an abstract
level (< 100 lines) and specifies appropriateMA s (again <
100 lines). Symbolic scheduling accepts this input and
determines all minimum iteration latency schedules. Table
1 summarizes results for this exploration while varying
available IP blocks. At this point, the designer has the free-
dom to explore other IP options and configurations. Sup-
pose he decides that a configuration with one IP block and
one additional adder provides acceptable performance with
a small resource contingent as the iteration latency, 18, is
equivalent to using two IP blocks.

Figure 7 shows what type of local storage and intercon-
nect the designer has in mind. A bank of registers stores
intermediate results. Any of these registers connects to a
function block input or output through a limited number of
busses. The single IO port, which is connected to bus struc-
ture 1, permits communication to and from the function
blocks via the register bank.

After editing the EWF description and model files, (~20
edited lines), the designer now experiments with various
register and bus constraints. Several fast iterations of sym-
bolic scheduling provide the data shown in table 2. Given
the existing 1 IP-block and 1 ALU constraints, execution of
EWF is impossible with less than 9 registers and no
improvement occurs for more than 9. Varying available
busses does vary iteration latency. The designer has a trade-
off decision and opts to reduce interconnect at the expense
of iteration latency by choosing the 3/2 bus solution shown
in bold. (Even with 3 busses, both function blocks may

simultaneously begin execution as a single operand may
feed multiple function block inputs.) Once the designer
decides on a final constraint configuration, symbolic sched-
uling provides an optimal loop-pipelined witness schedule
(control sequence) which may be directly synthesized into
a FSM. Although the final selected solution has an iteration
latency slightly greater than what is commonly reported as
optimal for EWF, it incorporates practical and important
interconnect, memory and IO-protocol constraints.

5. Conclusions
A systematic symbolic model is presented for exact

scheduling of looping DFGs. First, an automata-based
model incorporating numerous practical design constraints
is constructed. Next, all shortest repeating paths (high-
throughput execution sequences) are found using well
developed symbolic model-checking techniques. A case
study demonstrated the usefulness and application of sym-
bolic scheduling. Parallel work with symbolic scheduling
has addressed control even when present in looping or
pipelined behavior. Ongoing and future work focuses on
finding bestaveragelatency schedules and other desired
schedules using improved model-exploration techniques.

6. References
[1] L.-F. Chao, A. LaPaugh and E. Sha, “Rotation Schedul-

ing: A Loop Pipelining Algorithm”,IEEE Trans. CAD/
ICAS, vol. 16, no. 3, pp. 229-239, Mar. 1997.

[2] S. Haynal and F. Brewer, “Encoding for Exact Symbolic
Automata-Based Scheduling”,IEEE Int. Conf. Com-
puter-Aided Design, pp. 477-481, 1998.

[3] S. Haynal and F. Brewer, “Symbolic Automata-Based
Scheduling for Looping DFGs”,IEEE Trans. CAD/ICAS,
submitted Nov. 1999.

[4] I. Radivojevic and F. Brewer, “On Applicability of Sym-
bolic Techniques to Larger Scheduling Problems”,Proc.
EDAC-96, pp. 48-53, 1996.

[5] C.-Y. Wang and K. Parhi, “High-Level DSP Synthesis
Using Concurrent Transformations, Scheduling, and
Allocation”, IEEE Trans. CAD/ICAS,vol. 14, no. 3, pp.
274-295, Mar. 1995.

[6] J. C.-Y. Yang, G. De Micheli and M. Damiani, “Schedul-
ing and Control Generation with Environmental Con-
straints based on Automata Representations”,IEEE
Trans. CAD/ICAS, pp. 166-183, Feb. 1996.

Table 1: Constrained IP-block results

IP Blocks Iteration Latency CPU Seconds
1 30 3.2
2 18 2.7
3 16 2.5
4 16 2.4

Figure 6: IP block for reuse

MULTIPLIER

ROM

Input 1

Input 2
Output

Multiplier BypassCoefficient Address ALU Bypass

Figure 7: Target high-level architecture

Register

IO Port

IP Block

ALU B
us

 S
tr

uc
tu

re
 1

Bus Structure 2

Register

Register

Table 2: Constrained registers & busses results

Bus
1

Bus
2

Registers
IO

Ports
Iteration
Latency

CPU
Seconds

- - 8 1 Impossible 2.0
- - 9 1 18 2.9
- - 10 1 18 3.1
- 1 9 1 30 3.4
- 2 9 1 18 2.9
- 3 9 1 18 3.0
2 2 9 1 29 3.2
3 2 9 1 20 3.1
4 2 9 1 18 3.1
5 2 9 1 18 3.0

