Representing and Scheduling Looping Behavior Symbolically

Steve Haynal, Forrest Brewer
University of California, Santa Barbara
haynal@umbra.ece.ucsb.edu, forrest@ece.ucsb.edu

Abstract 2.2. An overview of model exploration is described in sec-
tions 3.1-3.3. Finally, a small case study is presented as

This paper presents a very general, exact technique forresults N section 4.

scheduling looping data-flow graphs. In contrast to the
conventional technique using loop iteration variables and 1 1. Motivational Example

integer linear programming, the new technique USeS  agorithm 1 is an example functional description. For
implicit symbolic automata techniques to represent the gach |oop iteration, the subsystem implementing this algo-
problem instance. The new technique has several advanyithm reads three input values and writes one result. Fur-
tages, such as incremental refinement, efficient variablethermore, an earlier addition requires the result of the
usage and ability to accommodate practical design con- multiplication,rv2 , and hence a data dependency between
straints. A small case study demonstrates the flexibility different loop iterations exists. Consequentiz must be
and viability of this technique. initialized upon entering the loop.

1. Introduction Algorithm 1: Example functional description

‘s : : v2 =0;
Implicit symbolic techniques have progressed tremen- while (TRUE) {

dously in recent years and have gained mainstream accep-" "1 i = read():
tance in formal model checking and verification. In WO = {0 + il ’#Operation VO
contrast, conventional high-level synthesis techniques have  y1 = rvo + rv2; # Operation v1
relied on ad-hoc modeling and on heuristics more akin to rv2 = rvl xi2; # Operation v2
compiler technology than to hardware synthesis. In this write(rv2); }
work, our goal is to apply systematic approaches and tech-
nologies borrowed from model checking to problems of  Figure 1 represents algorithm 1 as a data flow graph,
high-level synthesis. To these techniques, we add theDFG. Each vertex represents an operation. Each directed
expressive capabilities of non-deterministic finite autom- edge represents a data dependency. The reverse edge from
ata. NFAs have efficient implicit representation and are v2 to vl represents a data dependency between different
used throughout the formulation to represent information loop iterations. (Read/write operations and associated data
behavior, protocols and interfaces, and arbitrary designdependencies were not included. Interface protocols, ports,
subsystems. Using these tools, we reformulate the loop-and their dependenciese included in the case study.) All
dominated data-flow scheduling problem as constrainedoperations or DFG vertices must be executed once per loop
search among all implicit automata-based executions. iteration in the class of problems presented here. Some
This technique has potential as well as some drawbacksbehaviors require operations to execute only once, as in a
The potential lies in the ability to accommodate arbitrary pre-computation of a coefficient. This is modeled by com-
automata-based constraints on timing, behavior, capacitybining CYC”C models from this paper with earlier acyclic
and other chosen properties of the design while maintain-model$?.
ing systematic solutions. Surprisingly, many types of
scheduling optimizations, such as loop pipelining, are cap-
tured implicitly by the technique. The drawbacks are with Figure 1: Data flow graph of example

representation growth. However, by careful choice of Correctly scheduling this DFG requires assigning each

encoding and representation we have shown that this tech'operation to a time-step while observing several criteria.

nigue is practical to at least the scale offered by aIternativeFirst all data dependencies must be observed. Second
exact methods and indeed the performance exceeds that qf ' ' i

comparable published heuristi¢s Furthermore, the sys- =source bou_nds, such as one aveylab_le adder, must _be
tematic formulation provides a formal route toiabstraction adhe(ed . Finally, a sch_edullng .object|ve, such as mini-
and hierarchical representation of larger designs mize iteration Iat(_ancy, typically guides schedule sglectlon.
; X : If one single time-step adder and one single time-step
In this paper, we present a brief example followed by a

technical description of model construction in sections 1.2- multiplier are available, then the example's only minimum
P < iteration latency schedule is shown in figure 2. Although




thedelay or required time-steps for a single loop iteration, N

2
is three, theteration latencyor time-steps between succes- @ v0 @
sive loop iterations, is only two. Thibop pipeliningis ) ) VO~ .
possible because operations from successive iterations may Figure 4: Single cycle modeling NFA
overlap as seen witf? andvO. Every operation in the DFG is modeled by its own
vO vl V2 instance of aMA . The Cartesian product of aMIA form
Vo vl v2 an initial CMA . Although figure 3 show€MA after edge

pruning, the state of ead¥A is still represented by one bit

in eachCMA state vector ordered2,v1,v0. To illustrate,
consider the transition from state 100 to state 001. The bit
representingy2 changes from 1 to 0 which identifies that

) v2~is scheduled on that edge. Also, the bit representihg
1.2. Automata-Based Solutions changes from O to 1 which identifies thvatis scheduled.

Symbolic scheduling first constructs a composite mod-
eling automatonCMA,, that encapsulates all causal sched- 2.1. Dependency and Capacity
ules for a given DFG. OnceCMA s constructed, Every path in the example traverses@edge before a
exploration techniques are used to find particular schedulesy1 edge sinces1 depends on the result produced\dy In
meeting some objective function. For the example, the the initial completely connectg@MA , an edge exists from
desiredCMA is explicitly shown in figure 3. (In practice,  state 000 to state 010. However, the transition from 0 to 1 in
CMA is represented implicitly with ROBDDs.) Ea@lige  thev1 bit position indicates that operatiar is scheduled
in this non-deterministic state graph represents a time-stepyetv0is a 0 or ‘~'. The result operand that depends upon
Operations assigned to a time-step are identified throughis not available in the correct iteration sense ahdan not
edge labeling. Loop pipelining is possible because succeshe scheduled. This edge and other acausal edges are pruned
sive iterations are distinguisheidl an operation is labeled  from CMA by dependency refinements.
with no ‘~’, such as/0, thenvO~represents the same oper- ~ CMA contains a symbolic transition relatidn’] CMA
ation in the successive iteration and vice versa. Operationsyhere each transition, either global or for lodah , may
labeled with ‘~" are referred to azdditeration operations  pe represented by a present state, next state pgirsy In
and those without *~" agven In figure 3, the minimum  the exampley1’s evenintra-iteration dependency orD is
iteration latency schedule is highlighted with dashed edges built by the implication (0,311, 0 (1,7)y0 In words, if the
Two iterations (for both iteration senses) are scheduled inMA for operationv1 takes its everinput transition (0,1),
one complete traversal of this cyclic dashed path. Edgesthen theMA for operationvO must have its resuknown
denote scheduled activities while states encode in which(1,-) in the present state and in the even iteration sense.
sense operands currently exist in the design. In general, anyThis same intra-iteration dependency must also be built in
cyclic path througtCMA which executes all operations is  the odd iteration sense. Furthermonel’s eveninter-itera-

a valid steady-state schedule of the loop. tion dependency onv2 is built by the implication
(0,1),1 0 (0,-)y2- This too must be built for both iteration
senses. Dependency implications are built for all edges in
the DFG and intersected witbMA'’s transition relatiomA

to prune all acausal edges.

Operationv0 has no dependencies. It is possible tiat
may schedule in the even iteration sense and then in the odd
iteration sense befonel has a chance to use the first even
Figure 3: Explicit CMA for working example iteration result. A capacity implication ensures that a par-
ticular result is consumed by all dependents before the next

. . iteration result may be generated. The capacity implication
2. Constructing Composition Models of vOonviLis built as (0,1 0 (~0)q.

The first step in constructin€MA is to model each
DFG operation with a smalinodeling NFAMA. In the 2.2. Resource Bounds
working example, a single time-step operation sucv(as Since both/0andvi require an adder resource and only
modeled by the automaton shown in figure 4. Each labeledone adder resource is available, it is illegal to assign these
edgeidentifies the scheduling of0in one particular itera-  gperations to the same time-step. Enforcing this corre-
tion sense. Eacstateencodes what iteration sense was last sponds to removing edges froBMA where bothvO and
scheduled. For this particulqr choice of_ state encoding, ‘0’ y1 are active (bits for vO and v1 are changing simulta-
represents0 last scheduled in the odd iteration sense and neously). This is enforced by enumerating all combinations
vice versa for ‘1'. In practiceMA often need to be more  f 0 up tobound activeransitions for a particular resource
complex than figure MA have been generalized to repre- class and intersecting this filter with to prune all edges
sent complex function units (pipelined, etc.) as well as yjolating resource bounds. Although this constraint
local and global sequential constraints (10 protocols). appears to be exponential, it requires only 2x bound

vO vl v2
1 2 3 4 5 6 7
Figure 2: Minimum iteration latency schedule




nodes, whera is the number of operations requiring this unpruned ensemble time-step set copy and loop candidate

resource class, when represented as a ROBDD. ddris closure is attempted again.

currencyconstraint may be generalized to limit intercon- Figure 5 illustrates loop closure abstractly. The &S

nect, guide multiplexing and limit required local storage. andLCS- are equal although in opposite senses. There are

two pathsato a~ andd to d~,which are directly repeatable

3. Composition Model Exploration after five time-steps. They are repeatable since by symme-
The dashed path of figure 3 shows a minimum iteration I¥Y Paths also exists frora- to a and fromd- tod. These

and control-step latency schedule. Composition model "€Present steady-state schedules with iteration and control-

exploration finds a set of all such minimum length repeat- St€P latency of five. A schedule which favors minimizing

able paths using symbolic techniques. We begin with g iteration latency at the expense of control depth is encapsu-

loop-cut setwhich includes states guaranteed to be on the [at€d in the path fronb to ¢~ and by symmetry frone~
optimal steady-state loop path. (Initially, we ignore a pre- back tob. This path has average iteration latency of only 4

amble in favor of a true optimal steady-state solution.) To PUt réquires more control steps.

determine a loop-cut set, first realize that any valid steady- a 5 g
state solution will execute every loop operation at some b ] 3
time-step during one iteration. Consequently, we may LCS g / 5

chose any operation to serve as thep cut All edges in
CMA where the loop-cut operation is scheduled in the
even sense form an even transition loop-cut set. All succes-
sor states for transitions in this set create the loop-cut start-3.3. Single Loop Schedules

Figure 5: Closed paths from LCSto LCS~

ing state set, CS For example, picking operatio?® as the AlthoughCMA and the closed loop ensemble time-step

example’s loop cut results ICS={110,111}. set contain a wealth of schedules to choose from, it is
sometimes desirable to find a path from some state

3.1. Candidate Loop Schedules directly to its duak~ as it represents a FSM with number of

Candidate loop schedules are generated through symeontrol steps equal to the minimum iteration latency. To do
bolic exploration ofCMA . To facilitate this, a termination  this, we pick an arbitrary statefrom time-step 0 of the
set,LCS~, is determined. Remember that two symmetric closed loop ensemble and attempt loop closure with this
iterations of the example are represented by the dashedingle state akCS If loop closure is successful, a closed
path in figure 3. In fact, states in the even iteration sensepath froms to s~ exists. In the worst case, this procedure
have a symmetriclual in the odd iteration. For example, may be costly as it explicitly examines every state from
states 110 and 001 are duals. Because of this choice ofime-step set 0. Fortunately, in all examples we have sched-
encoding, a dual state is found by bitwise complement. Theuled, the solution density is high enough that a successful
dual ofLCSis LCS~={001,000}. candidate was found between one to twenty attempts.

Since only a steady-state solution @oreiteration of the
loop is desired, exploration proceeds until statet@&- 4. EWF Case Study
are reached. At each_ step of this brea(_jth first ROBDD tra-  1pe elliptic wave filter, EWF, is a common looping
versal, aime-stepset is preserved. All time-step sets form  peEG penchmark reported in the literati#lel with 8
an ensemble time-steget For the example, an ensemble o iplication and 26 addition operations. We use this

time-step set is {110,11%}{100},, {000,001,101}p.  penchmark as a case study to demonstrate how a designer
When states il CS~are reached, a reverse pruning leaves might interactively use symbolic scheduling. (Readers

only paths from some statesli€Sto some states iblCS~  jyierested in a more compiete set of results should refer to
In the example, the pruned loop candidate ensemble t'me'paper 131.)
step set is {110}, {100}, {000,001} Suppose a designer needs to implement EWF using a

. particular standard cell and IP-block library. Given the
3.2. Loop Candidate Closure nature of EWF, the designer decides to explore reuse of the
Not all of the loop candidates are repeatable. The exam-|p plock shown in figure 6. Internally, this IP block con-
ple’s loop candidate ensemble time-step set contains a patiains an optimized 3-stage pipelined floating-point multi-
from 000 which completes an iteration in two steps. (This myltiplexer. The timing of the multiplier’s third stage and
can be determined by considering the dual.) Loop candi-the ALU is such that they may be chained in one clock
date closure is a fixed-point pruning of the loop candidate cycle. The output of the ROM is hardwired to one input of
ensemble. Forward and backward pruning proceed untilihe myltiplier. The multiplexer allows one external input to
time-step set 0 equals (as duals) time-stegAfter loop  pypass the multiplier and directly feed the ALU. Depend-

ensemble time-step set is {110§100},, {001},. If loop  may implement three functions: multiply by coefficient,
candidate closure fails, another time-step set is added to amytiply by coefficient and accumulate, and add.



simultaneously begin execution as a single operand may
feed multiple function block inputs.) Once the designer
B decides on a final constraint configuration, symbolic sched-
uling provides an optimal loop-pipelined witness schedule
(control sequence) which may be directly synthesized into
a FSM. Although the final selected solution has an iteration

Coefficient Address—  Multiplier Bypass ALU Bypass

MULTIPLIER

Input 1 — _ .
' Output latency slightly greater than what is commonly reported as
Input 2 - optimal for EWF, it incorporates practical and important

: interconnect, memory and |O-protocol constraints.
Figure 6: IP block for reuse y P

The designer codes the EWF algorithm at an abstract Table 2: Constrained registers & busses results
level (< 100 lines) and specifies appropriddé s (again <

100 Iines). Symbqlic sc_hedu_ling accepts this input and st B;S Registers F,'Sts I,t_(:tzt:i; SSCF:rJ]dS
determines all minimum iteration latency schedules. Table - 3 T Tmpossible 70
1 summarizes results for this exploration while varying . 9 1 18 29
available IP blocks. At this point, the designer has the free- - 10 1 18 31
dom to explore other IP options and configurations. Sup- 1 5 1 30 34
pose he decides that a configuration with one IP block and > 5 1 18 29
one additional adder provides acceptable performance wit - 3 5 1 18 30
a small resource contingent as the iteration latency, 18, i > > 9 1 29 32
equivalent to using two IP blocks. 3 2 9 1 20 31
Table 1: Constrained IP-block results 4 2 9 ! 18 31
5 2 9 1 18 3.0
IP Blocks Iteration Latency CPU Seconds
T 30 32 5. Conclusions
g 12 2; A systematic symbolic model is presented for exact
- = 52 scheduling of looping DFGs. First, an automata-based

model incorporating numerous practical design constraints
Figure 7 shows what type of local storage and intercon- IS_constructed. Next, all shortest repeating paths (high-
nect the designer has in mind. A bank of registers storestroughput execution sequences) are found using well
intermediate results. Any of these registers connects to ad€veloped symbolic model-checking techniques. A case
function block input or output through a limited number of Study demonstrated the usefulness and application of sym-
busses. The single 10 port, which is connected to bus struc-P0lic scheduling. Parallel work with symbolic scheduling
ture 1, permits communication to and from the function Nas addressed control even when present in looping or

blocks via the register bank. pipelined behavior. Ongoing and future work focuses on
finding bestaveragelatency schedules and other desired
< 10port L] « w schedules using improved model-exploration techniques.
[}
R E 6. References
|| IPBlock = 2 ° [1]  L.-F. Chao, A. LaPaugh and E. Sha, “Rotation Schedul-
% e ing: A Loop Pipelining Algorithm”,IEEE Trans. CAD/
—>1 a d ICAS,vol. 16, no. 3, pp. 229-239, Mar. 1997.
. ALU > m W% [2]  S.Haynal and F. Brewer, “Encoding for Exact Symbolic
Automata-Based SchedulinglEEE Int. Conf. Com-
puter-Aided Desigrpp. 477-481, 1998.
Bus Structure 2 [3] S. Haynal and F. Brewer, “Symbolic Automata-Based
Figure 7: Target high-level architecture Scheduling for Looping DFGS'IEEE Trans. CAD/ICAS,
» o submitted Nov. 1999.

After editing the EWF description and model files, (~20 [4] I. Radivojevic and F. Brewer, “On Applicability of Sym-
edited lines), the designer now experiments with various bolic Techniques to Larger Scheduling Problentac.
register and bus constraints. Several fast iterations of SyM-g (E:%\C\;\‘-/’gnppéﬁg-i& égﬁﬁ- Hiah.Level DSP Svnthesis
bolic scheduling provide the data shown in table 2. Given U'sin'g Co%current' Transfform%tions Scheduﬁ/ng and
the existing 1 IP-block and 1 ALU constraints, execution of Allocation”, IEEE Trans. CAD/ICASyol. 14, no. 3, bp_
EWF is impossible with less than 9 registers and no 274-295, Mar. 1995. o
improvement occurs for more than 9. Varying available 61 J. C.-YdY%ng, Gi %e Micheli and “h/'-gam'anh Scrl‘eg“"
busses does vary iteration latency. The designer has a trade- g b:snetao onegﬂtﬂggtg ItFleptpeVSILang?[%rggEEon_
off decision and opts to reduce interconnect at the expense Trans. CAD/ICASpp. 166-183, Feb. 1996.

of iteration latency by choosing the 3/2 bus solution shown
in bold. (Even with 3 busses, both function blocks may



