Scheduling and Binding Bounds for RT-Level Symbolic Execution

Chuck Monahan Forrest Brewer

Department of Electrical and Computer Engineering
University of California, Santa Barbara, U.S.A.
chuck@bears.ece.ucsb.edu, forrest@ece.ucsb.edu

Abstract

. . . Data-flow graph
This paper generalizes ALAP bounds for the exact scheduling

a & ¢ Schedule

problem on a pre-defined data path. Conventional bounds are
inapplicable because of the possible requirement of re-computing
operands for minimal schedule length. Efficient techniques are pre- Cycle | ALU | ACC | Reg
sented for constructing the new bounds which are sensitive to co {ay, @, c}
point-to-point delays via transitive memory units. An efficient oper-
and mapping bound is also described. Based on these two bounds, €1 a |[ad
time improvement factors of 50 have demonstrated in exact sched- c2 A o | {a & c}
uling results.
C3 [{ag, c}

1. Introduction ca o | fag o o}

HLS techniques are typically aimed at relatively unconstrained \ c5 a | fap o)
synthesis tasks such as RT synthesis of a new design. However, the
large cost of verification and the gaining popularity of data-path ~ Data path cé6 A o |{an 0 c}
cores creates the need for constrained synthesis for a given (pre- c7 o {ay, &
defined) data-path. Miyaz&Hi proposed the first system for this w :
task, however, that system used heuristic techniques which missed 3 c8 D 1l {c}
much of the inherent design freedom. In a similar vein, retargetable | gjament N~ co {os &}

microcode compilers make limited use of the total possible con- Reg File
nectivity of a data-path by restricting the communications to a
small set of pre-definegt Ops. Scheduling for these constraints ACC
can be managed by ASKPor by tree matching?!. By contrast, i
we proposed using RT-level symbolic data path execution to per-
form exact scheduling of DFG’s (data-flow graphs) on a preexist- - .
ing data patf! This technique utilizes reachable state analysis on Figure 1. Scheduling example.

an automata representing both the data path and operand conto maintain the required set of operands. This potential for
straints to perform a systematic analysis of the design freedom. rescheduling operations means that no operation can be excluded
The price of this increased design exploration is its substantial solely on the merit that it has been previously scheduled. It is this
computational complexity since at each step, every feasible autom- exclusion of operations and their associated parent operands which
ata state that represents possible generation of operands is implicpermits conventional bounds to maintain a manageable size for the
itly constructed. This process implicitly constructs every feasible reachable state analysis.

schedule and is exact, however, it is potentially costly. In this Clearly, an operation need not be considered for (re)scheduling
paper, we describe novel scheduling bounds which allow exact if it could not have a measurable effect in the remaining execution
results for the data-path constrained scheduling problem, but cycles. These constraints on the scheduling of an operation are
which substantially decrease the run time by removing states commonly referred to as ALAP (as late as possible) bounds. The

which can lead only to suboptimal schedules. use of ALAP bounds has been shown to be extremely effective for
Reachable state analysis had been previously utilized for scheduling problems which lacked communication constréints.
scheduling in the work of Yarl§f and of Coehlé, but these tech- ~ The construction techniques for ALAP bounds must address two

nigues were addressing scheduling without communication con- additional issues to make them applicable for scheduling on a pre-
straints. Scheduling for a pre-defined data path, however, presentsdefined data path. First, due to the possible recomputation of oper-
new challenges. Fundamentally, the system cannot guarantee thaends, the ALAP bound of an operand must be based on the ALAP
an operand will be created only once in an optimal schedule. This bounds of every child operation since we cannot guarantee that the
is true even for optimal schedules. An operand may require recom- first instance of an operation will satisfy all dependencies. The
putation when insufficient storage or switching logic exists, as example in Fig. 1 demonstrates this requirement, where the o
occurs in the example shown in Fig. 1. In this figure, while execut- ALAP bound is derived from the ALAP bound of instead of ¢.
ing the DFG, @ must be overwritten wher, & computed in order Secondly, the bounds must be extended to account for the limita-
tions of the switching network, memory units and function units,
* This work has been generously supported by UC MICRO 96-142 and Mentor instead of solely the number of function units as is conventionally
Graphics Corp. done. The first issue is applicable to the problem, while the second

and output ports pose no additional challenges for the proposed
techniques, they are omitted for the sake of cla¥iffhe arrange-

TABLE 1. Behavioral Constraints

Behavior Restrictions ment of these components and their connecting wires must ensure
Latch |#|=1]9] =1 and> =0 that each loop described by a consistent set of directional ports
Register file [%] =19 contains at least one memory device to prevent feedback races. All
Multiplexer || >0,|9] =1and] x| 2log, (|®]|) additional constraints are based upon the component’s behavioral
Function unit |©] >0 type and are summarized in Table 1. The behavior of many con-

ventional data path components will not directly correspond to one
of these base behaviors. Such components need to be either manu-
ally or automatically partitioned into the various functional com-
ponents connected by wires as in the example in Fig. 2.

Y o B

issue makes the bound useful.

This paper presents a technique for constructing ALAP bounds
based on operand routing constraints instead of function unit avail-
ability. This same technique is subsequently extended to further
restrict the reachable state analysis by providing bounds on storage
locations. Both of these topics are presented after a brief review of
symbolic data path execution. This review consists of a description
of the input requirements (Section 2) in which the flexibility of the
representation is highlighted, an overview to the automata repre-
sentation and reachable state analysis (Section 3.1), and an intro-
duction into the incorporation of operand lifetime bounds

(Section 3.2).
2. Input Formats
In this section, the format for specifying the data path and DFG

Figure 2. Expressing a function unit's feed-through capacity.

2.2. Data-Flow Graph
Data-flow graphs specify the dependencies between operands

are presented. The formats were selected to permit the specifica-and operations. For our system, these graphs form directed, acyclic

tion of a wide variety of designs. The input format does include a
few restrictions which are designed to clarify behavior that would
be otherwise ambiguous.

2.1. Data path

The data path is modeled as a tupte, W) . Each element, ¢
of C is a data path component defined(&y, ®;, ©,) . Theset
defines the set of control lines which connect to componefthe
set ®, defines an ordered set of unidirectional input ports;for c
The final set®; , defines for an unordered set of unidirectional
output portst While two components may share common control
lines, they must always have disjoint input and output port sets.
The functionC (8) will be used to identify the associated compo-
nent from an output port specification.

A number of useful data path attributes may be gathered from
these definitions. The s&t describes the complete set of control

lines, {01,05,...0,}, as defined byz = D 2, .Thes@ describes

the complete set of output port§f,, 6,, ..., 0} , as defined by
e =[o,.
|

I
2

Operands are transported between output and input ports over

hypergraphs. A DFG is a tuple (P, E) where P is a set of operands
and E is a set of operations. Each operation is defined as the four-
tuplee (8,5, M, p) whered is an output port which will produce
the resultg is the control vector for the componén(g) M , s
an ordered set of input operandsy,, T, ..., 1) , Wheerél P ,
and p is the resulting operand. The following restrictions are
placed on operation specifications:@) 0) must identify a func-
tion unit and 2)|M| must equal the number of input ports for the
specified function unit. This second restriction permits a direct
assignment of input operands to input ports; a “null” operand is
used as a place holder for input ports with no associated input
operand in a given operation. An operapdspsaid to be a parent

of operand p and p is said to be the child of (piff

Ce, OE|p, UM, np=p;.

There are some non-traditional elements of our DFG model. 1)
There are no restrictions on the number of operations which may
generate any operang @s expressed in EQ. 1. In the presence of
multiple operations, each operation provides a unique, alternative
method to generate the operand.

|le OE[p=py 20 (N

the data path’s set of wires, W. We impose the constraint that each2) The operation mapping explicitly lists a function unit's output

wire, w, emanates from only one output port but may fanout to
drive many input porté Therefore, each yis defined by an output

port, 8, , and a set of input ports. Additionally, each input pprt,
may only be driven by a single wire, which permits the function
W (@) to uniquely identify the wire connected to a specified input
port.

port. Traditionally, this association is made by an operation map.
But, the large disparity in function unit descriptions combined
with the potential for highly tailored operations made such an
operation table impractical. The enumeration of the associative
and commutative operands as well as equivalent function unit list-
ings, which are traditionally handled by the operation map, is

Each data path component is assigned one of the four behavioraccommodated through the use of alternative operations. 3) No

types. Memory elements are represented by either latches or regis{WO operands may be equivalent, where equivalency between two

ter files. Switching logic, used to conditionally transfer existing
operands to different wires, is distinguished from combinational

logic which creates new operands. In general, all switching compo-
nents are modeled as multiplexers, and combinational logic blocks . e
i

are referred to as function units. While modeling of external input

1. Bidirectional ports are modeled by combinations of unidirectional
ports, switching elements, and switching control restrictions.
2. Designs which drive a line from multiple sources typically utilize coor-

operands pand p is defined by EQ. 2. When equivalent operands
are detected, they should be merged into a single operand,; this can
be done either automatically or manually.

OE[(M=N,,p; =Py, P; =P»0=6,0,n5%0) (2)
3. Representing Data paths

This section will introduce our automata-based data-path
model, discuss applications which may utilize it, and finally dis-

j#i

dinated switching elements. Such designs are accommodated by merg-Cuss a variety of optimizations and performance improvements.

ing these switching elements into a single functional component with a
single source.

3.1. Automata model 3.2. Lifetime optimizations

A symbolic automata is used to represent the storage of oper- ~ On a given iteration, each individual relatidd; , need only
ands in memory components, the motion of operands on the represent the set of states reachable friv) Sit is sufficient if
switching network, and the creation of operands in function units. the relation is defined over anyS"; (V) where
In its most general form, this automata is defined by the five-tuple s (v) 0S" (V). Therefore, the set of relations
(V,Z,N,S,(V),S (V). L Y e ttioad .

v & N 90 1 Of N° . (Z,V,V") is utilized instead oN; (Z,V,V ") to repre-

oy N7 .
V represents a finite set of states. Each state represents the CONzant the state relatioh x S",- (V) -V

tents of each of the data path’s memory components. This set may . This new set of rela-
be partiioned into the various disjoint components tions are generated dynamically for each iteration of the reachable

V =V, xV,x..xV_ where \ is the contents of a single ~ State analysis.

memory device. In generaV/. O P, wheRe = P We define The dynamic construction of transform relations is performed

. i i ’ .
the set of variables V as the present state variables and create a se@S follows. On each clock cycle, the set of operands, P, may be par-
ond set of variables\for the next state variables. titioned into a set of dead and a set of potentially active operands.

The automata inputs are defined as the set of contro} Jipes We define an optlmal set of dead operan(p,stdjnclude operands
introduced in Section 2.1. State relations are defined by the trans-Whose storage in some memory element at clock cycle k does not
form relation N:V - V' . This relation maps the set of feasible affect the reachable state analysis. The set of active statés, A
next states, given the set of present states and all possible controfl€fined asA; =P — D; . Given this partition, the individual trans-
line settings. This relation is symbolically represented as Ny, v~ form relations may be constructed from the conditions under
While N(V, V) describes the transform relation for the entire Which operand jp is present in device c represented as
automata, separate transform relations may be defined for each porN'i (%, V) . The specification ofN°; (%, V,V") is con-
tion of the state space denoted Qyfd £ xV - V',. The use of strained by the set of active operands, as in:
the control lines permits the complete transform relation to be [p N Ne. k(Z,V,V'-)], whereN®°, ., (%,V,V") = (3)
expressed as: O @Agapy b ' b '

N(V,V') = DDZ[Q N, (Z,V,V")]. Vi DN (S V)T O [V ((ExS,(V)) =N (V)]

Such relations are well defined for a given state and control V\;hile t_his representatior; isdmugh smallc(ejr ’;hanhthe tg]]eneral
vector because of the restrictions placed upon the input format. ransform, it requires a set of ordered operands for the; seh®
follownng observations can be made about constructing such a set:

First, the restriction that each bus has a single source means thaf h e h imal f imal
any control vector describes a set of distinct paths through the || DjiS defined as the optimal set of dead operands, a suboptima
set ' may be constructed whe', 1 D; . Such a set is subopti-

switching network. Restricting latches to single operands and the Lo . ; il b i dth ictl
use of control lines to select operands from register files means thatmal sinceN .% .(Z' v,V i) will be more complicated than strictly
required but It is still exact.

only distinct operands may appear at any path source emanating ' i

from a memory device. Restricting the DFG to contain only unique . 10 construct the setjDwe define an operandss lifetime as the

operations means that only distinct operands may be produced byfirst ¢ycle on which it may be scheduled (birth) and the last cycle

function units given a set of distinct operands at the inputs and a on which one of its children may l_:)e sche_duled (death). Such a life-

control vector. In the absence of a direct mapping between a given ime constitutes the cycles during which an operand must be
present in the set of active operands. Opergarsheuld remain in

state/control-vector pair and the operation for a given device, the h f | the followi X
operand produced by that device is a special “null” operand. The the set of dead operands until the following test is passed.

absence of cyclical paths ensures that each path destination will Q (N (£, V) nS;(V)) 20

have a distinct operand associated with the path’s source. Unfortunately. no such simple test exists to determine when
So(V) andS; (V') represent a set of initial and final states shouldureturr)l/,to theL:jead Ilis? . ne vhen p

for the automata. The ability to specify sets of initial and final ;

states gives the designer greater flexibility in determining both the 3.3. ALAP bound generation

proper initial and final state for the model. Schedules which link a

state inSy(V) with a state fror§, (V') may be found using

symbolic reachable state analysis fréq(V) . Towards this end

V‘k’]e c?mEute), th'ls Sﬁt of reachable states on the jth iteration of o5eration set based on the routing restrictions imposed by the data

the clock. In general, this set is generated by c?mputlng. path. From these ALAP bounds, an upper bound on the death of an

S(v) = L, [Si-1 (V) nN(V,V)]. operand may be determined. Since an operand is no longer
The complexity of eaciN, (Z,V,V',) may be reduced signifi- required a_fter all of its children have been produced, the operand
cantly by using the set of present states, making the following com- Pk is effectively dead once the cycle equals:

While lifetimes can not be determined exactly, they may be
unded relative to the minimal cycle bound provided to the
scheduler. From such a limit, ALAP bounds can be derived for the

putation more feasible: DnEw‘ax D[ﬂALAP (e)].
nNo— ' € P BT
SO0 =0 [GEZ[0 [S;-. (V) nNi(Z V.V i)]]] : Towards this end, we note that the DFG as well as the set of
vov final states create requirements on an operand’s possible storage in

A bounded minimum-cycle schedulerdefined as a system
which identifies the set of state transitions satisfying
S; (V') n S((V") #0 where j is minimized and below a speci-
fied upper bound. Upon j reaching this upper bound, the scheduler
reports the infeasibility of the scheduling problem. The resulting
schedules are extracted through a backwards-reachable-state anal
sis of the relation set generated by the reachable state analysis.

the data path. For example, each operation specifies an operand
and input port pair which must be satisfied in addition to the result-
ing operand and output port pair. Each final state encoding speci-
fies where an operand must be stored from which a set of input

orts can be determined. To meet the requirements of the final
States or the operations, an operand must traverse the data path to
get from where it was created by an operation to the proper input
port.

The data path provides many obstacles to the movement of
operands. The switching network will often support only a limited
amount of connectivity. While operands do traverse memory
devices, they will suffer the delay of at least one cycle. These limi-
tations combined with the constraints derived from the simulta-
neous transfer of multiple operands account for a majority of the
cycles in a schedule. By formalizing the minimal delay of a single
operand traversing from specific locations, useful scheduling
bounds may be derived.

We define the functiort (6, w;) to represent the minimal
number of memory devices whicﬁ lay on a path between output
port6, and wire w To compute this function, we construct a series

of sets,T; , , where each set indicates the output ports which can be Figure 3. Fluctuating ALAP bounds due to operand fanout.

connected to wire jaby traversing no function units, x memory in Fig. 3. Fortunately, this policy accommodates the fact that not

devices, and as many multiplexers as req_wred. The_ defln'ltl.on of every operation must be executed since any operation may have an
T, . depends upon the component,which drives the wire as in:

0t c. = multiolexer alternative.
= multiplex
B oo, W@ “ P 3.4. Memory coloring
T = 000 L Ty (g -1 Wherec, = latchorreg. file The advantage of the reachable state analysis which we have
o % otherwise described is its exhaustive evaluation of the data path freedom.
O 9,' This can also be a disadvantage when the exhaustive nature evalu-
The output portf, , of a memory device could be dropped, but they ates the storage of operands in inappropriate memory devices.
are included for use in Section 3.4. Additionally, we note that When this occurs, many states which are unproductive or inferior
only needs to be defined for values of x from 0 to the number of will be analyzed alongside productive and superior states thereby
memory devices. Given this series of seté, w;) returns the needlessly raising the complexity of the analysis. To limit this
lowest value x, wher®, Ot . complexity, we shall identify which operands should never be

Each operation is assigned an ALAP bound based on the time itstored in a particular memory device.
takes to route the resulting operand to its specified position. These The DFG’s association of operations and function units may be
bounds start with the set of operations which produce operandsused to further constrain the construction of ebch, (%, V) .
which explicitly appear in the final state specification are evalu- The first observation is that the behavior of each function unit is
ated. The bound for these operations is computed from the delaylimited to the set of associated operands. This notion of restrictions
required to store the resulting operang.imto the memory devices can be generalized to restrictions on the use of memory devices for
specified in the final state set. Since the user can specify multiple,Storage of particular operands. For example, Fig. 4 depicts a com-
alternative final states, each state is evaluated separately to deterponent arrangement where operands in latch | must feed directly

mine which provides the smallest delay, as in: into the multiplier. Since use of the multiplier is only defined for a
specific subset of operations, only those operands which would be
lastcylce- { min [max(mint (W (¢),0)) |} defined as an input operand for such an operation need be stored in
S;0S,(V) VikHS) eOo that latch. This underscores the basic principle that while a mem-

The evaluation of each final state must ensure that the operand 2Ty device may store any operand, there is an identifiable subset of
sent to all of that state’s specified memory devices, but the Operandoperands which it need never store. We therefore _redeflne the set of
is allowed to utilize the input port which provides quickest route to OPerands, fused by a memory devicg, © contain only these

that memory device. The ALAP bound for the remaining set of €SSential operands. Sineell P insteatPpf= P, the complex-
operations is defined by EQ. 4. This bound determines that last!ty of @achN; (%, V, V") as well as the set of unique feasible
cycle on which the operation result could be used as an input oper-States are reduced. Furthermore, the quality of the results of the

and. The notatio used in EO. 4 identifies the inbut port of reachable state analysis is maintaineq_ since these excluded oper-
MPe,p, Q putp ands can not effect that data path’s ability to create operands.

¢ (wherec; = C ()) associated with operand p To identify the set of memory devices which should store an
_ _ operand, we make the following observations. First, the data flow
ALAP (ey) Zz D?‘%DHZ[ALAP(%) (W ((pez'pk)’e)] @ graph indicates the set of function unit input ports at which an

operand can appear. Second, the final state requirements specify
the set of memory unit input ports at which an operand can appear.
Third, operands must travel to these input ports by a combination
of wires, memory device, and multiplexers. Therefore, we define a
collection of output ports for each wire,;,wepresented by

These ALAP bounds differ dramatically from the computation
of traditional ALAP bounds. One difference is the fact that this
proposed method utilizes resource constraints in terms of routing
restrictions instead the number functional unit types. However, the
central difference stems from the accommodation of operand

recomputation. Because of this capacity, EQ. 4 must use the maxi- i
mum ALAP bound instead of the minimal bound. Use of the mini- ~
mal bound indicates the last cycle on which an operation could latch

fulfill the timing requirements of all of the subsequent operations.
Since we have no guarantee that this operation result will be used
for all of the subsequent operations, we determine the last cycle on
which the result can fulfill the requirements for one of the subse-
quent operations. This policy means that input operands may have

an ALAP bound which is later than the resulting operand as shown)]
Figure 4. Dedicated latch

D Ty which can reach ywithout any bound on the num- -

ber of cycles Finally, given the list of wires connected to these ! 1 J ¥

input ports, we can determine all of the output ports which can
route the operandgo any of the locations it may need to reach.
Since we definedr;, to include the output ports of memory * *
devices, this list of output ports will exclude ports for memory Output por}
devices whose outputs are not important for the use of opgrand p T

We defineQ (p,) as the set of relevant output ports to oper- -
and . Each port set is defined by both the final state specification | | MultiPlier] | @ Adder
and set of operations which usg @s in: Reg File ROM Reg File

QP :{v DEl(V)[O’iD L] (T'W(@)]}D{e.\pmn[w(pﬂ} - + * L]
whereg, identifies the input port associated with opergnd p L

When conS|der|ng the requirements placed on the final state, it is Y w
important to include the output ports of memory device specified

in the final state as well as the ports which can reach this device. ALU

From this, a new operand lisB; = D pk‘ ©,0Q(py s

N

generated for each memory device Wlth WhICh to simplify EQ. 3. Figure 6. Dual register data path
4. Results cycle pipelined multiplier is substituted for the single cycle multi-
' plier. Each of these four designs were coded utilizing the base
A series of tools were developed to demonstrate the feasibilitycomponent behavior types introduced in Section2.1 and are
of these technigques. Each tool utilized an in-house BDD packagedepicted as a composite in Fig. 5. The dashed lines represent a
and was run on a 141MHz SPARC Ultra with 416MB of memory. second bus which was added for the two-bus examples. The addi-
tion of the second bus permitted the A multiplexer and the t latch
4.1. Data paths to be replaced by a single multiplexer, B. For those design with
Our benchmarks utilize five different example data paths eachthe pipeline multiplier, a latch and second pipeline stage are
of which exhibits different requirements. Four of these data pathsinserted between the multiplier and multiplexer C.
are variations of the high level description of Texas Instruments’ For the fifth benchmark, we wanted to demonstrate our ability
TMS32010 DSP processor. While the first design mirrors theto accommodate dedicated register files in the data path. While
TMS32010’s data-path portion, the second design incorporates &uch architectures are accommodated by a variety of compiler
second global bus to investigate the effect of added connectivitytechniques, there are few such benchmarks in the literature. There-
The third and fourth designs mirror the first two except that a two-fore, we introduce a “Dual Register” data path which is used as
our fifth benchmark and is depicted in Fig. 6

4.2. Data flows
! & i y * The scheduling benchmarks utilized three DFG's: differential
equation(diff_eq), 3x3 determinant (3x3_det), and differential
| heat release computation (dhrc). The determinant benchmark that
* we introduce is specified in Fig. 7a. Additionally, the dhrc bench-
! ! A mark contained many operations specific to memory index opera-
tions which were inappropriate for our model. Therefore, the
ROM Register modified dhrc benchmark shown in Fig. 7b was utilized. Each of
File datd these data flows specify commutativity for each operand pair
bus under the assumption that the ALU supports both forms of sub-

traction. Finally, each of these DFG'’s were checked for redundant
operations (as defined by EQ. 2) and automatically merged such
operands during each of the executions.

4.3. Relative performance

Table 2 lists the run times for the bounded minimum-cycle
scheduler. The benchmarks are organized by their DFG, listing the
data path, the number of cycles associated with the minimum
schedule length, and the execution times. The quality of the sched-
uling results are not modified by the proposed techniques since no
heuristic pruning is involved, but the complexity of the reachable
state analysis and the resulting run times are very dependent upon
the pruning techniques employed.

The first column, “neither” lists the run times resulting from
executing the reachable state analysis utilizing every previously
published pruning techniques. The “color” column lists the run
times when memory coloring is utilized. Substantial benefits are
visible in data paths which contained memory devices dedicated
Figure 5. TMS32020 based data-path models to a function unit input such as the “t latch” in the single bus

Benchmark: dhrc & 1 bus/single cycle mult tms32010

abclO §
res = detld e |0 S| Bounding technique:
hill] = Neither
o e Color
e = X FALAP
157 4 DALAP
S = DALAP & Color
o
@ o
L O
=S
a Z S
*
o
o
O
Te}
T T 71T 71T 71
res Figure 8. Cycle by cycle performance comparison.
output porp reachable states, until the set is intersected with the set of final
a) 3x3 determinate b) modified dhrc states. By employing the ALAP bounds, the size of the reachable

state set is reduced as the analysis approaches the anticipated final
clock cycle as elements are removed which have no impact on the
tms32010 designs. The benefit for each of these single bus benclsolution set. Finally, when these techniques are combined with the
marks is relatively uniform for each DFG. This result is expected memory coloring (corresponding run times are in listed in column
since the reduction to the state space is dependent upon theDFG'oth”) the size over all cycles is limited by reducing the set of
operation set. The occasional increase in execution times assocstates from which the reachable state analysis must consider.

ated With_the other benchmarks reflects the overhead due to ths_ Conclusion

computation of tha sets.

The results for our proposed ALAP bounds are compared This paper has shown that ALAP bounds can be posed for the
against two sets of run times. In addition, to the run times listedpre-existing data path scheduling problem and that they are a pow-
under “neither”, a set of run times are listed corresponding toerful means of reducing the scheduling complexity. The primary
bounding the reachable state analysis with ALAP derived solelyconstraint of a data path is its ability to route operands between
from the function unit resources, “FALAP”. The results from various required points. This constraint was utilized to pose supe-
using this traditional bound are mixed. Examples containing therior ALAP bounds. Additionally, the analysis of the movement
dual-register file data path or the diff_eq DFG show only slight freedom proves useful in pruning memory bindings which are
improvements in run times, if any. By contrast, the ALAP bounds inappropriate for specific operands. Although the operands may
derived from the complete set of data path resources, “DALAP”, be stored at these locations, their presence can not effect the solu-
demonstrate a consistent set of improvements. tion set and only complicates the state representation. These

Fig. 8 demonstrates how these benefits are realized for a paounds have possible application in generalizations of this prob-
ticular example. Here we see the constant growth in the set ofem such as floorplanning constraint scheduling.

Figure 7. Example data-flow graphs.

TABLE 2. Exact scheduling results 6. References
Data Data # Run Time (sec) [1] CH N._Cc:_elhoSJr,tS. De ;\/Ii((::heli, “Dy??:)mk';t ?cge(:uling andd S)én-
Flow Path Cyc - chronization Synthesis of Concurrent Digital Systems under Sys-
neither| color) FALAR DALAR both tem-Level Constraints”Proc. IEEE Int. Conf. Computer-Aided
l-cyc| 1bus| 17| 250 125 240 195 97 Design 1994
diff | tms | mult. f 2 pus| 12 23 23 23 19 19 [2]1 R Leupers, P. Marwedel, “Retargetable Generation of Code Selec-
eq 3‘1200 pipe | Lbus| 17 565 350 539 301 19 tors_from HDL Pr?cessor(Models;:’iﬁnjo;:eedings of European
mult [2p 13 109 109 97 51 By Design & Test Conference (ED & T®aris/France, 1997
roai ﬂus [3] P. Marwedel, G. Goosens (ed€Qpde Generation for Embedded
dual register file 12 15 15 16 16 16 ProcessorsKluwer Academic Publishers, 1995.
l-cyc|lbus| 20§ 4,744 148 3,62 2,098 646 [4] T. Miyazaki and M. Ikeda, “High Level Synthesis Using Given
3x3 | tms | mult. | opys| 13| 266 | 278 188 92 94 Datapath Information”|EECE Trans. Fundamental®ct 1993

det | 320 pipe | Lbus| 20| 11,214 s541p 8100 2645 1,95 [5] C. Monahan, F. Brewer, “Symbolic Modeling and Evaluation of
10 Data Paths"32nd Design Automation Conference Proceedifgs
Francisco, 1995.Conference Proceedings, San Francisco, 1995.

mult f2pus| 13] 798| 812 474 77 79

dual register file | 22} 414) 419 411 383 3P [6] C. MonahanSymbolic Data Path Modeling*h.D. Thesis Univer-
l-cyc| 1bus| 22| 2,507 486 2,25 790 16B sity of California, Santa Barbara, 1997
tms | mult. [2 hus| 19 1,050 1,050 664 333 2% [7]1 A. Timmer, From Design Space Exploration to Code Generati on
dhrc| 320 — Ph.D. Thesis Eindhoven University of Technology, 1996
e | Lbus| 23] 16,043 2358 13242 1,10 23 o - .
10| PP 4 | [8] J.C.-Y. Yang, G. De Micheli, and M. Damiani, “Scheduling and
o

mult] . A - .
: 2_b“5 21§ 1533 156p 1,038 329 33 Control Generation with Environmental Constraints based on
dual register file 19 102] 109 106 37 3 Automata RepresentationsEEE Trans. CAD/ICASFeb. 1996.

