
* This work has been generously supported by UC MICRO 96-142 and Mentor
Graphics Corp.

1. Introduction
HLS techniques are typically aimed at relatively unconstrained

synthesis tasks such as RT synthesis of a new design. However, the
large cost of verification and the gaining popularity of data-path
cores creates the need for constrained synthesis for a given (pre-
defined) data-path. Miyazaki[4] proposed the first system for this
task, however, that system used heuristic techniques which missed
much of the inherent design freedom. In a similar vein, retargetable
microcode compilers make limited use of the total possible con-
nectivity of a data-path by restricting the communications to a
small set of pre-defined Ops. Scheduling for these constraints
can be managed by ASAP[4] or by tree matching[2,3]. By contrast,
we proposed using RT-level symbolic data path execution to per-
form exact scheduling of DFG’s (data-flow graphs) on a preexist-
ing data path.[5] This technique utilizes reachable state analysis on
an automata representing both the data path and operand con-
straints to perform a systematic analysis of the design freedom.
The price of this increased design exploration is its substantial
computational complexity since at each step, every feasible autom-
ata state that represents possible generation of operands is implic-
itly constructed. This process implicitly constructs every feasible
schedule and is exact, however, it is potentially costly. In this
paper, we describe novel scheduling bounds which allow exact
results for the data-path constrained scheduling problem, but
which substantially decrease the run time by removing states
which can lead only to suboptimal schedules.

Reachable state analysis had been previously utilized for
scheduling in the work of Yang [8] and of Coehlo[1], but these tech-
niques were addressing scheduling without communication con-
straints. Scheduling for a pre-defined data path, however, presents
new challenges. Fundamentally, the system cannot guarantee that
an operand will be created only once in an optimal schedule. This
is true even for optimal schedules. An operand may require recom-
putation when insufficient storage or switching logic exists, as
occurs in the example shown in Fig. 1. In this figure, while execut-
ing the DFG, o1 must be overwritten when o2 is computed in order

µ

to maintain the required set of operands. This potential for
rescheduling operations means that no operation can be excluded
solely on the merit that it has been previously scheduled. It is this
exclusion of operations and their associated parent operands which
permits conventional bounds to maintain a manageable size for the
reachable state analysis.

Clearly, an operation need not be considered for (re)scheduling
if it could not have a measurable effect in the remaining execution
cycles. These constraints on the scheduling of an operation are
commonly referred to as ALAP (as late as possible) bounds. The
use of ALAP bounds has been shown to be extremely effective for
scheduling problems which lacked communication constraints.[7]

The construction techniques for ALAP bounds must address two
additional issues to make them applicable for scheduling on a pre-
defined data path. First, due to the possible recomputation of oper-
ands, the ALAP bound of an operand must be based on the ALAP
bounds of every child operation since we cannot guarantee that the
first instance of an operation will satisfy all dependencies. The
example in Fig. 1 demonstrates this requirement, where the o1’s
ALAP bound is derived from the ALAP bound of o3 instead of o2.
Secondly, the bounds must be extended to account for the limita-
tions of the switching network, memory units and function units,
instead of solely the number of function units as is conventionally
done. The first issue is applicable to the problem, while the second

ca1 a2

o1

o2

o3

o4

Data-flow graph

3

Reg File

ACC

A

B

C

D

Data path

Element

 Figure 1. Scheduling example.

ALU

Schedule

Cycle ALU ACC Reg

C0 {a1, a2, c}

C1 a1 {a1, a2, c}

C2 A o1 {a1, a2, c}

C3 B o2 {a1, c}

C4 o2 {a1, o2, c}

C5 a1 {a1, o2, c}

C6 A o1 {a1, o2, c}

C7 C o3 {a1, c}

C8 D o4 {c}

C9 {o4, c}

Scheduling and Binding Bounds for RT-Level Symbolic Execution*

Chuck Monahan Forrest Brewer

Department of Electrical and Computer Engineering
University of California, Santa Barbara, U.S.A.

chuck@bears.ece.ucsb.edu, forrest@ece.ucsb.edu

Abstract
This paper generalizes ALAP bounds for the exact scheduling

problem on a pre-defined data path. Conventional bounds are
inapplicable because of the possible requirement of re-computing
operands for minimal schedule length. Efficient techniques are pre-
sented for constructing the new bounds which are sensitive to
point-to-point delays via transitive memory units. An efficient oper-
and mapping bound is also described. Based on these two bounds,
time improvement factors of 50 have demonstrated in exact sched-
uling results.

issue makes the bound useful.
This paper presents a technique for constructing ALAP bounds

based on operand routing constraints instead of function unit avail-
ability. This same technique is subsequently extended to further
restrict the reachable state analysis by providing bounds on storage
locations. Both of these topics are presented after a brief review of
symbolic data path execution. This review consists of a description
of the input requirements (Section 2) in which the flexibility of the
representation is highlighted, an overview to the automata repre-
sentation and reachable state analysis (Section 3.1), and an intro-
duction into the incorporation of operand lifetime bounds
(Section 3.2).

2. Input Formats
In this section, the format for specifying the data path and DFG

are presented. The formats were selected to permit the specifica-
tion of a wide variety of designs. The input format does include a
few restrictions which are designed to clarify behavior that would
be otherwise ambiguous.

2.1. Data path
The data path is modeled as a tuple . Each element, ci,

of C is a data path component defined by . The set
defines the set of control lines which connect to component ci. The
set defines an ordered set of unidirectional input ports for ci.
The final set, , defines for ci an unordered set of unidirectional
output ports.1 While two components may share common control
lines, they must always have disjoint input and output port sets.
The function will be used to identify the associated compo-
nent from an output port specification.

A number of useful data path attributes may be gathered from
these definitions. The set describes the complete set of control
lines, {σ1,σ2,...,σn}, as defined by . The set describes

the complete set of output ports, , as defined by
.

Operands are transported between output and input ports over
the data path’s set of wires, W. We impose the constraint that each
wire, wi, emanates from only one output port but may fanout to
drive many input ports.2 Therefore, each wi is defined by an output
port, , and a set of input ports. Additionally, each input port, ,
may only be driven by a single wire, which permits the function

 to uniquely identify the wire connected to a specified input
port.

Each data path component is assigned one of the four behavior
types. Memory elements are represented by either latches or regis-
ter files. Switching logic, used to conditionally transfer existing
operands to different wires, is distinguished from combinational
logic which creates new operands. In general, all switching compo-
nents are modeled as multiplexers, and combinational logic blocks
are referred to as function units. While modeling of external input

1. Bidirectional ports are modeled by combinations of unidirectional
ports, switching elements, and switching control restrictions.

2. Designs which drive a line from multiple sources typically utilize coor-
dinated switching elements. Such designs are accommodated by merg-
ing these switching elements into a single functional component with a
single source.

C W,()
Σi Φi Θi, ,() Σi

Φi
Θi

C θ()

Σ
Σ Σii

∪= Θ
θ1 θ2 … θm, , ,{ }

Θ Θii
∪=

θi φ

W φ()

TABLE 1. Behavioral Constraints

Behavior Restrictions

Latch

Register file

Multiplexer

Function unit

Φi 1= Θi 1= andΣi ∅=, ,
Σi Θi=

Φi 0> Θi 1= and Σi log 2 Φi()≥, ,
Θi 0>

and output ports pose no additional challenges for the proposed
techniques, they are omitted for the sake of clarity.[5] The arrange-
ment of these components and their connecting wires must ensure
that each loop described by a consistent set of directional ports
contains at least one memory device to prevent feedback races. All
additional constraints are based upon the component’s behavioral
type and are summarized in Table 1. The behavior of many con-
ventional data path components will not directly correspond to one
of these base behaviors. Such components need to be either manu-
ally or automatically partitioned into the various functional com-
ponents connected by wires as in the example in Fig. 2.

2.2. Data-Flow Graph
Data-flow graphs specify the dependencies between operands

and operations. For our system, these graphs form directed, acyclic
hypergraphs. A DFG is a tuple (P, E) where P is a set of operands
and E is a set of operations. Each operation is defined as the four-
tuple where is an output port which will produce
the result, is the control vector for the component, , is
an ordered set of input operands, , where ,
and p is the resulting operand. The following restrictions are
placed on operation specifications: 1) must identify a func-
tion unit and 2) must equal the number of input ports for the
specified function unit. This second restriction permits a direct
assignment of input operands to input ports; a “null” operand is
used as a place holder for input ports with no associated input
operand in a given operation. An operand p1 is said to be a parent
of operand p2 and p2 is said to be the child of p1 iff

.
There are some non-traditional elements of our DFG model. 1)

There are no restrictions on the number of operations which may
generate any operand pk as expressed in EQ. 1. In the presence of
multiple operations, each operation provides a unique, alternative
method to generate the operand.

 (1)

2) The operation mapping explicitly lists a function unit’s output
port. Traditionally, this association is made by an operation map.
But, the large disparity in function unit descriptions combined
with the potential for highly tailored operations made such an
operation table impractical. The enumeration of the associative
and commutative operands as well as equivalent function unit list-
ings, which are traditionally handled by the operation map, is
accommodated through the use of alternative operations. 3) No
two operands may be equivalent, where equivalency between two
operands p1 and p2 is defined by EQ. 2. When equivalent operands
are detected, they should be merged into a single operand; this can
be done either automatically or manually.

 (2)

3. Representing Data paths
This section will introduce our automata-based data-path

model, discuss applications which may utilize it, and finally dis-
cuss a variety of optimizations and performance improvements.

 Figure 2. Expressing a function unit’s feed-through capacity.

a b

r

a b
r ⇒

e θ σ Π p,, ,() θ
σ C θ() Π

π1 π2 … πn, , ,() πi P∈

C θ()
Π

ei∃ E∈ p1 Πi p2= p i∩∈

ei∃ E| pi= pk∈ 0≥

ei ej i≠, E Πi= Πj p i p1= p j p2= θ,
i
= θj σi σj∩ ∅≠,, ,()∈∃

3.1. Automata model
A symbolic automata is used to represent the storage of oper-

ands in memory components, the motion of operands on the
switching network, and the creation of operands in function units.
In its most general form, this automata is defined by the five-tuple

.
V represents a finite set of states. Each state represents the con-

tents of each of the data path’s memory components. This set may
be partitioned into the various disjoint components

 where Vi is the contents of a single
memory device. In general, , where . We define
the set of variables V as the present state variables and create a sec-
ond set of variables V′ for the next state variables.

The automata inputs are defined as the set of control lines, ∑,
introduced in Section 2.1. State relations are defined by the trans-
form relation N: . This relation maps the set of feasible
next states, given the set of present states and all possible control
line settings. This relation is symbolically represented as N(V, V′).
While N(V, V′) describes the transform relation for the entire
automata, separate transform relations may be defined for each por-
tion of the state space denoted by Ni for . The use of
the control lines permits the complete transform relation to be
expressed as:

.

Such relations are well defined for a given state and control
vector because of the restrictions placed upon the input format.
First, the restriction that each bus has a single source means that
any control vector describes a set of distinct paths through the
switching network. Restricting latches to single operands and the
use of control lines to select operands from register files means that
only distinct operands may appear at any path source emanating
from a memory device. Restricting the DFG to contain only unique
operations means that only distinct operands may be produced by
function units given a set of distinct operands at the inputs and a
control vector. In the absence of a direct mapping between a given
state/control-vector pair and the operation for a given device, the
operand produced by that device is a special “null” operand. The
absence of cyclical paths ensures that each path destination will
have a distinct operand associated with the path’s source.

 and represent a set of initial and final states
for the automata. The ability to specify sets of initial and final
states gives the designer greater flexibility in determining both the
proper initial and final state for the model. Schedules which link a
state in with a state from may be found using
symbolic reachable state analysis from . Towards this end
we compute Sj(V), the set of reachable states on the jth iteration of
the clock. In general, this set is generated by computing:

.

The complexity of each may be reduced signifi-
cantly by using the set of present states, making the following com-
putation more feasible:

.

A bounded minimum-cycle scheduler is defined as a system
which identifies the set of state transitions satisfying

 where j is minimized and below a speci-
fied upper bound. Upon j reaching this upper bound, the scheduler
reports the infeasibility of the scheduling problem. The resulting
schedules are extracted through a backwards-reachable-state analy-
sis of the relation set generated by the reachable state analysis.

V Σ N S0 V() Sf V ′(), , , ,()

V V 1 V 2 …× V n××=
V i Pi⊆ Pi P=

V V ′→

Σ V× V ′i→

N V V ′,() N i Σ V V ′i, ,()
i

∩[]
σ Σ∈

∃=

S0 V() Sf V ′()

S0 V() Sf V ′()
S0 V()

Sj V ′() Sj 1− V() N V V ′,()∩[]
v V∈

∃=
N i Σ V V ′i, ,()

Sj V ′() Sj 1− V() N i Σ V V ′i, ,()∩[]
i

∩[]
σ Σ∈

∃
v V∈

∃=

Sj V ′() Sf V ′()∩ ∅≠

3.2. Lifetime optimizations
On a given iteration, each individual relation, , need only

represent the set of states reachable from Sj(V). It is sufficient if
the relation is defined over any where

. Therefore, the set of relations
 is utilized instead of to repre-

sent the state relation . This new set of rela-
tions are generated dynamically for each iteration of the reachable
state analysis.

The dynamic construction of transform relations is performed
as follows. On each clock cycle, the set of operands, P, may be par-
titioned into a set of dead and a set of potentially active operands.
We define an optimal set of dead operands, Dj, to include operands
whose storage in some memory element at clock cycle k does not
affect the reachable state analysis. The set of active states, Aj, is
defined as . Given this partition, the individual trans-
form relations may be constructed from the conditions under
which operand pk is present in device ci, represented as

. The specification of is con-
strained by the set of active operands, as in:

, where = (3)

.

While this representation is much smaller than the general
transform, it requires a set of ordered operands for the set Dj. The
following observations can be made about constructing such a set:
If Dj is defined as the optimal set of dead operands, a suboptimal
set Dj′ may be constructed where . Such a set is subopti-
mal since will be more complicated than strictly
required but it is still exact.

To construct the set Dj′, we define an operand’s lifetime as the
first cycle on which it may be scheduled (birth) and the last cycle
on which one of its children may be scheduled (death). Such a life-
time constitutes the cycles during which an operand must be
present in the set of active operands. Operand pk should remain in
the set of dead operands until the following test is passed.

Unfortunately, no such simple test exists to determine when pk
should return to the dead list.

3.3. ALAP bound generation
While lifetimes can not be determined exactly, they may be

bounded relative to the minimal cycle bound provided to the
scheduler. From such a limit, ALAP bounds can be derived for the
operation set based on the routing restrictions imposed by the data
path. From these ALAP bounds, an upper bound on the death of an
operand may be determined. Since an operand is no longer
required after all of its children have been produced, the operand
pk is effectively dead once the cycle equals:

.

Towards this end, we note that the DFG as well as the set of
final states create requirements on an operand’s possible storage in
the data path. For example, each operation specifies an operand
and input port pair which must be satisfied in addition to the result-
ing operand and output port pair. Each final state encoding speci-
fies where an operand must be stored from which a set of input
ports can be determined. To meet the requirements of the final
states or the operations, an operand must traverse the data path to
get from where it was created by an operation to the proper input
port.

N i

S″j V()
Sj V() S″j V()⊆
N °i j, Σ V V ′i, ,() N i Σ V V ′i, ,()

Σ S″j V()× V i ′→

A j P Dj−≡

N ′i k, Σ V,() N °i j, Σ V V ′i, ,()

N °i j k, , Σ V V ′i, ,()
p k A j P i∩()∈

∩ N °i j k, , Σ V V ′i, ,()

v ′i k, N ′i k, Σ V,()∩[] v ′i k, Σ S j V()×() N ′i k, Σ V,()−()∩[]∪

D ′j D j⊆
N °i j, Σ V V ′i, ,()

N ′i k, Σ V,() Sj V()∩()
i

∪ ∅≠

max ALAP ei()[]
e i E∈ p k Π

i
∈

The data path provides many obstacles to the movement of
operands. The switching network will often support only a limited
amount of connectivity. While operands do traverse memory
devices, they will suffer the delay of at least one cycle. These limi-
tations combined with the constraints derived from the simulta-
neous transfer of multiple operands account for a majority of the
cycles in a schedule. By formalizing the minimal delay of a single
operand traversing from specific locations, useful scheduling
bounds may be derived.

We define the function to represent the minimal
number of memory devices which lay on a path between output
port and wire wj. To compute this function, we construct a series
of sets, , where each set indicates the output ports which can be
connected to wire wj by traversing no function units, x memory
devices, and as many multiplexers as required. The definition of

 depends upon the component, ck, which drives the wire as in:

 where

The output port, , of a memory device could be dropped, but they
are included for use in Section 3.4. Additionally, we note that
only needs to be defined for values of x from 0 to the number of
memory devices. Given this series of sets, returns the
lowest value x, where .

Each operation is assigned an ALAP bound based on the time it
takes to route the resulting operand to its specified position. These
bounds start with the set of operations which produce operands
which explicitly appear in the final state specification are evalu-
ated. The bound for these operations is computed from the delay
required to store the resulting operand, pk, into the memory devices
specified in the final state set. Since the user can specify multiple,
alternative final states, each state is evaluated separately to deter-
mine which provides the smallest delay, as in:

The evaluation of each final state must ensure that the operand is
sent to all of that state’s specified memory devices, but the operand
is allowed to utilize the input port which provides quickest route to
that memory device. The ALAP bound for the remaining set of
operations is defined by EQ. 4. This bound determines that last
cycle on which the operation result could be used as an input oper-
and. The notation, , used in EQ. 4 identifies the input port of

cj (where) associated with operand pk.

 (4)

These ALAP bounds differ dramatically from the computation
of traditional ALAP bounds. One difference is the fact that this
proposed method utilizes resource constraints in terms of routing
restrictions instead the number functional unit types. However, the
central difference stems from the accommodation of operand
recomputation. Because of this capacity, EQ. 4 must use the maxi-
mum ALAP bound instead of the minimal bound. Use of the mini-
mal bound indicates the last cycle on which an operation could
fulfill the timing requirements of all of the subsequent operations.
Since we have no guarantee that this operation result will be used
for all of the subsequent operations, we determine the last cycle on
which the result can fulfill the requirements for one of the subse-
quent operations. This policy means that input operands may have
an ALAP bound which is later than the resulting operand as shown

τ θi w j,()

θi
τj x,

τj x,

τj x,

τW φ() x,φ Φ
k

∈
∪

θi τW φ() x 1−,φ Φ
k

∈
∪∪

θj





=

ck multiplexer=

ck latch or reg. file=
otherwise

θi
τj x,

τ θi w j,()
θi τj x,∈

last cylce min max minτ W φ() θ,()
φ Φ

i
∈

)(
v i k, S j∈

S j S f V()∈

}{−

φe2 p k,

c j C θ()=

ALAP e1() max ALAP e2() τ W φe2 p k,() θ,()−[]
e2 E∈ p k Π

2
∈

=

in Fig. 3. Fortunately, this policy accommodates the fact that not
every operation must be executed since any operation may have an
alternative.

3.4. Memory coloring
The advantage of the reachable state analysis which we have

described is its exhaustive evaluation of the data path freedom.
This can also be a disadvantage when the exhaustive nature evalu-
ates the storage of operands in inappropriate memory devices.
When this occurs, many states which are unproductive or inferior
will be analyzed alongside productive and superior states thereby
needlessly raising the complexity of the analysis. To limit this
complexity, we shall identify which operands should never be
stored in a particular memory device.

The DFG’s association of operations and function units may be
used to further constrain the construction of each .
The first observation is that the behavior of each function unit is
limited to the set of associated operands. This notion of restrictions
can be generalized to restrictions on the use of memory devices for
storage of particular operands. For example, Fig. 4 depicts a com-
ponent arrangement where operands in latch l must feed directly
into the multiplier. Since use of the multiplier is only defined for a
specific subset of operations, only those operands which would be
defined as an input operand for such an operation need be stored in
that latch. This underscores the basic principle that while a mem-
ory device may store any operand, there is an identifiable subset of
operands which it need never store. We therefore redefine the set of
operands, Pi, used by a memory device, ci, to contain only these
essential operands. Since instead of , the complex-
ity of each as well as the set of unique feasible
states are reduced. Furthermore, the quality of the results of the
reachable state analysis is maintained since these excluded oper-
ands can not effect that data path’s ability to create operands.

To identify the set of memory devices which should store an
operand, we make the following observations. First, the data flow
graph indicates the set of function unit input ports at which an
operand can appear. Second, the final state requirements specify
the set of memory unit input ports at which an operand can appear.
Third, operands must travel to these input ports by a combination
of wires, memory device, and multiplexers. Therefore, we define a
collection of output ports for each wire, wi, represented by

opb

opa

opc

ALAP = x

ALAP = x - 3

ALAP = x - 2

 Figure 3. Fluctuating ALAP bounds due to operand fanout.

t = 2

t = 4

t = 3

N ′i k, Σ V,()

latchl

 Figure 4. Dedicated latch

Mult

Pi P⊆ Pi P=
N i Σ V V ′i, ,()

, which can reach wi without any bound on the num-

ber of cycles. Finally, given the list of wires connected to these
input ports, we can determine all of the output ports which can
route the operand pk to any of the locations it may need to reach.
Since we defined to include the output ports of memory
devices, this list of output ports will exclude ports for memory
devices whose outputs are not important for the use of operand pk.

We define as the set of relevant output ports to oper-
and pk. Each port set is defined by both the final state specification
and set of operations which use pk, as in:

where identifies the input port associated with operand pk.
When considering the requirements placed on the final state, it is
important to include the output ports of memory device specified
in the final state as well as the ports which can reach this device.
From this, a new operand list, , is

generated for each memory device with which to simplify EQ. 3.

4. Results
A series of tools were developed to demonstrate the feasibility

of these techniques. Each tool utilized an in-house BDD package
and was run on a 141MHz SPARC Ultra with 416MB of memory.

4.1. Data paths
Our benchmarks utilize five different example data paths each

of which exhibits different requirements. Four of these data paths
are variations of the high level description of Texas Instruments’
TMS32010 DSP processor. While the first design mirrors the
TMS32010’s data-path portion, the second design incorporates a
second global bus to investigate the effect of added connectivity.
The third and fourth designs mirror the first two except that a two-

τ′i τi x,x
∪=

τi x,

Ω pk()

Ω p k() Θ′i τ′W φ()()
φ Φ

i
∈
∪∪

v i k, S f V()∈
∪{ } τ′W φ

e
l

p
k

,()e l p k Π
l

∈
∪{ }∪=

φe pk,

Pi pk
p k P ′∈
∪ Θi Ω pk()⊆=

Register
File

ALU

latch t
data
bus

 Figure 5. TMS32020 based data-path models

mult

ROM

AB

ACC

C

>> latch p

cycle pipelined multiplier is substituted for the single cycle multi-
plier. Each of these four designs were coded utilizing the base
component behavior types introduced in Section 2.1 and are
depicted as a composite in Fig. 5. The dashed lines represent a
second bus which was added for the two-bus examples. The addi-
tion of the second bus permitted the A multiplexer and the t latch
to be replaced by a single multiplexer, B. For those design with
the pipeline multiplier, a latch and second pipeline stage are
inserted between the multiplier and multiplexer C.

For the fifth benchmark, we wanted to demonstrate our ability
to accommodate dedicated register files in the data path. While
such architectures are accommodated by a variety of compiler
techniques, there are few such benchmarks in the literature. There-
fore, we introduce a “Dual Register” data path which is used as
our fifth benchmark and is depicted in Fig. 6.

4.2. Data flows
The scheduling benchmarks utilized three DFG’s: differential

equation(diff_eq), 3x3 determinant (3x3_det), and differential
heat release computation (dhrc). The determinant benchmark that
we introduce is specified in Fig. 7a. Additionally, the dhrc bench-
mark contained many operations specific to memory index opera-
tions which were inappropriate for our model. Therefore, the
modified dhrc benchmark shown in Fig. 7b was utilized. Each of
these data flows specify commutativity for each operand pair
under the assumption that the ALU supports both forms of sub-
traction. Finally, each of these DFG’s were checked for redundant
operations (as defined by EQ. 2) and automatically merged such
operands during each of the executions.

4.3. Relative performance
Table 2 lists the run times for the bounded minimum-cycle

scheduler. The benchmarks are organized by their DFG, listing the
data path, the number of cycles associated with the minimum
schedule length, and the execution times. The quality of the sched-
uling results are not modified by the proposed techniques since no
heuristic pruning is involved, but the complexity of the reachable
state analysis and the resulting run times are very dependent upon
the pruning techniques employed.

The first column, “neither” lists the run times resulting from
executing the reachable state analysis utilizing every previously
published pruning techniques. The “color” column lists the run
times when memory coloring is utilized. Substantial benefits are
visible in data paths which contained memory devices dedicated
to a function unit input such as the “t latch” in the single bus

Input port

Multiplier

Reg File

 Figure 6. Dual register data path

Constants
ROM

Adder

Reg File

Output port

ALUmult

>>

tms32010 designs. The benefit for each of these single bus bench-
marks is relatively uniform for each DFG. This result is expected
since the reduction to the state space is dependent upon theDFG’s
operation set. The occasional increase in execution times associ-
ated with the other benchmarks reflects the overhead due to the
computation of the sets.

The results for our proposed ALAP bounds are compared
against two sets of run times. In addition, to the run times listed
under “neither”, a set of run times are listed corresponding to
bounding the reachable state analysis with ALAP derived solely
from the function unit resources, “FALAP”. The results from
using this traditional bound are mixed. Examples containing the
dual-register file data path or the diff_eq DFG show only slight
improvements in run times, if any. By contrast, the ALAP bounds
derived from the complete set of data path resources, “DALAP”,
demonstrate a consistent set of improvements.

Fig. 8 demonstrates how these benefits are realized for a par-
ticular example. Here we see the constant growth in the set of

dv
pj pk

a1

v a0pi

a2

<<

*
-

*

<< +

*

<<

<<

+ +

<<

*

<<

+

output port

++

+

**

*

 Figure 7. Example data-flow graphs.

+ +

** * *

**

* *

e i d h f g e

+

*

+

+

a b c

res

res det
a b c
d e f
g h i 

 
 

=

a) 3x3 determinate b) modified dhrc

TABLE 2. Exact scheduling results

Data
Flow

Data
Path

#
Cyc

Run Time (sec)

neither color FALAP DALAP both

diff
eq

tms
320
10

1-cyc
mult.

1 bus 17 250 125 240 195 97

2 bus 12 23 23 23 19 19

pipe
mult

1 bus 17 565 350 539 301 191

2 bus 13 109 109 97 51 37

dual register file 12 15 15 16 16 16

3x3
det

tms
320
10

1-cyc
mult.

1 bus 20 4,744 1,486 3,627 2,098 686

2 bus 13 266 278 188 92 94

pipe
mult

1 bus 20 11,214 5,412 8,109 2,625 1,395

2 bus 13 798 812 474 77 78

dual register file 22 414 419 411 382 398

dhrc
tms
320
10

1-cyc
mult.

1 bus 22 2,507 486 2,258 790 168

2 bus 19 1,050 1,052 664 333 277

pipe
mult

1 bus 23 16,045 2,353 13,242 1,180 273

2 bus 21 1,533 1,560 1,031 325 326

dual register file 19 102 105 106 37 37

τ

reachable states, until the set is intersected with the set of final
states. By employing the ALAP bounds, the size of the reachable
state set is reduced as the analysis approaches the anticipated final
clock cycle as elements are removed which have no impact on the
solution set. Finally, when these techniques are combined with the
memory coloring (corresponding run times are in listed in column
“both”) the size over all cycles is limited by reducing the set of
states from which the reachable state analysis must consider.

5. Conclusion
This paper has shown that ALAP bounds can be posed for the

pre-existing data path scheduling problem and that they are a pow-
erful means of reducing the scheduling complexity. The primary
constraint of a data path is its ability to route operands between
various required points. This constraint was utilized to pose supe-
rior ALAP bounds. Additionally, the analysis of the movement
freedom proves useful in pruning memory bindings which are
inappropriate for specific operands. Although the operands may
be stored at these locations, their presence can not effect the solu-
tion set and only complicates the state representation. These
bounds have possible application in generalizations of this prob-
lem such as floorplanning constraint scheduling.

6. References
[1] C. N. Coelho Jr, G. De Micheli, “Dynamic Scheduling and Syn-

chronization Synthesis of Concurrent Digital Systems under Sys-
tem-Level Constraints”,Proc. IEEE Int. Conf. Computer-Aided
Design, 1994

[2] R Leupers, P. Marwedel, “Retargetable Generation of Code Selec-
tors from HDL Processor Models” inProceedings of European
Design & Test Conference (ED & TC), Paris/France, 1997

[3] P. Marwedel, G. Goosens (eds.),Code Generation for Embedded
Processors, Kluwer Academic Publishers, 1995.

[4] T. Miyazaki and M. Ikeda, “High Level Synthesis Using Given
Datapath Information”,IEECE Trans. Fundamentals, Oct 1993

[5] C. Monahan, F. Brewer, “Symbolic Modeling and Evaluation of
Data Paths”,32nd Design Automation Conference Proceedings, San
Francisco, 1995.Conference Proceedings, San Francisco, 1995.

[6] C. Monahan,Symbolic Data Path Modeling, Ph.D. Thesis Univer-
sity of California, Santa Barbara, 1997

[7] A. Timmer, From Design Space Exploration to Code Generati on,
Ph.D. Thesis Eindhoven University of Technology, 1996

[8] J. C.-Y. Yang, G. De Micheli, and M. Damiani, “Scheduling and
Control Generation with Environmental Constraints based on
Automata Representations”,IEEE Trans. CAD/ICAS, Feb. 1996.

4 8 12 16 20

N

od
es

(
S j(

V
))

5,
00

0
10

,0
00

15
,0

00
20

,0
00

0 Cycle #

Neither
Color
FALAP
DALAP
DALAP & Color

 Figure 8. Cycle by cycle performance comparison.

Benchmark: dhrc & 1 bus/single cycle mult tms32010

Bounding technique:

