
1. Introduction

Heuristic scheduling (path-based[2], list[8], force-
directed[12]) can accommodate a wide variety of control
dependent behaviors. However, the technique can fail to
find solutions in very tightly constrained problems even
when such solutions exist. Exact ILP-based schedul-
ing[3][5][9]  will always find such solutions, but current
approaches are unable to handle complex control-depen-
dent behavior. To improve the run-time efficiency and
reduce the number of variables, an ILP-based heuristic[7]

and a mixed ILP/BDD formulation were proposed[18].
Recently, there has been substantial work on heuristic

scheduling of control dominated systems. Huang[4] uses a
representation of the execution paths as a tree. This tech-
nique eliminates operations that are not redundant in a
program, but are redundant for some of its containing
paths. Transformation of a data-flow graph with condi-
tional branches into one without conditional branches is

performed in[6]. In order to identify mutually exclusive
operations,condition vectors are introduced in[16][17].
This technique allows for systematic operation node
duplication and pre-execution leading to high quality
results. Most current research is restricted to nested condi-
tional branches (conditional tree control structures).
Scheduling of multiple conditional trees is described in
[17], but the trees are scheduled sequentially using a prior-
ity scheme. Furthermore, the current scheduling tech-
niques typically produce a single representative solution,
forcing the scheduling task to be re-run if constraints
found in subsequent synthesis tasks conflict with the cur-
rent solution.

To address these issues, the scheduling problem was
formulated using a compressed representation based on an
OBDD (Ordered Binary-Decision Diagrams[1]) represen-
tation[13][14]. Using this technique, the complex Boolean
functions representingall possible solutions to a given
scheduling problem are typically representable in a rela-
tively small space. This has the advantage that if all solu-
tions are so encapsulated, the exact effect of inclusion of
additional constraints derived during subsequent synthesis
steps isincrementally computable. Furthermore, the pro-
cess is exact in that if no schedules are found after some
step in the synthesis process, the designer is assured that
no schedule exists which satisfies all of the constraints.
An elegant related technique is currently under develop-
ment at Stanford[19] using finite automata to represent
resource and timing constraints.

In this paper, we reformulate and extend the symbolic
scheduling technique to allow a new iterative construction
process. While maintaining the exactness of the solutions,
this approach exhibits improved robustness and offers
more control over the construction process. The formula-
tion can be extended to incorporate speculative operation
execution (pre-execution)-- this work is reported in[15].

2. Formulation

In this formulation we represent all of the scheduling
constraints as Boolean equations and build an OBDD cor-
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responding to their intersection. Each variable in the
OBDD describes a particular operation occurring at a par-
ticular time step, over a finite set of time steps. A variable
is true if the corresponding operation is scheduled during
the corresponding time step in a particular solution.

To allow control-dependent scheduling a set of‘guard’
variables[13] is introduced. Each guardG labels a particu-
lar fork/join pair, where the guard is true for one branch
and false for the other. Every control path through an arbi-
trary combination of fork/join pairs is described by a prod-
uct of the corresponding guard variables. A Boolean
functionΓj (defined on the guard variables) conditions the
execution of operationj in a data/control/data flow graph
(CDFG) and encodes directly all the control paths on
which j can be scheduled. Furthermore, if two operations i
and j are guarded byΓi andΓj whose intersection is empty,
then i and j are mutually exclusive. Using this technique,
all schedules forall forward control paths are simulta-
neously constructed and are represented in a compressed
OBDD form. In general, the solution is acollection of
product terms, each one including all the variables corre-
sponding to the operations and some (not necessarily all)
guard variables, representing a possible execution instance
for a particular control path. We call these product terms
traces[13].

Shown in Fig. 1 isKim’s example[6] in which two
guards are introduced to fully describe the conditional
behavior. Indicated blocks correspond to operations that
share the same guard functionΓ. Operations belonging to
a control-independent portion of CDFG are not guarded
and thus belong to all execution paths. Consequently, they
are scheduled in parallel under all control combinations.

The proposed formulation is not limited to CDFGs
which have a conditional tree control structure. Example
shown in Fig. 2 is a problem instance with a control corre-
lation between two control fork-join structures running in
parallel. There is a unique conditional (shaded compara-
tor) and a unique guard determining the flow of control for
both forks. Note that the complexity of the formulation
grows only with the number of guard variables, not the
(possibly exponentially larger) number of traces or control
paths. The example in Fig. 2 has 18 possible control paths,
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Figure 1: Kim’s example

but only 5 guards need to be defined.

2.1. Precedence constraints
For brevity, we make the simplifying assumption of

simple non-pipelined unit time delay for the operations
(this restriction is easily removed as reported in[13][14]).

Eq.1 and Eq.2, describe the scheduling problem when
no resource constraints are specified. We make use of the
ASAP (as soon as possible) and ALAP (as late as possi-
ble) bounds to determine the time spans over which an
operation can be scheduled. These bounds are not
required for correctness, but improve the efficiency of the
algorithm by eliminating those variables which cannot be
true in any feasible schedule.

Eq. 1 enforces that each operationj is scheduled once
and only once on all the paths covered byΓj and is not
scheduled on other paths.Csj denotes operationj’s
instance at time steps. If (ASAP)j ≤ s< (ALAP)j:

(Eq. 1a)

whereRsj = [(ASAP)j ... s]. If s = (ALAP)j:

(Eq. 1b)

If operationi precedes operationj, for every time step
s from the range [(ASAP)j ... (ALAP)i] the following con-
straint has to be satisfied:

(Eq. 2)

A special sink variable is used in the formulation indi-
cate that a particular trace has concluded. Eq. 3 is used as
a terminating condition for all traces. The sink variable is
initialized to ‘0’, and is set to ‘1’ when the terminating
condition is met. The scheduling process can be termi-
nated whensink assumes the value ‘1’ on all paths. This
adds one Boolean variable to the entire formulation. In
these equations, operations (j1...jn) are operations that are
immediate predecessors of the sink node in the CDFG.
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Figure 2: CDFG with correlated control
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(Eq. 3)

2.2. Resource Constraints
If kl resources of a certain typerl (e.g. multipliers,

adders, ALUs, registers, busses) are available, we can for-
mulate a‘resource-constraint’ Eq. 4:

(Eq. 4)

Fsl is a Boolean function describing that resourcerl
may be needed during time steps. Eq. 4 is applied for each
time steps and each resourcerl bounded bykl. It indicates
that at least (nsl-kl) resources (amongnsl potential opera-
tions in time steps) cannot be scheduled. For simple con-
straints, a variable corresponding to a particular instance of
an arithmetic/logic operation can be directly substituted in
Fsl.

If operationi precedes operations (j1...jn), Eq. 5 indi-
cates that at a particular control steps, a bus may be
needed to read an operand (Fbr) or write a result (Fbw). The
bus constraints apply to‘read’ and ‘write’  phases sepa-
rately (i.e. we assume that read/write transfers are tempo-
rally interleaved). Note that this formulation easily models
the situation in which an operand is used as an input to a
number of operations and, contrary to[5], does not require
the introduction of additional representation variables.

(Eq. 5)

A bound on the number of available registers can be
formulated similarly to that shown in reference[13] for the
non-branching case.

2.3. Trace validation
A trace which satisfies all of the constraints may still

not be a valid execution instance in the sense that it may
not be compatible with a complete set of traces forming an
executable schedule. A valid schedule must becausal and
complete for all control paths. The causality requirement
dictates that the schedule cannot use knowledge of acondi-
tional (an operation generating a control signal) prior to
the time step in which it is scheduled. Fig. 3 illustrates a
situation in which two traces corresponding to opposite
values of the guardGk (corresponding to the conditional
ck) cannot be chosen to form a valid schedule unless condi-

Rsjl
Γ

j l
+( )

l 1=

n

∏ 1=

Rsjl
ckjl

k ASAP( )
j

=

s

∑=

Fsl1
Fsl2

…Fsl nsl kl−( )1 lp lq≠( ) nsl≤ ≤
∑ 1=

Fsi

br Csjl
Γ

i
Γ

j l
+( )

l 1=

n

∑= Fsi

bw Csi=

tional ck is evaluated prior to step j. (The decision to exe-
cute a ‘black’ or a ‘white’ operation requires prior
knowledge of which path is being executed). Traces corre-
sponding to guard valuesGk andGk must agree before the
conditionalck is resolved. The completenessrequirement
states that a valid trace must exist in each solution for
every possible control path.

Trace validation ensures that each validated trace is
part of an executable ensemble schedule. The validation is
efficiently preformed by aniterative algorithm shown in
Fig. 4. The following notation is used: S - set of all traces
that execute ink time steps, S(0) - initial set of non-vali-
dated traces, S(i) - set of traces at iterationi, C = [c1,c2 ...
cn] - set of all conditionals, G = [G1, G2 ... Gn] - set of
guards corresponding to the conditionals,R(j) = [R1(j),
R2(j) ... Rn(j)] - resolution vector (a set of Boolean func-
tions indicating that a conditionalck was scheduled prior
to time stepj):  for (l<j ), Gres - set of
guards corresponding to the resolved conditionals inRk(j),
V - set of all variables not including guard variables, V’(j)
- subset ofV corresponding to time steps<= j , S’ - set of
traces from which all variables representing operation
instances after stepj are removed: , ∃xf =
fx+fx - existential abstraction, ∀xf = fxfx - universal
abstraction. With respect toR(j) the functionS’ can be
mapped into a disjoint set of (possibly2n) families, corre-
sponding to the subset of guards that are resolved prior to
time step j. The guards from (G-Gres) are don’t cares
within the family since at time stepj there is no knowl-
edge about how the schedule will look at the successive
steps with regard to the future potential values of the unre-
solved guards. Thus, traces must bothmatch andexist for
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Figure 3: Trace matching

i = 0;
do {

i++;
S(i) = S(i-1);
for each time stepj {

for each conditionalck {

if (S’==0) { S(i)=0; exit; }
}
S(i) = S(i)S’;

}
} while (S(i)!=S(i-1));
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Figure 4: Trace validation (TV) algorithm
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all possible combinations from (G-Gres).
The algorithm checks for partial matching up to stepj

for all traces in parallel. However, it is possible that a trace
which matched up to time stepj is invalidated in subse-
quent steps, thus its set of matching traces may no longer
be complete. The TV algorithm repeats until a fixed point
is reached. The number of iterations oni cannot exceed the
number of conditionals in a temporal (precedence) chain of
any trace and, in the worst case, is bounded by the number
of guards. On tree-like control structures, the number of
iterations is bounded by the height of the tree. A formal
discussion of the algorithm is reported in[14].

3. OBDD construction

3.1. OBDD structure and ordering
The constraints described in Section 2 each have a sim-

ple and regular structure. This allows OBDD representa-
tions to be constructeddirectly from the CDFG[13] without
reference to an intermediate equation form. This process is
fast and generates no construction garbage (nodes that are
not referenced in the final solution). Shown in Fig. 5 is the
OBDD representation of Eq.4. It is used as a general con-
struction template for all of the typed resource constraints.
Note that the number of product terms in a sum-of-prod-
ucts representation of Eq.4 is (n

k ).
It is important to note that although individual equa-

tions have efficient orderings, optimal orderings for differ-
ent equations contradict. There can be no polynomial
bound on the size of an arbitrary instance of the scheduling
problem for any pre-specified ordering since this problem
is NP-complete[1][10]. However, experimental results indi-
cate that typical instances, including conventional bench-
marks, do indeed have good orderings.

All of the results presented in this paper are generated
using a simple variable ordering with non-guard variables
ordered by increasing time step and guard variables placed
on top (i.e. closest to the root of OBDD). This ordering
typically results in small OBDDs and accommodates itera-
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Figure 5: At-most-k-out-of-n  constraint
(k=4, n=7)

tive construction. The construction speed can be improved
by clustering operations based on their functional depen-
dencies. (For example, the CPU time is reduced by 3x for
the example in Fig. 7.) We plan to add this feature to our
general implementation.

3.2. Iterative construction process
In [14] a heuristic procedure to combine all of the

scheduling constraints was described. Essentially, the con-
struction combined constraints for which ‘good’ orderings
were known first and then sequentially applied the other
constraints. Using this technique, the final OBDD typi-
cally has relatively small size. However, the size of
OBDDs at intermediate stages can be relatively large,
resulting in slow construction or large memory require-
ments.

To improve the robustness of the algorithm, a new iter-
ative construction is proposed. The solution is built on a
time-step by time-step basis: only those constraints rele-
vant to a particular time step j are generated and applied to
the OBDD representing a valid partial solution for the pre-
vious (j-1) steps. In this way, only partial time sequences
of constraints need to be added at each step. This prevents
the construction of large set of spurious solutions before
all constraints have been applied. We observe that the
sizes of intermediate OBDDs are smaller and that genera-
tion of ‘garbage’ decreases significantly. Iterative con-
struction generates a larger number of smaller constraints
than the earlier process and can be slower for small exam-
ples. However, for larger cases it offers far more robust
behavior in terms of memory management and allows
tighter control over the computation. It also has the advan-
tage that one can detect when schedules have completed
obviating the need to accurately pre-specify the number of
control steps.

It is possible to further improve the construction pro-
cess by applying only Eq 1b at ‘ALAP’ time step for oper-
ation. Although this allows redundant operator scheduling
in intermediate solutions, we observed that the size of the
OBBD is typically smaller during construction. Lastly, it
is possible to detect when a variable has become unate
(has a unique Boolean value in all of the schedules) during
the construction. This information can be used to reduce
the number and the complexity of applied constraints for
non-branching schedules.

3.3. Set heuristic algorithms
Since valid partial schedules are available after each

step, this construction can be used to construct efficient
heuristic scheduling techniques when the OBDD size
becomes large (e.g. 28-cycle elliptic wave filter bench-
mark has more than 3 billion optimal solutions). The sim-
ple heuristic shown in Fig. 6 only propagates the subset of



schedules with maximum utilization of resources. Utiliza-
tion is measured by the number of operations active in
each time step. Sinceall such schedules are propagated,
this simple heuristic has good behavior. The algorithm can
be made less greedy by applying it over a sliding window
of several time steps or over a range of utilizations.
Finally, the OBDD pruning can be delayed behind the cur-
rent scheduling step to create ‘look-ahead’. These manipu-
lations are surprisingly efficient and consist of repeated
use of the construction template shown in Fig. 5. The
greedy set heuristic in Fig. 6 optimally solves the linear
benchmarks described in detail below with greatly reduced
CPU execution times and memory requirements.

4. Experimental results

The expressive power of OBDDs allows encapsulating
huge solution spaces using moderate computing resources.
Table 1 contains the experimental results corresponding to
the elliptic wave filter benchmark. We constructedall opti-
mal solutions of each instance and captured all of the solu-
tions in OBDDs whose size was significantly smaller than
n2, wheren is the number of variables in the instance.
Unate variables were factored out of the final results and it
was assumed that coefficient ROMs are directly accessible
without the need for global communication (transfer of the
operands on shared busses). Table 2. shows the results of
the set heuristic described in the previous section. Only
solutions with maximal resource utilization were pre-
served at each step. All cases were solved with larger than
optimal time-step bounds to demonstrate the heuristic.

The XMAC example (Fig. 7) represents ablock-matrix
multiply-and-accumulate operation typical for vector units
of supercomputers where multipliers and adders are
heavily pipelined. The example is more typical for opti-
mizing compilers than for high-level synthesis applica-
tions. However, we observe that it may present substantial
difficulty for heuristic schedulers (due to the symmetric

BDDnode *SetUtilize(partial, sink, step, utility)
BDDnode *partial,*sink;
int step, utility; {

BDDnode *subset;
if (step>=minimum_execution_time) { /* check for end */

subset =And(partial, sink);
if (subset!=0) return (subset);

}
do {

subset =And(partial,ChooseExactly(utility);
if (subset==0) utility--;
else return(subset);

} while(utility>=0);
return (0);

}

Figure 6: Set heuristic Algorithm

execution paths, large mobilities of the operations and
very tight register constraints). Table 3. corresponds to
exact solutions of CDFGs with forward branching control.
Maha[11] and Kim[6] have a conditional tree structure.
MulT is a multiple conditional tree introduced by Waka-
bayashi[17] andCorr is the example of CDFG with corre-
lated control introduced in Fig. 2. Solution of these
problems was extremely efficient both in terms of a run-
time and memory requirements.

All experiments were run on SPARCstation10 using a
custom C++ OBDD package. Reported CPU times corre-
spond to the complete procedure: CDFG analysis, con-
straint construction, and all OBDD manipulations
including trace validation generating the final OBDD
results.

5. Conclusions and future work

In this paper an incremental construction for the exact
solution of resource constrained scheduling problems sub-
ject to arbitrary forward control behavior was described.
This construction is robust since it enforces constraints
only on a time-step basis and also eliminates the require-
ment that the number of clock steps be pre-specified. (This
is a particular problem for control dominated scheduling
in which differing paths have widely differing path
lengths). Based on this construction, a number of set
based scheduling heuristics can be described. These heu-
ristics are particularly useful for weakly constrained prob-
lems in which the number of optimal solutions is huge.

In future work, we intend to pursue a greater variety of
construction constraints including operation binding, reg-
ister binding and intercommunication constraints. Further
extensions to cyclic and finite state machine based control
seems to be viable as well.
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Table 1: WAVE filter - exact
#cycles 19 19 20 20 21 28
#adders 2 2 2 2 2 1
#multipliers 1(*) 2 1(*) 2 1 1
#busses 5 4 4 4 4 3
#registers 10 10 10 10 10 n/a
#variables 131 131 165 165 199 437
#nodes 2,111 1,192 5,128 11,582 238 123,143
#schedules 11,466 1,071 65,826 991,638 5,139 3.10279e9
CPU time [s] 6.24 6.69 33.14 57.61 33.78 4920.63
2-cycle non-pipelined multiplier and single-cycle adder except: (*) 2-cycle pipe-
lined multiplier.

Table 2: WAVE filter - set heuristic
#cycles 19 19 20 21 28 54
#adders 2 2 2 2 1 1(**)
#multipliers 1(*) 2 1(*) 1 1 1
#variables 165 165 199 233 471 1,001
#nodes 162 409 194 328 5,603 9,799
#schedules 1 20 1 5 317,520 423,360
CPU time [s] 2.92 2.98 3.01 6.25 73.77 224.79
2-cycle non-pipelined multiplier and single-cycle adder except:
 (*) 2-cycle pipelined multiplier, (**) 2-cycle non-pipelined adder.

Table 3: Control-dependent results
Maha Kim MulT Corr

#cycles 8 8 4 6
#adders 1 1 - 1
#subtracters 1 1 - 1
#comparators - 1 - 1
#ALUs (+/-/>) - - 3 -
#variables 62 79 22 48
#control paths 12 3 6 18
#guards 6 2 3 5
#TV iterations 1 2 1 2
#nodes 867 576 185 315
#traces 376 68 48 45
CPU time [s] 2.03 2.09 0.16 1.07


