Controller Optimization for Protocol Intensive Applications*

Andrew Crews, Forrest Brever
Department of Electrical and Computer Engineering
University of California, Santa Barbara, USA
crevs@corona.ece.ucsau, forrest@ece.ucslolu

Abstract

Applicationsimplementingcomplex protocolstax the
capabilitiesof corventionalfinite statemadine synthesis
techniques.In this paper we presentsequentialoptimiza-
tion techniqueswhosecompleity scaleswith the number
of statebits ratherthan the numberof states.Thesetech-
niguescreatedesignswvhich are companbleor superiorto
those synthesizedy corventional state-basedptimiza-
tion and assignment.Furthermoe, they provide viable
synthesigedniquesfor designswhich are too large for
synthesis with the ceantional method.

1.0. Introduction

Hardware descriptionlanguages(HDL's) are widely
usedfor specificationand synthesisf sequentiatircuits.
They provide opportunitiesfor designreuse,automated
synthesisand technologyindependentescription.How-
ever, mary specificationformatssuchasBLIF andstruc-
tural VHDL requireexplicit encodingof the statesof the
machinewhich can hide the hierarchicalstructureof the
finite statemaching(FSM). Otherhardwarespecifications,
like KISS, requirespecificatiorof the machinen termsits
deterministicstate space.This type of specificationcan
become explosive and untenablefor mary machines
which have an alternate,concisedescriptionas a non-
deterministic finite automata (M.

In this work, we presentan algorithmfor the construc-
tion of complex controllersfrom an NFA specification.
The constructiorhasknown boundson the numberof reg-
istersrequiredin the gate-level implementationandvery
good characteristicén termsof literal countand mapped
logic depth,in particular It is thusapplicableto high per-
formance,complex designssuch as protocol handlersor
communicatiorencodersThe algorithmcanbe appliedto
machineswhich aretoo comple to constructusing stan-
darddeterministidinite automateencodingandminimiza-
tion techniques.

TheNFA specificatiorusedhereinis derivedfrom clas-
sicalregularexpressionsAlthougharny FSM canbe speci-
fied asa classicalregular expression suchspecificationis
not guaranteedo be asconciseas othertypes.The NFA
specification language contains a rich operator set,
enhancingheability to specifydesignghatlack aconcise
classical rgular expression descriptions.

*This work has been supported in part by NSF grant MIP-9320752.

The focusof this paperis efficient controller construc-
tion whichrelieson explorationof the NFA modelencoded
as a tree-basedtended rgular expression.

The paperis organizedasfollows: Section2.0 reviews
the specificatiormodelassumedn this paper Section3.0
proposes methodof reducingthe upperlimit onthenum-
ber of memoryelementgequiredfor synthesispy way of
graphreduction.Section4.0 containsa methodfor optimi-
zationduring synthesidbasedn obsenability andidentifi-
cation of output-redundant states.

1.1. Previous Work

Early work in the field of regular expressioncompila-
tion [1][2] usedregularexpressionsisa specificatiorfor a
PLA design.In thesesystemsthe regular expressionRE)
wascorvertedto anNFA statediagram,whichin turnwas
directly encodedas producttermsof a PLA implementa-
tion. Inherently this techniquemaylosesomeof the infor-
mation presentin the regular expression,suchas natural
partitions in the machine.

A synchronous‘reactive language” called Esterel[3]
allowed an inherentlynon-deterministianachinedescrip-
tion. Its commands‘reacted” to inputs from the outside
world, by performing tasks and sending outputs. Each
reactionto a specifiednputwasallowedto occurindepen-
dently of otherreactions,creatingan NFA model. How-
ever, the Esterel compiler describedin [3] createda
deterministic state graph from this specification,a step
which can bexplosive, and is woided in this paper

The Production Based Specification[10] provided a
hierarchicalregular expressionlanguageaugmentedvith
someuniqueoperators An algorithmfor direct construc-
tion of the circuit from a RE-basedtree was presented
which did notrequirecorversionof the RE to a NFA state
diagram.This direct constructionoften producedfast cir-
cuits, lut with redundant state bit encodings.

2.0. The Specification BG

In this paperwe will assumehatthe controlleris spec-
ified asa regular expressionin the form of a directedacy-
clic graph (DAG). Refer to Tablel for the meaningof
varioussymbolsusedin the specificationDAG. Thereare
two main reasons for this type of specification:

1. Using this type of input, it is possibleto specify
automatathat are completely deterministicwithout ever
making useof a traditionaldeterministicmodel: neithera

statetransitiongraph(STG), nor an actualstateencoding
is needed in the specification.

2. From this specification,there are direct gate level
implementationsvhich scalewith the numberof statebits
in the controller (which can be logarithmically smaller
than the number of states).

TABLE 1. Regular Expression D AG Symbols

symbol meaning

sequential non-leaf nodes
, concatenation ofvents (left then right)
Il OR (either gent belov)

&& AND (events occur simultaneously)
* Kleene closure (0O or more)
+ 1 or more
action | designates an output attion

combinational (terminal) nodes
function \ boolean function (of inputs only)

Definition: AcceptanceA sub-machinéspecifiedby a
RE-DAG) will accept iff the sequencef inputs matches
the entire sequence specified in the@®

Definition: Action: In the DAG, eachunique action
corresponds$o a uniqueoutputof the controller The out-
put is set high only if the sub-DAG belov the action
accepts.

All sequentiabehaior existsin the non-leafnodesof
thetree.EachterminalcontainsanoptionalBooleanfunc-
tion. Note that thereis implicit context passedbetween
nodesin the graph, so acceptanceat one location can
depend on other parts of the graph.

For example, considerthe specificationin Figurel.
Sinceit is at the top of the DAG, action“a0” is activated
(set high) only when the entire machineaccepts(when
eitherof sub-DAGs p2 andp3 accept).The concatenation
operatorsdenotethe left sub-DAG and right sub-DAG
acceptingn sequenceyhile eachsub-DAG mayrequire0
or moreclock cycles,itself, to accept The DAG at p4 rec-
ognizesary state.So,action“al” is activatedwhenz0and
z1 areboth high for one clock cycle following ary state.
Without p4, the action “al” would activate only if it
occurred in the ery first clock gcle (the start state).

Let T bethe numberof pathsto terminalsin the DAG.
It is alwayspossibleto synthesize circuit with T+1 mem-
ory elementsNotethatthe DAG in Figurel has9 pathsto
terminals,thus at most 10 flip-flops in the final machine
andup to 2*10deterministicstatesWe would lik e to alter
the DAG to decreasdhe numberof terminal paths(and
hencememory elements)without altering behaior (this
canonly be doneif the controller actually haslessthan
2710 states).

3.0. Regular Expession Minimization

Optimal regular expressionreductionis known to be
NP-Completegven for RE’s which containeitherno OR

operatoy or no closureoperator[4]. Equivalencetesting
betweenwo RE’s is equallydifficult. Thus,the changego
the RE graphshouldbe incrementako thatwe canverify
the equvalenceat eachstepin thetransformation--equa-
lence must beerified by construction.

Six basic DAG manipulationrules are listed below.
They can be divided into two cateyoriesof rules,andin
every rule, the “||” operator canbe replacedby any Bool-
eanconnecive operatorwhich doesnot includethe NOR
function (xgx; minterm). (In general, the restriction is
comple, but intuitively this restrictionof the NOR func-
tion resultsfrom the fact that we are looking for neither
sub-graphto be recognized A machinewhich recognizes
whenanothemachineis “not recognizing”canhave quite
differentbehaior, andthusmay not have the samebehar-
ior after distributing the function acrossa concatenation
operatol)

(AB) I (AC)->(A), (BIIC) (Rule 1)
(AC)II(B,C)->(A]lB), (C) (Rule 2)
AllA->A (Rule 3)

A, (A)*-> (A)+ (Rule 4)

(A%)* ->(A)* (Rule 5)

A, (A {action}) -> (A, A) {action} (Rule 6)

FIGURE 2. Rewrite rules used to manipulate
the Regular Expression DAG. Parentheses
denote a sub-D AG

Thefirst setof rules(1-3) directly reducethe numberof
terminalsin the DAG. ConsiderFigurel onceagain. The
sub-DAG “TRUE*" occursat the beginning of both sub-
DAGs p2 and p3, and representshe samestate, since
thereis no way to determinewhich “TRUE*" statethe
machinds in until the machinemovesto thenext state We
canmake useof rule 1 by settingA to be “TRUE*", B to
be all of p2 after A, and C to be all of p3 after A. This

FIGURE 1. Example specification DAG.
“a0”, “al”, and “a2” represent the three
actions. BDD’s are shown as ovals with the
function written inside

removes a path from the tree. The final reduced DAG is
shown in Figure 2.

Rules 1 and 2 effectively move the concatenation oper-
ators up, closer to the root of the DAG, and the Boolean
operators down, closer to the terminals. When a node in
the DAG becomes an arbitrary combinationa logic func-
tion of two terminals, it can always be reduced to a single
terminal BDD node. For example, in Rule 1, if DAGs B
and C represent combinational functions of the inputs, the
sub-DAG (A, B) || (A, C) can be reduced from four paths
to terminals to two paths, by creating aBDD node D = (B
+ C).

The second set of rules (4-6) are members of a genera
class of rules which ater the DAG in ways which improve
its canonicality. By making sure that only one type of each
equivalent structure shown in rules 4 through 6 exist in the
DAG, itiseasier to identify larger equivalent sub-DAGsin
the DAG as a whole. An example is shown in Figure 3
where rules 5 and 6 together allow rule 3 to remove termi-
nals paths from the graph.

Using rule 6 it is possible for actions to be manipulated
similarly to operators. The allocation of a separate node in
the DAG specification for each action excitation is unique
to this paper. Placing these nodes in the graph allows
actions to be manipulated for a more canonical graph, and
joined with similar actions for optimization.

The importance of considering actions during tree
manipulations is made clear by the following. Each sub-
DAG provides context to the following sub-DAG, so
equivalent sub-graphs with non-equivalent actions cannot
be combined into a single sub-graph via rule 2 unless the
input context is also equivalent. For example,

(A, C)[|(B,C) = (A[|B),C
but

(A, (C{action0}))]|(B, (C{actionl})) *

(A]|B), C{actionOactionl}
except under two special conditions: 1. A and B are
always recognized together, or are otherwise equivalent, or
2. "action0” and “actionl” are equivalent. The left side
fires “action0” after recognizing the sequence “A,C’,
while the right side fires “action0” after recognizing either
the sequence “A,C” or “B,C".

On the other hand, for reductions which use rule 1, the
action nodes can be ignored since the context is identical

. action0
action0

o
= ’
®»

Example:

FIGURE 3.
canonicality of the graph can lead to
reduction of paths to terminals.

Improving the

2
FIGURE 4. Reduced DAG for the example in
Figure 1. Each t; denotes combinational logic
with the function inside the oval.

for actions in this case
(A{action0}, B)||(A{actionl},C) =
A{ actionOaction1}, (B||C)

3.1. Algorithm Overview

During the minimization, a “unique table” similar to
one found in BDD packaged[9], is maintained for each
node, so that identical nodes are reused, instead of being
duplicated. When the algebraic manipulation rules and the
unique table are used to reconstruct the DAG from the bot-
tom up, uniqueness of a node is assured by comparing its
operator type and left and right pointers. The fact that two
identical nodes will never be constructed is ensured, but it
is nonetheless possible for two functionally equivalent
sub-DAGS to exist. The above rewrite rules and unique
table are heuristics which improve the clarity and simplic-
ity of the specification, but do not provide a canonical
form.

The regular expression reduction occurs as follows: A
depth first traversal of the DAG is done, reducing equiva
lent structures using a set of rules that include rules 4-6,.
Where applicable, graph-matching is done, to attempt
reductions shown in rules 1, 2. The fina DAG is con-
structed on the way back up. Each final node is placed in
the unique table to avoid duplication whenever possible.

The reduced DAG for the example in Figure 1 is shown
in Figure 1. Note that implementation of the rewrite rules
have reduced the number of terminal paths from nine to
six. Thisimpliesthat construction is guaranteed to be done
with seven flip-flops or less.

4.0. Efficient Gate Construction

After reducing the number of terminalsin thetree, thea
circuit is synthesized by traversing the resultant DAG.
Details of the circuit generation, using construction tem-
plates for the various types of operators are given in [11].

Essentially, the construction requires one control point
(i.e. oneregister) for each path to aterminal node. The cir-

cuit is generated recursively, by alocating registers at the
terminals and constructing logic functions of the register
outputs (present state bits) according to the type of
sequential operator at each node. Logic functions are
stored as BDD's during construction. An example of the
synthesis algorithm is shown in Figure 5.

Call the set of input variables {Z}, and the set of
present state variables { X}. The context for a machine is
initially set to the start state. In the figure, f(X,Z) repre-
sents the context sent to the DAG. This context is passed to
the two children of node P: P_ and PR. At node P, a
memory element is allocated, along Witﬁ optional combi-
national logic of the input variables. Similarly, memory
elements are added for the two terminals of the concatena-
tion operator at PR, t1 and t5. Finaly, since P is a OR
operator, the acceptance functions from the two children,
P_ and PR are logically ORed together, and the result
acceptance function for the graph, h(X,Z) is returned (and
may be passed as context to future machines.

The actions of the machine are also created during the
machine traversal. Initialy, all action functions are set to a
Boolean “FALSE” indicating that they will never occur.
Whenever an action is encountered in the construction
process, its corresponding output function is logicaly
ORed with the current context.

This algorithm makes heavy use of memory elements.
Typicaly during construction it is possible to modify
existing control points, rather than adding a new one and
still represent the state correctly. This reduction cannot be
done by the previous agorithm for DAG reduction in
Section 3.0.

4.1. Register Removal During Construction

Directly alocating control points for each terminal in
the graph rarely makes state encodings with the minimum
number of registers (as opposed to standard encoding tech-
niques, such as JEDI and NOVA). It is possible to identify
two reasons for this:

1. Controllers are constructed so that a state exists for
every place an action could occur. This construction is
obvioudly sufficient for any specification, but is hardly
necessary for most. Since actions are not attached to every
node in the graph, this construction process leads to sets of
states which are output-redundant, or indistinguishable to
the outside world.

2. Without some form of state space exploration during the
construction process, there is no knowledge of how many
unique states exist, so the number of control points cannot
be reduced based on this information.

In order to reduce the number of control points required
to build a given machine (with no lossin terms of machine
quality or speed of the construction algorithm), it is neces-
sary to gain information about the states of the machine
without implementing a DFA model. This can be done by
inferring information about the set of reachable states and
output-redundant states from the specification graph.
Because the information gathered is based on the NFA
model of the machine, we preserve the independence of
the construction from the potentially explosive STG.

Consider the circuit shown in Figure 5 built by allocat-
ing one control point for each terminal in the graph. Let us
assume ty, tq, and t, are unrelated functions. The circuit is

A.RE sub-DAG B. Circuit created
without reg. reduction

FIGURE 5. A. A sub-DAG, with context f(X,2)
passed to it from the previous sub-DAG.
B. The corresponding circuit.

built with three flip-flops, which could describe eight pos-
sible states. Assuming that the incoming context, f(X,2),
is completely unknown, there are indeed eight states that
can exist: any number from zero through three of the ter-
minals can be simultaneously accepting. Above node P,
however, there are only four distinguishable states: State 1:
no terminals in P accepting, State 2: either tq or t, accept-
ing, State 3: only t; accepting, and State 4: t; and either ty
or t, accepting. The state where ty but not t,, and t, but not
to accepting are indistinguishable, or output-redundant to
any node above node P.

In this example, we can combine control points from tg
and t, into a single bit, t3. The resultant design has four
states encoded by two control points, the minimum possi-
ble without examining the effect of the input context,
f(X,Z), on the set of reachable states. The function which
indicates acceptance of the sub-DAG (labeled h(X,Z) in
Figure5) is used as context for following sub-DAGs.
h(X,Z), is used to define conditions for actions to occur
and control points to change state. A simpler acceptance
function not only reduces the current machine size, but
also creates simpler action functions and transition func-
tions for nodes that immediately follow it. The circuit is
considerably simpler if construction of t3 allows removal
of tg and/or t,. The circumstances under which this can be
done are discussed below.

Let A represent the set of transition functions,
{09, 84...,0,} . The set of primary inputs, Z, is
{zy,2,, ..., 7} . The present state of the machine is repre-
sente& by X, which is actually a set of n Boolean variables,
{Xo Xps s X} » @nd the next state is represented by
Y={Yo ¥y --» Yo} - The mapping from present state to
next state’is written:

A:XxZ Y
Let A={Ay Ay ..., A} bethe set of action functions,
and A={aya,, ...,a,} represent the actions themselves,
then given x;,y;, & U{0,1} , the mapping from present
state to actionsis:
A:X - AMoore machine
A:XxZ - AMedy machine
Simplification of the acceptance function of a sub-DAG
can be performed by creating a new control point x, as

follows. Given afunction h(X') , where X' O X, we create
a new transition function 6, and corresponding control
point x,, such that 5, = h'(X, Z) , where h' isthe function
h with every x; O X' replaced with &;(X, Z) . That is, each
present state variable is replaced by its next state function.
X, is passed up from the nodes below, as the acceptance

function, h(X).

MK X430 o X4) O 0GR = (5,3, 1, ... 5,) (EQ1)

The creation of additional control points serves two
purposes: 1. It reduces the complexity of the context func-
tion h(X,Z) used in subsequent construction. 2. By adding
a control point, one or more other control points may
become redundant, and can be removed.

The determination of the necessary conditions under
which it is possible to remove a transition function can be
difficult, depending on the scope of modifications to out-
puts and other transition functions. For example, in the
least restrictive case, where arbitrary changes to the con-
troller are alowed, determining whether a control point
can be removed is at least as hard as determining whether
the FSM currently uses the minimal number of control
points to encode state, and therefore requires at least an
implicit traversal of the deterministic state space.

At this point in the construction, any kind of state
assignment or re-encoding technique could be used to
reduce the number of control points, but arbitrary re-
encoding requires at least a partiad traversa of the
machine’'s deterministic state space, which may be very
expensive.

Alternatively, in the most restrictive case, where no
changes to the FSM are alowed, the test for removal
becomes simpler: The support of a function F, denoted
“sup(F)”, is defined as the set of variables on which F
explicitly depends. For each x; O X' a sufficient condition
for removal of transition function &; is:.

x, 0 sup() LI sup(A) (EQ2)

Because of the method of construction, it is quite likely
that the sufficient condition expressed in Equation 2 will
occur, particularly in the common case where actions are
located some distance above the terminals.

The reduction and removal process described by Equa-
tion 1 and Equation 2 is valid for any acceptance function
returned from a node during the build algorithm. In prac-
tice, of the standard construction operators aready dis-
cussed, AND, OR, and closure offer the best chances of
control point removal. Implementation with the OR and
AND operators are fairly straight forward. The closure
operator essentially constructs an or of the incoming con-
text from previous sub-DAGs, and the acceptance function
returned by the sub-DAG below it.

The circuit constructed using this algorithm for the
specification in Figure 1 is shown in Figure 6. Since the
final flip-flop has no fanout, it is removed at the end of the
build algorithm. If this graph represented only a sub-DAG
of the machine, the far right flip-flop would provide the
acceptance function passed to following sub-DAGs as
context.

FIGURE 6. The reduced circuit for the
example in Figure 1. A comparison of this
controller and one synthesized without DAG
reduction, or register removal is shown at the
top of Table 2. The number of literals is cut
nearly in half, and the number of registers
drops from 8 to 3.

5.0. Experimental Data

Results for these algorithms are compared against pre-
vious results for PBS (using Clairvoyant)[10] and against
results based on the extracted, state-minimized STG
encoded with NOVA, JEDI, and a simple one-hot scheme.
The last three encodings done from a minimized STG are
meant to simulate the standard DFA-based synthesis algo-
rithm. All of the examples listed in Table 2 were synthe-
sized with the current algorithms and reduced (via SIS's
“script.rugged”) in less than 40 seconds of CPU time.
Using standard encoding techniques, for example JEDI[5]
or NOVA[6], some examples could not be encoded and
reduced in 40 minutes of CPU time.

For each encoding, the three columns below show the
number of literals in factored form (L), the mapped logic
depth (D) and the number of registersin the design (R). In
al examples, SIS's “script.rugged” was used to simplify
the logic. The library used for mapping contained only a
latch, atwo-input nand, atwo-input nor, and an inverter.

On the |eft side of the table are results for implementa-
tion making use of the algorithms presented in this paper.
The column labeled “states’ contains the number of states
that exist in these machines. This was determined by read-
ing the BLIF output for the controller into SIS [8] and
extracting the STG.

Comparison to the PBS compiler results show the com-
piled designs are uniformly better in at least one of the
three categories. On average, the current techniques used
59% fewer registers, 45% fewer literals, and had 8%
smaller logic depth.

On the right side of the table, the same statistics are
shown for NOVA, JEDI, and one-hot encoding. The
extracted STG was minimized using STAMINA[7], and
the number of states in the resulting STG is shown in the
column “min states” The three encodings were done
based on this minimized STG, reduced using “script.rug-
ged” and the results are shown in the table.

In the cases where SIS was not able to complete the
“script.rugged” in less than 30 minutes CPU time on a
SPARC 10 with 32 megabytes of memory, the results are
italicized. For each design, the best results are labeled in
bold. Note even though JEDI and NOVA used the mini-

design Current Clairvoyant min NOVA JEDI one hot
example I T TR |sAes|T Ty R [S@ST T Tp[R|L [D/R|[L D[R
ex1(Fig.1) 13 | 5 | 3 8 [|[22 |5 8 6 23 |11 |3} 22 |9 |3]138 |96
mouse 10 | 3 | 2 4 ||18 | 5 4 3 10 |3 |2)10 |3 |2]10 |3 |3
xymouse § 20 | 3 | 4 | 10 (|36 | 5 8 9 42 |11 | 4135 |6 |45 |49
mouse2 24 | 2 6 8 36 |5 10 7 36 (14 | 3 28 |12 | 3 | 41 8 7
Xymouse2 48 | 2 |12 | 50 ||72 | 5 20 49 | 145 15| 6 440 |11 | 6 | 618 |18 | 49
countO 8 5 3 5 16 | 5 4 4 8 4 | 2 11 6 | 2 12 6 4
qr42 46 |5 10| 33 ||77 | 6 21 16 64 |17 | 4 | 82 |24 | 4 1121 |12 | 16
i8251ar 67 | 8 |13 | 15 (|8 |16 | 14 15 84 |10 | 4|84 |10 4 81 |10 | 15
i2c 1151 8 |24 | 70 ||156 |10 | 37 51 | 323 |36 | 6 |273 |46 | 6 | 427 |18 | 51
midi 223 | 16 |106 | 107 ||604 | 22 | 166 | 104 | 447 |56 | 7 | 420 |72 | 7 | 262 | 14 | 104
matchl 10 | 3 3 5 12 | 4 5 3 7 4 | 2 8 3|2 9 5 2
match2 21 | 3 7 15 ||26 | 4 12 11 38 (104)43 |12 | 4 61 (12 | 11
match4 43 | 4 |16 | 111 ||56 | 4 28 79 | 333 (58| 7 |370 |73 | 7 |468 |18 | 79
match8 87 | 4 | 36 |6151|(116| 6 63 unable
match16 |175 | 5 | 80 [>107{[236| 6 | 138 unable
match32 | 351 | 5 |176 [>10'4|476 | 6 | 297 unable

TABLE 2. Results for various encoding techniques

mum number of registers, only in the very small examples
did the encoders offer comparable results in terms of the
number of literals and mapped |ogic depth.

Designs “matchn” are machines that recognize when
the pattern of the first n input bits match the most recent n
inputs. Results for this machine demonstrate the applica
bility of this algorithm to controllers which could not be
constructed with standard encoding techniques. The
designs “match8,” “matchl6,” and “match32" could not
state minimized or encoded by JEDI, NOVA, or one-hot
because of memory faults that occurred due to the size of
the STG.

6.0. Conclusions and Further Work

We have described an agorithm for compilation of
controllers using extended tree-based regular expressions
into a gate-level circuit description. The nature of the
specification language makes it highly applicable to proto-
col intensive machines. Rather than the standard practice
of using state space traversal to minimize the machine
encoding, observability based on the structure of the tree
(an NFA model) has been used to remove unobservable
states from the system. Machine construction using these
algorithms has been shown to construct fast sequentia
machines with low literal count. In fact, its efficiency has
made it practical in some cases where other encoding
methods fail completely.

7.0. References:

[1] R.W.Floyd, andJ. D. Ullman, “The Compilation of Regu-
lar Expressions into Integrated Circuits,” Jo. ACM. 29:3,

1982.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

A.R.Karlin, H. W. Trickey, and J. D. Ullman, “ Experience
with a Regular Expression Compiler,” ICCD, pp 656-665,
1983.

G. Berry, G. Gonthier, “The ESTEREL synchronous pro-
gramming language: design, semantics, implementation,”
Science of Computer Programming, vol.19, (no.2):87-152,
1992

M. R. Garey, D. S. Johnson. Computes and Intactability
A Guide to the Theory of NP-Completends=v York:
Freeman, 1979.

B. Lin, Synthesis of VLSI Designs with Symbo#ichT
niques Ph. D. Thesis, Univ. of Cdlif., Berkeley, UCB/ERL
M91/105, Nov. 1991.

T. Villa, A. L. Sangiovanni-Vincentelli, “NOVA: State
Assignment of Finite State Machines for Optimal Two-
Level Logic Implementations,” |IEEE Trans. on CAD, pp
905-924, 1990.

G. Hachtel, J. K. Rho, F. Somenzi, and R. Jacoby. “Exact
and Heuristic Algorithms for the Minimization of |ncom-
pletely Specified State Machines,” EDAC, ppl184-91, 1991.
E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R.
Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Bray-
ton, and A. Sangiovanii-Vincentelli, “SIS: A System for
Sequential Circuit Synthesis,” Electronics Research Labo-
ratory Memorandum No. UCB/ERL M92/41, May 1992.
K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient
Implementation of aBDD Package,” 27th DAC, pp 40-45,
June 1990.

A. Seawright, F. Brewer, “Clairvoyant: A Synthesis Sys-
tem for Production-Based Specification,” |EEE Trans. on
VLS, pp 172-185, June 1994.

A. Seawright, GrammarBased Specifications and Synthe-
sis for Synkronous Digital Hadware DesignPh. D. The-
sis, Univ. of California, Santa Barbara, June 1994.

	Abstract
	1.0. Introduction
	1.1. Previous Work

	2.0. The Specification DAG
	TABLE 1. Regular Expression DAG Symbols

	sequential non-leaf nodes
	,
	concatenation of events (left then right)
	||
	OR (either event below)
	&&
	AND (events occur simultaneously)
	*
	Kleene closure (0 or more)
	+
	1 or more
	action
	designates an output activation
	combinational (terminal) nodes
	function
	boolean function (of inputs only)
	3.0. Regular Expression Minimization
	FIGURE 1. Example specification DAG. “a0”, “a1”, and “a2” represent the three actions. BDD’s are ...
	(A,B) || (A,C)-> (A) , (B || C) (Rule 1)
	(A,C) || (B,C) -> (A || B) , (C) (Rule 2)
	A || A -> A (Rule 3)
	A, (A)* -> (A)+ (Rule 4)
	(A*)* ->(A)* (Rule 5)
	A, (A {action}) -> (A, A) {action} (Rule 6)
	FIGURE 2. Rewrite rules used to manipulate the Regular Expression DAG. Parentheses denote a sub-DAG
	FIGURE 3. Example: Improving the canonicality of the graph can lead to reduction of paths to term...

	3.1. Algorithm Overview
	FIGURE 4. Reduced DAG for the example in Figure�1. Each ti denotes combinational logic with the f...

	4.0. Efficient Gate Construction
	4.1. Register Removal During Construction
	FIGURE 5. A. A sub-DAG, with context f(X,Z) passed to it from the previous sub-DAG. B. The corres...
	, where (EQ 1)
	(EQ 2)

	5.0. Experimental Data
	FIGURE 6. The reduced circuit for the example in Figure�1. A comparison of this controller and on...

	6.0. Conclusions and Further Work
	7.0. References:
	[1] R. W. Floyd, and J. D. Ullman, “The Compilation of Regular Expressions into Integrated Circui...
	[2] A. R. Karlin, H. W. Trickey, and J. D. Ullman, “Experience with a Regular Expression Compiler...
	[3] G. Berry, G. Gonthier, “The ESTEREL synchronous programming language: design, semantics, impl...
	[4] M. R. Garey, D. S. Johnson. Computers and Intractability A Guide to the Theory of NP-Complete...
	[5] B. Lin, Synthesis of VLSI Designs with Symbolic Techniques, Ph. D. Thesis, Univ. of Calif., B...
	[6] T. Villa, A. L. Sangiovanni-Vincentelli, “NOVA: State Assignment of Finite State Machines for...
	[7] G. Hachtel, J. K. Rho, F. Somenzi, and R. Jacoby. “Exact and Heuristic Algorithms for the Min...
	[8] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. St...
	[9] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient Implementation of a BDD Package,” 27t...
	[10] A. Seawright, F. Brewer, “Clairvoyant: A Synthesis System for Production-Based Specification...
	[11] A. Seawright, Grammar-Based Specifications and Synthesis for Synchronous Digital Hardware De...

	Controller Optimization for Protocol Intensive Applications*
	Andrew Crews, Forrest Brewer Department of Electrical and Computer Engineering University of Cali...
	design example
	Current
	states
	Clairvoyant
	min states
	NOVA
	JEDI
	one hot
	L
	D
	R
	L
	D
	R
	L
	D
	R
	L
	D
	R
	L
	D
	R
	13
	5
	3
	8
	22
	5
	8
	6
	23
	11
	3
	22
	9
	3
	38
	9
	6
	10
	3
	2
	4
	18
	5
	4
	3
	10
	3
	2
	10
	3
	2
	10
	3
	3
	20
	3
	4
	10
	36
	5
	8
	9
	42
	11
	4
	35
	6
	4
	59
	4
	9
	24
	2
	6
	8
	36
	5
	10
	7
	36
	14
	3
	28
	12
	3
	41
	8
	7
	48
	2
	12
	50
	72
	5
	20
	49
	145
	15
	6
	440
	11
	6
	618
	18
	49
	8
	5
	3
	5
	16
	5
	4
	4
	8
	4
	2
	11
	6
	2
	12
	6
	4
	46
	5
	10
	33
	77
	6
	21
	16
	64
	17
	4
	82
	24
	4
	121
	12
	16
	67
	8
	13
	15
	85
	16
	14
	15
	84
	10
	4
	84
	10
	4
	81
	10
	15
	115
	8
	24
	70
	156
	10
	37
	51
	323
	36
	6
	273
	46
	6
	427
	18
	51
	223
	16
	106
	107
	604
	22
	166
	104
	447
	56
	7
	420
	72
	7
	262
	14
	104
	10
	3
	3
	5
	12
	4
	5
	3
	7
	4
	2
	8
	3
	2
	9
	5
	2
	21
	3
	7
	15
	26
	4
	12
	11
	38
	10
	4
	43
	12
	4
	61
	12
	11
	43
	4
	16
	111
	56
	4
	28
	79
	333
	58
	7
	370
	73
	7
	468
	18
	79
	87
	4
	36
	6151
	116
	6
	63
	unable
	175
	5
	80
	>107
	236
	6
	138
	unable
	351
	5
	176
	>1014
	476
	6
	297
	unable
	TABLE 2. Results for various encoding techniques

