A Model for Scheduling Protocol-Constrained Components

and Environments

Steve Haynal Forrest Brewer
Department of Electrical and Computer Engineering
University of California, Santa Barbara, U.S.A.

haynal@umbra.ece.ucsb.edu, forrest@ece.ucsb.edu

ABSTRACT strained problems where early pruning decisions exclude candi-
This paper presents a technique for highly con- dates leading to superior solutions. ILP schedulers (i.e. [3][6])

ined heduli S exactly solve scheduling but havefidifilties with time complexity
strained event sequence scheduling. SySteém .,4 complex control constraint formulation. Symbolic methods

resource protocols as well as an external inter- (i.e. [2][4][7][8][11]) are often déctive in finding exact solutions
face protocol are described by non-determinis- in highly constrained problem formulations but mayfesufrom

S : representation explosion. The technique described in this paper
tic finite automata (NFA) All valid schedules falls in the symbolic methods categoifhe most closely related

which adhere to interfacing constraints and previous work is found in [2]Jf] where system timing and syn-
resouce bounds for flow graph described chronization requirements are encapsulated in finite-state machine

behavior are determined exactIyA model and (FSM) descriptions. Our work dirs in two ways. First, we intro-
duce non-determinism as a preferred representation for protocols.

scheduling results ae presented for an exten- The work described in [9] supports this decision. Second, and more

sive design example. importantly our formulation is hierarchical and amenable to
abstraction. W believe hierarchy and abstraction are key compo-
Keywords nents in making symbolic techniques manageable.

Interface protocols, protocol-constrained scheduling, automata.

2. PROBLEM DESCRIPTION

1. INTRODUCTION Input to this problem consists of three types of information. First,
Scheduling is an important problem occurring in diverse areas fromprotocol interface Nis are provided for all internal resource units
manufacturing to networking to high-level synthesis of digital sys- and the external interface. For internal resource units, these autom-
tems (HLS). Although there has been extensive work done in HLSata models describe when local communication events may. occur
scheduling, much of this work has disregarded how the final sched-Local communication is operand passing between local resource
uled system must communicate to other systems. In parficular modules. External communication events are modeled by the exter-
scheduling systems containing components with complex interfacenal interface NR. Second, a data flow graph (DFG) is provided.
protocols is neglected. This situation is the norm in modern digital The behavior or algorithm to be implemented is given in terms of
systems, and use of sequential protocols is likely to increase inthis graph. DFG nodes represent operations and arcs represent
future designs. This paper presents a technique which addresseoperands. In this case, nodes are executed by resources with poten-
data-flow scheduling subject to arbitrary sequential protocols. Sys-tially complex interface protocols. Finallinstance resource and

tem resource usage protocols as well as an external interface protcoperand register bounds are given.

col are described by non-deterministic finite automatajNKext, The problem is to find a valid event sequence or schedule imple-
_Cons_tr_alnts derived from a behavioral flow graph are app_lled t.O anmenting the DFG described behayianeeting all protocol con-
implicit product NFA. Finally, reduced ordered binary decision dia- straints, and using only available resources. The technique
gram (ROBDD) symbolic reachability techniques are used to find presented here finds all valid schedules exactly

all valid schedules exacthh model and scheduling results are pre-

sented for an extensive design example. 3. PROBLEM FORMULA TION

We classify previous high level scheduling work into three catego- This section describes how the problem input information is used to
ries: i) heuristic, ii) integer linear programming (ILP) and iii) sym- construct a scheduling MFwhich represents all valid execution
bolic methods. Heuristic schedulers (i.e [1][10]) find good Seduences or schedules. The process involves building a product

solutions for lage problems quickly but sief with tightly con- NFA from small local NRs and applying constraints to this prod-
uct NFA. ROBDDs provide dicient representation for these Az

3.1 Operand NFAs

Each arc in the DFG is represented by an operadd(Nig. 1) in

our formulation. The meanings of each state and transition may be
inferred from the figure. The start state is in bold.

create b
a remember

unknow known

Figure 1. Operand NRA.

3.2 Resouce NFAs wherei e, is the create transition of the expected operandl NF
In our formulation, each node in the DFG is modeled by a @ndinterface is any transition to a next states, where operand
resource NA. Several instances of a given resource may be spec/S available in the interface protocol.

ified. The example resource Nief Fig. 2 represents the protocol A DFG operand is available from a resource instangewhen
for a unit with a restricted buswb input operands are required two conditions are true. Firgts paired binding N&, b, must be
but must be presented sequentiafiyrthermore, input operands transiting to a next state bound to the DFG nadgproducing.

may not be accepted while an output operand is present. Second, supposeis a local operand af which maps to DFG
rebind rebind operand when the first condition is true. Themust also be tran-
siting to a next state where local operéarnsl available. Further-
in1 in2 out more, s!nce any resource in_stance capable of proo_lucing DFG

operandi may actually producg all capable resource instances

bound must be examined. Formallfor each expected DFG operaind
Figure 2. Example of Bus Restricted Resooe NFA. this is described as,
3.3 Binding NFAs toreate = 3 (1, Pra,) 3)

Several DFG nodes may be bound to the same resource instancghere the summation is over all capable resource instance and
Consequentlyit is necessary to distinguisthich DFG node is mated binding NAs.

bound to a resource instance at any given timemake this dis-

tinction, a binding N is paired with each resource instance 3.5.2 Operand Accept Implications

NFA. Fig. 3 shows a binding MFcapable of binding to two pos- Resource and interface protocol AtFare only allowed to transit
sible DFG nodes plus a null node. When this binding Fn a to states requiring operands if the required operands will exist. For
DFG node state, then the local operands of the mated resourcthe interface protocol, this is enforced for each required DFG
instance NA map directly to operands accepted or produced by operand with,

that DFG node. Which local operand maps to which DFG operand

is specified by the designéiinally, constraints are added later to interface, - i\ omn @)
restrict a binding NK's rebind transitions (a change in state) to ne ne

occur only in sync with its mated resourceA\Frebind transi- whereinterface is any transition to a next state requiring operand
tions. i andiynoun is any transition to the known state of operand

The implication describing this for a local resource and mated

l null binding NFA for each required DFG operan,
rInsbndps - iknownns (5)

Figure 3. Binding NFA. wherer), by andiyo.n are as described earlidy writing this
implication in terms of the present stais, of the binding NA, it

is possible to create a resourceANWwhich produces an output
operand and rebinds to a new DFG node during the same cycle.

3.4 Interface Protocol NFA

The interface protocol Nkdescribes when DFG operand input or

output transactions may occur given external timing constraints. It3.6 Rebind Synchonization Constraints

iS Similar in Construction to a I’esourceA\lfFig. 2) W|th states A b|nd|ng NFRA may 0n|y rebind to a new DFG node when its
associated with input and output events. Unlike a resourée NF mated resource MFtransits through a rebind transition. This syn-
there is no need for a mated binding®NF chronization is enforced for each resourcand bindingb NFA

. . . air with the constraint,
3.5 Implication Constraints P

To create a scheduling WFimplication constraints are applied
between operand, resource, binding and interface protods.NF
For example, leQ be the proposition, “The interface protocol wherer,g;nq andbyging are the rebind transitions of the resource
NFA is transiting to a state where input of operand 1 is allowed” and mated binding M% respectivelyFurthermore, it is wasteful
and letP be the proposition, “The operand Alfor operand 1 has for the resource Nk to transit through a bound transition with a
a create transition.” The desired implication would the? b&) null binding. Consequentlyfor each resource and bindingb

or if P is true, therQ must also be true. In the ROBDD structure, NFA pair, the constraint,

an implication is constructed as,

It ebi ndbrebi nd (6)

— r - b 7
P - Q = PQ whereP andQ are ROBDDs. Q) bound ™ Tnullns ™

whererpgng is the bound transition of the resourceANFig. 2)
andb, is any transition to a next state of null in the mated bind-

3.5.1 Operand Create Implications ing NFA, is applied to the scheduling NF

DFG operands are only allowed to be created (thek ti&nsits

from unknown to known) when they are available from the inter- 3.7 Memory Constraints

face protocol or a bound resource instancA.Nfor each operand Only a finite numbem, of storage elements may be available to
i expected from the protocol interface, the implication is, store DFG operands. Lét be the set of all combinations of at

i . interface, @) mostn operands from the set of all DFG operands. Then

create ns

is allowed. (8)

GEA (j ID_Ljremember)

This constraint essentially limits the number of operand remember.

transitions which may coexist in any transition of the scheduling
NFA.

4. SCHEDULING SOLUTIONS

The product of all local N&s and constraints described in
Section3 form a scheduling Nk Every possible valid schedule
is a path in this scheduling WHrom a starting state set(8),

where no operands are known and all resources are null bound, to

a termination state se{(8'), where all desired operands have
existed. Each shortest path froni\Mg to S(V') represents a mini-
mum latency schedule.

We leverage symbolic reachable state analysis techniques to dete

mine the existence of valid schedules. Let the schedulidghéF
defined by the foutuple (V 8, S(V), S(V')) where V is the
finite, non-empty set of states,V - V' is the next-state function
and $(V) and $(V') are sets of initial and final states respectively
Starting with V), reachable state analysis is performed. Once
completed, if §V') is not present in the reachable state set, then

tically does not proceed to the next iteration until it knows that

both computed terms have been successfully written to memory

The table lookup protocol is shown in Fig. 8dlrcycles after an
index is presented, a stored dméént is produced. A unique
behavior is that the cdéfient remains available for two cycles.
Furthermore, a new index may be provided during the second
cycle of codficient availability

bound

Index
oeficie

Figure 6. DFT Table Lookup Resouce.

The memory resource uses the protocol detailed in Fig. 7. The
data and address busses are time multiplexed with addresses
éccepted on odd cycles and data passed on even cycles or vice

versa. The read protocol requires an address and provides the

requested data after three cycles. The write protocol requires an

address and the write data in two consecutive cycles. Three cycles

later a write acknowledge is produced. A new address may be

accepted during the same cycle that a write acknowledge is pro-
uced.

no schedules are possible with the current constraints and schedul-

; : g ; bind
ing terminates. On the other hand, {{\8) is present, then valid 'e i P —— -
schedules do exist and we can use the technique described in [4] to (_Address)—»(Write Data—»(__) in
find a shortest path and hence a minimum latency schedule.] bound

Figure 7. DFT Memory Resouce.

Finally, we are not bound to perform complete reachable state
analysis but may use refinements, optimizations and other tech-

nigues to find any desired subset of paths or schedules in th
scheduling NR.

5. 2-POINT DFT EXAMPLE

We develop a 2-point DFT example in detail to demonstrate the

versatility of our protocol-based scheduleig. 4 shows the DFG
used in this example. Although this DFG appears simple enoug
to be handled by traditional scheduling techniques, the advantag
of our method is the ability to tightly define data transfer protocols
and resource constraints.

Read Add

A Written

B Written

Figure 4. 2-Point DFT Example DFG.

Fig. 5 shows the interface protocol constrainAN®&r this exam-
ple. In reality this constraint describes an external controller

which computes correct indices and memory addresses. Due tr

controller and communication bandwidth limitations, the index,
A's memory address andsBrmemory address must be passed in
three consecutive cycles. After this, the controller non-determinis-

(_Index_)—»(A Address—»(B Addres

A
B Written

A Written

A Writtenﬁ Idle)«—(B Written
)

Figure 5. DFT Interface Potocol.

ig. 8 shows the arithmetic processor protocol. This unit performs
ree floating-point operations: addition, subtraction and multipli-
cation. Due to limited communication bandwidth, input operands

1 and 2 and the result operand must be passed during separate
cycles. An add or subtract result is produced two cycles after the
last input. Given the higher complexity of multiplication, its result
iplication, ordering of the input operands is irrelevant but for sub-
raction operand ordering is important. In this example, operand 1
must be accepted first.

The protocol in Fig. 8 is an example of alternative behaviors.
There are two valid start states and three variations of correct
behavior A flexibility of our formulation is this ability to handle
numerous alternatives. As long as one valid path exists containing
all required input and output operands for a DFG node, symbolic
exploration will not fail. Additional resource operands not
required by the DFG are ignored.

I_g produced three cycles after the last input. For addition and mul-

Multiply)

Figure 8. Arithmetic Processor Resoure.

6. RESULTS

A tool was developed to demonstrate the feasibility of our sched-
uling technique. It was written in python and utilized a standard
BDD library. The reported results were produced on a 400 MHz
Pentium PII system running Linux with 512MB of memdriiese
results were duplicated with runtimes 3 to 4 times longer on a 166
MHz Pentium laptop Linux system with 32MB of memory
Tablel presents results for various resource configurations of the
example presented in Sectidbn The first three columns list
instances of these available resources. Since by observation, A

Address and B Address from the DFG in Fig. 4, are needed at botiNFA of the higher level. The entire synthesis and scheduling pro-
the beginning and end, these operands are given dedicated storagess involves refining all protocol WE through repeated con-
which is not included in thilemory Registers column. straint propagation when coexecuting protocols at adjacent

As one might expect, scheduling performance is best for Conﬁgu_hierarchy levels. \& believe that such a hierarchical model is nec-

rations with the least amount of freedom. Increasing instances of S5y When synthesizing and scheduling systems of meaningful

any resource causes a resulting increase in CPU time. All solu-scale'

tions are exact and produced in reasonable time. Although a miniAlthough simple looping structures were present in the example,
mum latency schedule is reported, all valid schedules of allour future work will address loops in a more general.\ilde
lengths were actually computed. As far as we kneer are the method described in [8] provides a starting point. Furthermore,
first to report exact solutions for protocol-constrained schedulingcontrol structures were not directly addressed in this short.paper
problems of this type. Our previous work in [4] demonstrates a possible way of adding
control. Finally our use of symbolic reachability to determine

TABLE 1: 2-Point DFT Results valid schedules will be refined by related work in symbolic tra-

- T Minimum versal techniques for verification.
Memory Memory | Arithmetic Latency CPU Time
Registers Ports Processors | ginequie |0 Seconds 8. CONCLUSIONS
This paper presented a model and technique for representing all
1 1 1 26 2.2 valid schedules of a data flow graph mapped to a protocol-inten-
sive environment. Both an external interface protocol as well as
2 1 1 20 6.2 internal resource protocol constraints were adhered to. All valid
3 1 1 20 8.2 schedules were modeled exactly using a ROBDB btimposed
of local smaller protocol N& and additional constraints applied
2 2 1 15 11.9 between local N&s. An extensive design example with results
showed the versatility of this technique.
2 1 2 18 54.5
3 5 1 15 200 9. REFERENCES
i [1] R. Camposano, “Path-Based Scheduling for SynthéESE
3 1 2 18 50.4 Trans. CAD/ICAS vol. 10, no. 1, pp. 85-93, Jan. 1991
— [2] C. N. Coelho JiG. De Micheli, “Dynamic Scheduling and
no limit 2 2 13 157 Synchronization Synthesis of Concurrent Digital Systems
2 1 o 18 164.0 under System-Level Constraint&roc. |IEEE Int. Conf.
Computer-Aided Design, pp. 175-181, 1994.
2 2 1* 15 424 [3] C.H. Gebotys and M. I. ElImasr{Global Optimization
5 5 1* 15+ 541 Approach for Architectural SynthesidEEE Trans. CAD/
' ICAS vol. 12, no. 9, pp. 1266-1278, Sep. 1993.

Arithmetic processors marked with an asterisk use a slightly dif- 4]
ferent protocol than described in Fig. 8. First, the multiply extra
cycle penalty is removed. Second, a new penalty for reconfigura-
tion is added. Any multiplication following an add or subtract or
any add or subtract following a multiplication pays an extra cycle
penalty for reconfiguration. In these cases we see the same results
for a minimum latency schedule but with a possibly simpler arith-
metic processor and control structure.

The minimum latency schedule marked with an asterisk uses a
modified interface protocol which is intended to explore alterna-
tive controllers. A address, B address and the index may now b/l
produced by the controller in any consecutive ordthough this

added freedom increases the runtime by 12 seconds, there is no
gain in the minimum latency schedule. [8]

7. FUTURE WORK

The models used in this paper were chosen with great care to bg]
amenable to future work with scheduling hierarchy and abstrac-
tion. A scheduled external interface Alland a resource MF

S. Haynal and.mBrewer “Efficient Encoding for Exact
Symbolic Automata-Based Scheduling§toc. |EEE Int.
Conf. Computer-Aided Design, to appearl998.

H. Hulgaard S.M. Burns,. Amon, G. Borriello, “An Algo-
rithm for Exact Bounds on thérfie Separation of Events in
Concurrent Systemsl'EEE Transactions on Computers,

vol. 44, no.1, pp. 1306-1317, No1995.

C.-T. Hwang and ¥C. Hsu, “A Formal Approach to the
Scheduling Problem in High Level Synthesi€EE Trans.
CAD/ICAS, vol. 10, no. 4, pp. 464-475, Afr991.

C. Monahan and.Brewer “Scheduling and Binding
Bounds for R-Level Symbolic ExecutionProc. |IEEE Int.
Conf. Computer-Aided Design, pp. 230-235, 1997.

I. Radivojevic and FBrewer “A New Symbolic Bchnique
for Control-Dependent SchedulindEEE Trans. CAD/

ICAS vol. 15, no. 1, pp. 45-57, Jan. 1996.

A. Seawright and.Brewer “Clairvoyant: A Synthesis Sys-

tem for Production-Based SpecificatioRtpc. |EEE Trans.
on VLS Systems, vol. 2, no. 2, pp. 172-185, June 1994.

have interchangeable meanings. This allows for a general protocol1] K. wakabayashi and Hafiaka, “Global Scheduling Inde-

NFA to be a vehicle for refinement and abstraction in a hierarchy
This protocol NR can be a resource instanceMN\&t one level of
hierarchy or an external interface Allat another level. \th a
bottom up design flow through the hierarcimgernal complexity

of lower levels is hidden from higher levels since only external
communication events are propagated ujh\&/top down design
flow, local freedom of lower levels is restricted by the protocol

pendent of Control Dependencies Based on Conditima V
tors”, Proc. 29th ACM/IEEE Design Automation Conf., pp.
112-115, 1992.

| [11] J. C.-Y Yang, G. De Micheli, and M. Damiani, “Scheduling

and Control Generation with Environmental Constraints
based on Automata RepresentatiohSEE Trans. CAD/
ICAS vol. 15, no. 2, pp. 166-183, Feb. 1996.

