Issues in High-Level Connectivity Synthesis

Barry M. Pangrle*, Forrest D. Brewer**, Donald A. Lobo*, and Andrew Seawright**

*CS Dept. Pennsylvania State University, University Park PA, 16802

**ECE Dept. University of California, Santa Barbara CA, 93106

This research supported in part by NSF Grant MIP 88-09250, and the University of California MICRO program, 1990

Chip HDL { while(~b)

ECE Dept. University of California, Santa Barbara CS Dept. Pennsylvania State University

Introduction

- Concurrent Interconnection Synthesis and 1-D Layout Generation
- Multiplexer/Bus Trade-Offs
- Busses, Registers, and Tracks

Related Work

- Hercules, ELF, HAL, LYRA, MAHA, Facet
- PARBUS, CATHEDERAL-II, SPAID, SYCO, BUD

ECE Dept. University of California, Santa Barbara CS Dept. Pennsylvania State University

while(~b)

Model and Constraints For these Experiments

- I-D Bit-Sliced Placement Model
- Track Minimization Primary Objective
- Sized Cells
- Busses Used Once per Clock Cycle
- Unidirectional Data Transfers
- Cell Inputs are Not Latched
- Minimum Register Designs

Connectivity to Layout Mapping

Chip HDL { while(~b)

ECE Dept. University of California, Santa Barbara CS Dept. Pennsylvania State University

Busses, Registers, and Tracks

- Number of Tracks Needed In a Design is not Equivalent to Number of Busses
- More Than the Minimal Number of Registers In a Design Can Save Tracks
- What Is The Maximum Number of Tracks <u>Necessary</u> In a Design, If the Number of Registers is not Minimized?

Lemma:

An Upper Bound is Number of Simultaneously Active Functional Unit Outputs Plus 2*

*binary operations

Chip HDL { while(~b)

HAL Example

- Sized Cells
- 4 tracks, wirelength = 1577

Chip HDL { while(~b)

ECE Dept. University of California, Santa Barbara CS Dept. Pennsylvania State University

Elliptic Filter

- 1 multiply, 1 adder (4 clock multiply)
- Sized Cells
- 5 tracks, wirelength 3326 (26cpu sec.)

temp			
t33			
t13			
t2			
<u>mux</u>			
t39			
+			
<u>mux</u>			
temp			
i			
t38			
temp			
t18			
t26			
mult]	
ROM			

Chip HDL { while(~b)

Results

<u>Sample</u>	<u>Tracks</u>	<u>Wirelength</u>	<u>Busses</u>	<u>D.P. Mux</u>	<u>Muxinputs</u>
Hal	4	33	12	1	11
PHal*	5	27	3(7)	1	10
SHal**	5	31	10	3	9
Ellip	5	3326	7	2	26
Hal	4	1577	12	1	11

<u>Example</u>	<u>Tracks</u>	Load Balanced
DE1	4	Yes
DE2	4	Yes
DE3	5	Yes
DE4	4	No
DE5	5	No
DE6	4	No
AFB	6min	Yes
AFU	5min	No

ECE Dept. University of California, Santa Barbara CS Dept. Pennsylvania State University

Conclusions

- Number of Busses is Poor Estimate of Number of Tracks
- Use Caution in Minimizing Number of Busses in Scheduler
- Designs with More than Minimal Number of Registers Can Win
- In 1-D Layout, Load Balanced Schedules May Not Be Track Efficient

Chip HDL { while(~b)

ECE Dept. University of California, Santa Barbara CS Dept. Pennsylvania State University