
Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 1

Clairvoyant: A Synthesis System for Production-Based Specification

Andrew Seawright and Forrest Brewer
(andy@synopsys.com, forrest@ece.ucsb.edu)

Abstract

This paper describesa new high-level synthesissystem
based on the hierarchical Production-Based
Specification (PBS). Advantages of this form of
specificationare that the designerdoesnot describethe
control flow in terms of explicit states or control
variables and that the designer does not describe a
particular formof implementation.Theproduction-based
specification also separates the specification of the
control aspectsand data-flowaspectsof the design.The
control is implicitly described via the production
hierarchy, while the data-flowis describedexplicitly in
action computations.This approach is a hardware
analog of popular software engineeringtechniques.The
Clairvoyant system automatically constructs a
controlling machinefromthePBSandthis processis not
impacted by the possibly exponentially larger
deterministicstatespaceof the designs.The encodings
generated by the constructionscompare favorably to
encodingsderived using graph-basedstate encoding
techniquesin termsof logic complexity and logic depth.
Theseconstructiontechniquesutilize recentadvancesin
BDD techniques.

1.0  Introduction

In conventionalhigh-level andregister-transfer-level
hardwaredescriptionlanguages,thecontrolstructureof a
designis typically specifiedusing conditional language
constructs such as if-then-else and case statements.
Conditionalbranchingin the control flow is determined
by the evaluationof programstatevariableswhich are
explicitly specified.For many problems,however, the
specificationof the machinebehavior in this format is
cumbersome.Thedesignermaywish to work at a higher
level of abstractionin which the detailedinteractionof
the sub-componentsis resolved automatically. This is
especiallytrue for problemsin which the time sequence
behavior is complex or thecontrolstatespaceis largeor
difficult to describeexplicitly. Thesedesign problems
include the specification of protocol controllers,
communication devices, and computer interface
subsystems.Thehigh-level synthesissystemdescribedin

this paper addressesthese types of specification
problems. This synthesis system is based on the
Production-Based Specification (PBS) [29] [30] [31].

In a Production-BasedSpecification, the control
structureof thedesignis specifiedasa hierarchicalsetof
productions.Eachproductionis viewedasasub-machine
or, more precisely, a non-deterministic automaton.
Productionsarerecursively definedthroughhierarchical
compositions of other productions. The hierarchical
compositiondefines the control structureof a design
implicitly. Data-flow computationscalled “actions” are
hooked into this implicitly describedcontrol-flow by
associatingthemwith productions.A data-flow actionis
“executed” when its associated sub-machine is
“recognized”.The recognitionof a productionmayspan
many levels of abstraction.For example,the recognition
of a productionmay correspondto the occurrenceof a
singlesignaltransition,or to the terminationof anentire
protocol transaction.

Clairvoyant is a new high-level synthesissystem
intendedfor two areasof design.Theseareasare the
specification and synthesis of designs:

1.  that are naturally specified with the use of a gram-
mar-based decomposition of the design’s behavior.
These machines include those that perform compu-
tations in response to complex communication pro-
tocols.

2. that are naturally described as hierarchical composi-
tions of interacting sub-machines. These machines
include complex data-path controllers.

This manner of specificationis intended to be a
hardware analogyof the popular software engineering
techniquesandtoolssuchasthoseusedto createparsers,
compiler control structures, and lexical analyzers,
appliedto high-level synthesis.Considerthedesignof an
ASIC interfaceto anEthernet.Thesequentialstructureof
the Ethernetprotocol can be describedusing a set of
productionsin the Backus-NaurForm (BNF) commonly
usedfor specifyinglanguagegrammars[1] [14]. These
productions define the syntax for correct Ethernet
transactionsas well as thosetransactionsperformedon
the machine interface side of the interface. Every



Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 2

possible combination of machine behavior on all
interfacesis implicitly describedthis way as the set of
recognizablesequencesof the productions.It is then
naturalto attachdata-pathoperations(actions)describing
thedesiredsemanticsto this productionframework since
we assumethat eachaction will be triggeredon valid
recognitionof the underlyingannotatedproduction.For
example,in theEthernetinterface,theactionof storinga
received databyte is triggeredby the recognitionof the
productiondescribingrequiredsequencefor avalid serial
byte. This direct associationbetweenactions and the
recognition of valid high level behavior allows for
specificationswhere the required actions for a given
behavior are described locally, but other possibly
simultaneousactionsnecessaryfor other behaviors are
describedelsewhere. This property and the reusable
hierarchy of productionsprovide the meansfor very
conciseand simpler behavioral specificationsof these
complex machines.Of particularutility is the ability to
specifythedesiredbehavioral responseof a machineto a
set of sequentialstimuli without specifyinga particular
state machine implementation.

TheClairvoyantsystemis targetedtowardthedesign
of sequentialmachinecontrollerswith associateddata-
paths for use in ASIC designs,where the constructed
control structuresaim for high performanceand/or low
power characteristics.TheseASIC designsare typically
multi-level logic circuitsimplementedusinggatearrayor
FPGA technology. Mapping the output into such
implementationscan be performedby any number of
commercialsynthesispackages,for example[7], because
the output of Clairvoyant is a directly synthesizable
subsetof the VHDL [15] high level description(HDL)
language.Thus,ClairvoyantworksasanHDL generator.
The userdescribesthe behavior of a designentity in the
form of a PBSdescription.This descriptionis compiled
and a hardware architecture is synthesized.In this
process,both the control structure and the data-path
register transfersrequiredto implementthe actionsare
created. The output is an HDL description of the
architecture at the register-transfer level (sequential
VHDL processes)with the required control machine
described as a sequential logic network (structural
VHDL). The Clairvoyant systemaims to handle large
designswith large statespaces.The control machineis
outputin astructuralformatto avoid thepossibilitythata
deterministicstatetableoutputwouldrequireexponential
space.This possibility arisesfrom the non-deterministic
nature of the input specification [14] [20]. The
constructed number of flip-flops required in
Clairvoyant’s output structureis linearly relatedto the
size of the input regular expression.

The designs specified using Production-Based
Specificationsareentitiesthat are typically components
of a larger system.The PBS specifieddesignentity is
assumedto interactwith otherdesignentitiesdescribedat
different levels of abstraction and using different
specificationtechniques.In thisway, theHDL generation
can be applied to large constructionsin exactly those
places where it is most useful; i.e. sub-machines
responding to complex sequential protocols or sub-
machines connected to several other concurrently
communicating sequential machines. An added
advantageof the VHDL output is the ability of the
designerto simulateandverify thesynthesizeddesignin
the same way that conventional VHDL designs are
constructed.

The next sectionof this paperdescribesthe model
andform of theProduction-BasedSpecification.Related
work is discussedin Section3. In Section4, thesymbolic
constructionalgorithms of the Clairvoyant systemare
described. In Section 5 experimental results are
presented.Conclusionsandfuture work arepresentedin
Section 6.

2.0  The Production-Based Specification

The Production-BasedSpecification describesthe
behavior of a single designentity with a well defined
boundaryand interface. It is assumedthat the design
entity containssynchronouslogic andthatat leastoneof
the input signals is a global clock signal. The PBS
specificationassumesa mono-ratesampling paradigm
that allows multiple clocksfor multi-phasesynchronous
clocking.EachPBSspecifiedentitycanbespecifiedover
a uniquesynchronousdomain.The global clock(s) are
assumedto be sharedwith other designentities in the
completesystem.It is assumedthat otherentitiesin the
systeminteractwith the synthesizedentity only through
its interface. The implementationof the entity is not
important so long as it meets the desired sequential
constraintsof theinterfaceanddesignconstraintsof area,
cycle time, and power consumption. Thus all
implementationsof the designentity which satisfy the
PBSspecificationarebehaviorally equivalent,anddiffer
only when characterizedby implementationcosts or
other design metrics.

A production is a namedcompositionof symbols,
operators,and action clauses.There are two types of
productions,thosespecifying sequentialbehaviors and
thosespecifyingcombinationalBooleanfunctions.The
symbolsin a sequential production areeitherreferences
to other sequentialproductionsor they are tokens. A
token is a referenceto a Boolean Production or a



Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 3

Boolean composition in a sequentialproduction. The
symbolsin a Booleanproductionareeitherreferencesto
other Booleanproductionsor they are atomic symbols.
Theseatomicsymbolseitherrepresenttheinput interface
signals (primary inputs) or they are other language
defined symbols.

Composition operators are used to composethe
productions.They are used to build more abstractor
complex productions from simpler productions. The
composition operators are similarly grouped into
sequentialandBooleantypesfor usein the two kindsof
productions.Thus Boolean composition operatorsare
usedto definecomplex Booleanfunctionsfrom simpler
Booleanfunctionsandsequentialcompositionoperators
defineabstractsequentialbehaviors from moreprimitive
sequentialbehaviors. Table 1 describesthe available
composition operators.

A tokenis “recognized”or “accepted”,if its Boolean
function is satisfiedin thecontext (clock cycle) in which
the token appearsin the productions.A production is

acceptedduring the clock cycle in which the time
sequence behavior dictated by its composition is
satisfied.Thustokenrecognitionprovidesthemechanism
for the machine’s sequencingbehavior. The productions
areannotatedwith actionclausesor actions for short.An
action is a specified data-flow computation that is
executedwhen its antecedentsymbol, composition,or
production is recognized.In general, any number of
productionsmay beactive or simultaneouslyin the state
of acceptance.A production may also accept several
times in its execution.

Recursive productionsin the PBS specificationare
illegal since the intent is the specification of state
machine controllers and data-paths of finite size.
Although some recursive production sets can be
constructedas FSMs, these cases are not currently
allowed to simplify the implementation.This doesnot
restrict the language capability since tail recursive
behavior can be conciselydescribedusing the Kleene
closure operator. A production, however, may be
referenced by any number ofother productions.

Table 1: Composition Operators

op name meaning

a,b concatenation Acceptedif a is acceptedfollowed
by the acceptance ofb

a^n multiple
concatenation

n concatenations of the sub-
machinea. n is an integer.

a||b sequential or Accept ifa or b or both are
accepted.

a&&b sequential and Accepted ifa and b are simulta-
neously accepted.

!a sequential not Accepted ifa is not currently in
the state of acceptance.

a!!b exception
handler

a is initiated,if a will enterastate
from which it cannever accept,
thenb is initiated.

a!R exception
reset

a if initiated and re-initiated ifa
will enterastatefrom which it can
never accept.

a* Kleene
Closure

Recognizes all sequences consist-
ing of zeroor moreconcatenations
of a.

a+ one-or-more Recognizes sequences of one or
morea’s.
Equivalent toa*,a.

a|b Boolean or Boolean functiona∨b.

a&b Boolean and Boolean functiona∧b.

~a Boolean not Boolean function¬a.

a:b qualification Modify b such that forb to be
accepted,a must be true through-
out the execution ofb.

xc

xd

x

<forward> <forward> <reverse>

x=0x49 x=0x4A x=0x4B x=0x4A

mouse -> .*, event;

event -> forward || reverse;

forward -> high:rising; { x <= x + 1; }

reverse -> low:rising; { x <= x - 1; }

rising -> (~xc)+, xc;

high -> xd;

low -> ~xd;

xc

xd x

clock

a) Design Entity

b) PBS Specification

c) Timing Diagram

Figure 1. Mouse Example

mouse



Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 4

Figure 1, illustrates an example design entity. The
top portion (Figure 1a) depicts the design entity and its
signal interface. The PBS specification for this design’s
behavior is shown in Figure 1b. In the description, there
are seven productions: mouse, event, forward,
reverse, rising, high, and low. Of these, the first
five are sequential productions, and the last two are
Boolean productions. The Boolean composition (~xc)
is a token as it appears in the rising production. The
symbols xc and xd refer to the input interface signals.
By default, the first production in the PBS (mouse) is the
top-level production. The top-level production
encompasses the behavior of the whole design entity.

This description specifies the behavior of a 1-d
positioning machine such as that used in a computer
mouse pointing device. It continuously updates the signal
x with a current 1-dimensional position based on the
quadrature encoding of the signals xc and xd received
from external motion sensors. Updating the position
occurs if one of the productions forward or reverse
are recognized. The rising production recognizes a
rising edge occurring on the signal xc. It is recognized if
xc is in a high state following a sequence of one or more
cycles in which the signal xc has remained low since the
initiation of rising. The productions forward and
reverse are defined as qualified versions of the
rising sub-machine. HDL action clauses are attached
to these two productions. For example, if forward is
recognized the signal x is incremented. The sequential
composition “.*,event” represents the behavioral
idiom “any input sequence followed by event” since “.”
denotes the Boolean function that is always true. Thus, a
new recognition of event is attempted on each clock
cycle so that both the forward and reverse sub-
machines are concurrently enabled to recognize motion
of the mouse. Figure1c shows an example time sequence
behavior of the mouse design.

Production-Based Specifications are convenient to
the designer since it is often possible to implicitly specify
very complex sequential constraints in a concise format.
Additionally, this specification is local in the sense that
additional desired behaviors can be specified by adding
additional concurrent productions. For example, the rate
of mouse motion can be measured by adding a
production which counts idle clock cycles and adding
two more actions to the forward and reverse
productions. In general, such changes to FSM state
descriptions require global modification of the entire
design. Another valuable property is the ability to reuse
previously defined productions representing key
activities without regard to the possible concurrency of
their execution. For example, a read production defined

for a bus protocol can be used in the definition of all
desired bus activities even if those activities might occur
concurrently. A similar description as a deterministic
FSM would potentially require the cartesian
multiplication of all of the possibly concurrent read
sub-machines to describe the possible states.

The PBS language was designed to allow flexible
specification of finite state machine controllers. Although
it contains a superset of the regular expression operators,
the language remains in the class of finite automata. This
is because all finite PBS specifications imply finite
controllers. The controller does not require unbounded
storage as is the case, for example, in a LALR parser
which requires a stack [1] [14]. The extended operator set
allows for more convenient expression of behaviors that
would require exponentially larger specification in the
form of traditional regular expressions, however each
specification remains finite with respect to the controller.

2.1  Execution Model

The behavior of the PBS design entity is defined by
execution of the implied control-flow where the actions
are executed at their respective points in the protocol, and
the execution of each action concludes on the accepting
clock cycle. This model describes the external behavior
of the design, not how the design is implemented. The
PBS language model assumes sufficient resources to
execute all potential simultaneous actions over all
possible input excitation sequences. There may be
considerable freedom to schedule the actions without
violating the sequential interface constraints and thus
optimize the resources or other design constraints. The
PBS language doesn’t preclude action execution
overlapped with recognition of productions, so long as
these transformations result in equivalent behavior.
Techniques to exploit this freedom is the topic of current
research and will be described in a separate publication.

Because of the nature of production recognition, it is
possible that several actions may be triggered
simultaneously (during the same clock cycle). Since such
actions may have data dependencies, the conceptual
ordering of their execution within the accepting cycle is
important. Consider the actions: {x := 0;} and {x
:= x + 1;}. In one ordering, the resulting value of x
is 0, while in the other order x is 1. Action precedence is
defined for two actions if one of their respective
productions is in the execution scope of the other
respective production. The scope of a production
includes all of the more primitive productions with which
it is defined. The precedence ordering specifies that
actions of more primitive productions conceptually occur



Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 5

before those of less primitive productions. Thus, the set
of actions has a partial order imposed by the production
hierarchy. Actions whose productions have unrelated
scopes do not have a defined precedence ordering.

This concept is best illustrated with an example.
Consider the following PBS fragment of two
productions:

...
block -> word^8; { x := 0; }
word -> bit^32; { x := x + 1; }
...

In this example, every time a word is recognized, the
variable x is incremented. When a block is recognized,
however, both of the actions are executed, since the
recognition of the block occurs synchronously with the
recognition of the last word. The action precedence rules
imply that in the acceptance of the block production,
the net result is that x is 0, since the reset action is
conceptually last. The designer can exploit action
precedence by crafting actions that supplant the results of
others. When no action precedence is defined,
dependencies between actions can be ambiguous. The
synthesis system, however, can warn the user of a
possible action conflict. This behavior is not forbidden so
as to not limit the expressability of the language.

Synthesis of the controller in the Clairvoyant system
does not rely on predicting the external world’s response
to the execution of an action. Thus, actions that “side-
effect” via feedback from the external world and through
the primary inputs, by design or otherwise, don’t present
synthesis problems. For example, an action may assert a
signal on an output that is fed back to a primary input,
thus changing how tokens are interpreted in subsequent
cycles. These effects are considered in the construction
because, effectively, every possible input sequence is
assumed possible.

2.2  Operators

The sequential operators are a superset of the
classical regular expression operators [1] [14] [20]. These
operators include generalizations such as the sequential
not “!” operator and the sequential and operator “&&”
useful for specifying synchronization.

The exception operators are designed for specifying
exception handling, re-synchronization, and recovery
mechanisms. These operators are used to specify
behaviors based on the conditions in which a sub-
machine enters a state in which it can never accept. They
are used to construct productions which recognize when
a dependent production cannot accept and then take

appropriate action. Exception operators may be nested
hierarchically, as they operate on a general sub-machine
which could contain other exception operators. An
exception operator is defined over the production scope
of all more primitive productions used to construct its
dependent part. For example, consider the following
nested productions:

a -> b!!c;
b -> d!!e;
d -> ...

If the production d receives an input for which it has
no more possible accepting sequences it is said to have
failed. The b production can then be accepted only if the
e production (the exception handler) is accepted. If e
succeeds, b is accepted and so a is accepted as well. If e
fails, then b fails and since b is in the scope of a, the
exception handler c is activated. This type of behavior
greatly simplifies the problem of specifying exceptional
behavior since the alternative would be to specify every
possible failure sequence for a production. This could
require an exponentially larger regular expression.

The Boolean operators and “&”, or “|”, and not “~”,
are used in Boolean compositions for the specification of
Boolean functions which are used as tokens in sequential
productions and used as the left-hand operand in the
qualification operator. A sequential production or
composition may be qualified with a Boolean production
or composition using the qualification operator. For a
qualified production to accept, the Boolean part must
remain true during any accepting sequence for the
sequential part. In other words, the behavior of the
qualified sub-machine is the same as the unqualified sub-
machine in which all of its tokens have been anded with
the qualifying Boolean function. The qualification
operator is useful because it can modify or refine the
behavior of a production for different contexts. For
example, a “generic” sub-machine can be referenced
from several other productions in different contexts and
its behavior refined through qualification in each
instance.

3.0  Related Work

Jackson [16] championed a methodology for
specification and design of software programs and
software interfacing between programs, using constructive
methods. Similar ideas are manifest in the successful
compiler construction tools such as YACC [17] and LEX
[21]. In these tools, the specification of the language to be
compiled is described as a set of productions representing
the language grammar. The semantic actions performed by
the compiler are specified as code annotations to the



Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 6

grammar. The tools compile this specification into the
control structure of a compiler program to parse the
specified language. This provides an enormous
simplification in the complexity of constructing compilers
since the designer need not consider the all the concurrent
combinations of productions which are possible when the
compiler is executed. PBS mimics this specification
approach, however, fundamentally different operators and
construction techniques are applied since the constraints
differ between hardware and software. PBS achieves the
great economy of specification characteristic of these
tools.

Ullman et al. [10] [18] [35] studied the use and
compilation of regular expressions in the design of
hardware controllers. In this work, the design is specified
as a single regular expression which is then implemented
as a non-deterministic PLA. The non-determinism was
expressed as feedback terms in the PLA, each of which
indicating the validity of a given non-deterministic state.
The system chose encodings based on a algorithm to
minimize the number of feedback terms in the PLA. The
PLA was minimized to produce the smallest number of
cubes in the final design. Trickey [34] proposed a dynamic
programming algorithm for optimizing the layout of these
PLA pattern recognizers.

Although there are similarities between Ullman’s
approach and PBS, particularly in the use of regular
expression operators, there are several differences in the
specification form, construction techniques and goals. In
PBS, the notion of explicit productions which are re-used
is central and allows more concise specification. The
modeling of actions in PBS is that of arbitrary high level
data-flow behaviors instead of output signal transitions,
and PBS implicitly allows multi-level logic models for
the control.

STATEMATE [13] is a system for the design and
documentation of reactive systems for use in interactive
software and embedded systems. Designs are specified in
the form of a hierarchical state chart [12]. In this
specification, a state is active if any of its child states are
active, for example, or alternatively if all of its child
states are active. Transitions between states occur on
events and are allowed between states at different levels
of abstraction. The state charts are converted directly into
software code. SpecCharts [27] addresses the behavioral
specification of whole systems by combining hierarchical
state charts and VHDL in a graphical specification
methodology. The SADE system [23] uses graphical
entry and underlying petri net models for design
specifications that are converted into HDL code. The
PUBSS system [38] specifies designs in the form of

several interacting, but not hierarchical, cooperative
VHDL processes that are modeled as behavioral finite
state machines. Its synthesis focuses on scheduling the
communication and computation in the design under the
ensemble constraints induced from the individual process
constraints. In all of these techniques, the designer either
describes the behavior in terms of explicit states or the
designer explicitly partitions the problem into interacting
procedural processes that contain explicitly defined state
variables. PBS, instead, describes the decomposition of
the control behavior as a hierarchical listing of the
possibly concurrent desired behaviors. This difference is
similar to differences between C [19] and PROLOG [8]
programs.

ESTEREL is a reactive programming language from
which hardware specification has been recently studied
[3] [11]. ESTEREL includes language constructs for
parallelism and includes a powerful trap mechanism.
There are several differences between PBS specification
and ESTEREL. The primary difference is that the
ESTEREL language is an imperative style language [11]
and PBS is an applicative language for control
specification. In an applicative language, the basic
statements are definitions as opposed to assignments or
sequences of tasks. Another difference is that a PBS
specification has an explicit partitioning of the behavioral
specification between the productions and the actions.
Productions represent the implicit control behaviors the
designer wants to specify at a very high level without
describing the detailed state transitions or the linking of
the control and data-paths. The ensemble of actions
implicitly describe the data-path requirements. Thus,
control of the data-path is implicit in PBS which
simplifies the specification and allows more freedom in
the final design implementation. ESTEREL’s trapping
mechanism is different from PBS’s exception mechanism,
however, both allow for the description of exceptional
behaviors and both mechanisms use the notion of lexical
scope.

In our previous work [29], we proposed the use of
Production-Based Specification for use in high-level
synthesis. In this earlier system, the execution model of
the implied non-deterministic machine includes action
clauses of VHDL code. These concepts have been greatly
expanded in the synthesis system described in this paper.
Clairvoyant incorporates fundamental improvements to
the expressive power of the production specification
language as well as more powerful synthesis techniques.
The addition of new production composition operators,
combinational Boolean productions, and the incorporation
of recent BDD and symbolic representation techniques
allows an efficient re-formulation of the synthesis task.



Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 7

4.0  Clairvoyant Implementation

4.1  Design Representation

The synthesis process begins with the parsing of the
Production-Based Specification. A production
representation is created which captures the hierarchical
structure of the description and it is derived from the
production parse trees [1]. This representation is the
starting point for further synthesis tasks and is retained
throughout the synthesis process as an important
representation of the high-level design structure. To
describe the production representation and subsequent
construction we will use a small example shown in
Figure 2.

The symbols, z1, z2, z3, and z4 represent external
interface signals. The productions p1, p2, p3, p4 are
sequential productions while production p5 is a Boolean
production. Tokens are atomic sequential productions
and represent sampling the interface signals for the
desired Boolean function on a synchronous clock. For
example, the composition “(z1 & z2)” is a token
which is recognized if both z1 and z2 are true during the
sample period. Production p3 is recognized (and action1
is triggered) if productions p4 and p5 are simultaneously
recognized. i.e. z2 became true at least one clock before
the current clock and z3 is true while z4 is false.
Production p2 first requires z1 and z2 to be
simultaneously valid and then p4 to be recognized, while
p1 is recognized if either p2 or p3 are recognized. Note
that if p3 is recognized, both action1 and action2 will be
triggered simultaneously, with action2 conceptually
occurring after action1 due to action precedence (this
precedence ordering can be easily seen for this example
in Figure 3).

A collapsed production structure called the
production DAG is subsequently constructed from the
parse tree. Each node in the DAG represents a sequential
composition operator. It is constructed from the
production representation by propagating all Boolean
operators toward the leaves of the DAG and then
representing the resulting complex Boolean composition
dags as combinational Boolean functions. For example,
t1(Z) = z1z2, and t2(Z) = z2. This construction is always

possible because it is illegal for sequential productions or
compositions to be used in Boolean compositions.
References to these Boolean functions from the
sequential composition nodes imply token recognition if
the function is valid during that clock cycle. Practically
speaking, these functions are represented by an ROBDD
[5] [6] using the external signals as the basis variables.
The example production representation and the collapsed
production DAG are illustrated in Figure 3a and Figure
3b, respectively. Here, the sequential composition

operator nodes are represented by unshaded nodes, while
the Boolean composition nodes are shaded. It is
important to note that each sub-DAG from a sequential
node to its leaves represents a viable sub-machine of the
design. Thus, the production DAG represents a
hierarchical finite-state machine partitioning of the entire
design. This property is exploited by the deterministic
machine construction process detailed in the following
sections.

4.2  Intermediate Machine Representation

The production DAG represents the input behavioral
specification of the desired state machine. Construction
of a physical implementation from this description passes
through an intermediate stage in which state encodings
have been made and the control can be described as a set
of combinational functions taking the current state and
inputs into the next state and outputs. This level
description is output as register-transfer level VHDL for
later logic synthesis and optimization by conventional
tools. The internal design representation of this level is
called an intermediate machine. The construction of this
representation by conventional algorithms is hampered
by the possibly exponential growth of the state transition
table due to the inherent parallelism of the input
specification. For this reason, an implicit construction

p1 -> p2 || p3; { action2 }
p2 ->(z1 & z2), p4
p3 -> p4 && p5; { action1 }
p4 -> z2+;
p5 -> z3 | ~z4;

Figure 2. Small Example

~

||

&&

*

& |

{action1}

z1 z2 z3 z4

{action2}

,

,

||

&&

*

{action1}

{action2}

,

,

t2(Z)

t3(Z)t1(Z)

a) Production Tree b) Production-DAG

Figure 3.



Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 8

technique was devised allowing more flexible and larger
problem instances than are tractable conventionally.

The intermediate machine representation consists of
two parts, a state transition function and an output
function for the machine. In what follows, B represents
the set {0, 1}. The transition function ∆ is a function
mapping: Bn × Bk → Bn. This mapping is written:
∆: {(x1, x2, x3, ... , xn)}×{( z1, z2, z3, ... , zk)} →

{(y1 , y2 , y3 , ... , yn )}
where X, Y, and Z are Boolean vectors. X represents the
present state of the machine, Z represents the input
interface signals, and Y the next state of the machine.
The transition function ∆ represents a deterministic state
transition function. The representation, however, is
unconventional in that each state bit is associated with
token recognition of a leaf of the production DAG. In this
encoding of state, a true bit implies that control has been
transferred to this bit and that the corresponding token
(Boolean function of the signals) was recognized. Since
the machine is non-deterministic, it is possible for several
such bits (called control points) to be simultaneously
true. Looking ahead, ∆ can be viewed as a circuit -- in the
example in Figure 3, recognition of the function t1(Z) is
associated with state bit x2 in the circuit in Figure 5. This
representation has two views: As a whole, ∆ represents
the transition function of a deterministic FSM, while
each function yi = fi(X, Z) in ∆ represents the excitation
of an individual non-deterministic control point.

The Moore output function Λ : Bn → Bm is defined
as a mapping:

Λ: {(x1, x2, x3, ... ,xn)} → {(a1, a2, a3, ... , am)}.
where X is the present state and ai ∈ A represent each of
the individual actions. Each action is triggered by the
condition ai = ci(X) corresponding to its location in the
production DAG. Because many actions may be triggered
simultaneously, action precedence enforces the execution
sequence. The ordering of the ai’s in the vector A satisfy
the partial order action precedence relations implied by
the production DAG.

Alternatively, a Mealy form output representation Λ’
is derived from Λ. In this case Λ’ maps Bn × Bk → Bm,
with the individual action conditions a function of X and
Z, e.g. ci(X, Z). The action execution in the Moore form
of the output function lags by a cycle vs. the Mealy form
of the output function. The choice between the two forms
of output function is selected prior to the construction by
the designer.

4.3  Intermediate Machine Construction

The construction is a recursive procedure on the
production DAG building the intermediate machine. This
procedure applies a particular construction rule at each
composition node of the DAG, based on the node’s type.
These rules are templates for application of a sequence
BDD operations. Each time a leaf of the production DAG
is reached, a new control point is added to the
intermediate machine state vector. Since the production
DAG may have several paths to a leaf from production
re-use, the number of control points may be larger than
the number of leaves in the DAG. This can be seen in the
example in which the t2(Z) leaf denotes 4 distinct control
points x3, x4, x5 and x6 in Figure 5. These control points
represent sequentially distinct recognitions of the t2(Z)
Boolean function of the input signals. Unlike
Thompson’s construction [1] [14] [20], here there is no
need for ε-transitions to link the machine components.
This is a consequence of the symbolic (ROBDD)
representation of the control points excitation function
which allows direct manipulation by the construction
rules for both the conventional and generalized regular
expression operators.

The construction is performed by the recursive
procedure Build() illustrated in Figure 4. At each level of
the recursion, the routine is passed a pointer to a node of
the production DAG and a Boolean function (BDD node
pointer) representing an excitation function f(X) passed
from other recursion levels. The routine returns a
Boolean function h(X) which is true on recognition of the
current sub-DAG. At leaf nodes, new control points are
allocated and their excitation functions are determined.
When a leaf node is traversed, if a prior allocated control
point exists with identical excitation, this prior control
point is used instead of allocating a new control point.
This is implemented using a memory function and is
illustrated by the SaveControlPoint() and
RecallControlPoint() calls in the pseudocode. At
intermediate nodes, left and right sub-machines are
composed via operations on the passed and returned
functions. The construction process is initiated by
allocating an initial control point x1 and calling
Build(n=top-level-node, f(X)=x1).

The time complexity of this algorithm depends on
the representation used for Boolean functions. Although
ROBDD representations can exhibit exponential growth
in general, in this algorithm, the variable support of the
excitation functions returned from the left and right sub-
machines is disjoint in all cases other than the exception
operator constructions. The BDD growth is additive



Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 9

under the variable ordering implied by the sequential
allocation of control point variables for these cases. As
well, each constructed excitation function typically has
very small variable support. Thus, for a DAG
representing a regular expression, the time complexity of
this construction is typically linear in the size of the
regular expression.

The construction for the closure operator case is
somewhat subtle. A temporary variable xtmp is allocated
and used in lieu of f(X) for construction of the operand
sub-machine. This is done because the complete
excitation function for the sub-machine depends on the
function g(X) returned from Build(), which is unknown
until the operand sub-machine is constructed. After
Build() returns with g(X), the function h(X) = f(X) +
g(X) is calculated. At this point, this function is

substituted for xtmp in every function in which xtmp
appears in the structure of the sub-machine. These
substitutions are nicely performed by composing BDD
functions e.g. f(x=g()) = ite(g(), fx, fx) [5] [6]. Note, a
unique xtmp variable must be used for each
simultaneously open closure in the construction process.

Special sequential operators called exception
operators are implemented. In an exception construction,
a handler machine M h is initiated when its associated
sub-machine M , once initiated, will enter a state in the
next cycle from which it can never accept. Note this is a
different notion than the sequential not operation in
which both the cases of “active but not presently
accepting” and “will never accept” are recognized. The
function e(X, Z) represents the excitation that triggers
M h. Consider the following equation for ex(X, Z), which
is used to calculate e(X, Z):

(EQ 1)

This equation describes the conditions in which M is
not in a state of recognition, g(X), and will contain no
active control points in the next cycle since each excitation
function is false. To calculate e(X) we also need
knowledge that M is active. This information can be
computed as summation of the present control points in M
and M ’s excitation. Thus e(X, Z) can be calculated as:

(EQ 2)

An alternative calculation for e(X, Z) can be derived
using an extra control point to denote that control was
passed to M . This reduces the necessary logic necessary
but introduces control points that do not purely represent
token recognition. To derive e(X, Z) in this case, let xh
represent this control point. Then,

(EQ 3)

The excitation of xh is fh(X, Z) and can be computed
as follows:

(EQ 4)

These exception operator constructions are valid for a
general sub-machine, including sub-machines containing
exception operators, and thus implement the notion of
exception scope described in Section 2.

The circuit illustrated in Figure 5. represents the
constructed intermediate machine for the example in
Figure 3. Note that x2 becomes valid after the machine is
initialized only if t1(Z) is seen on the inputs in the next

Input : production-DAG n, Context f(X)
Output : Context h(X)

Build (n, f(X)) {
if (n is a terminal function,

t j (Z)){
g(X, Z) = and(f(X), t j (Z));
x t = RecallControlPoint(g(X, Z));
if (x t  is not null) {

x i  = x t ;
} else {

x i  = new control point;
SaveControlPoint(x i , g(X, Z));

}
y i  = f i (X, Z) = g(X, Z)
h(X) = x i ;

} else if (n is a “concatenation”
node){

g(X) = Build(node->left, f(X));
h(X) = Build(node->right, g(X));

} else if (n is a “sequential and”
node){

g(X) = Build(n->left, f(X));
h(X) = Build(n->right, f(X));
h(X) = and(g(X),h(X));

} else if (n is a “sequential or”
node){

g(X) = Build(n->left, f(X));
h(X) = Build(n->right, f(X));
h(X) = or(g(X),h(X));

} else if (n is a “sequential not”
node){

g(X) = Build(n->right, f(X));
h(X) = not(g(X));

Figure 4. Build Algorithm.

ex X Z,( ) g X( ) f i X Z,( )
f i M∈
∏⋅=

e X Z,( ) xi
xi M∈
∑ f X( )+ 

  ex X Z,( )⋅=

e X Z,( ) xh f X( )+( ) ex X Z,( )⋅=

fh X Z,( ) xh f X( )+( ) ex X Z,( ) h X( )⋅⋅=



Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 10

cycle. The control points x3 and x5 correspond to repetitive
recognitions of t2(Z) required by the closure operator.

4.4  Action Conditions

In the Build() algorithm, the action execution
conditions cK(X)’s are constructed using the current h(X)
at production operator nodes with the respective
associated actions. The Moore output function Λ is
constructed in this process. The Mealy output function
can be created from the Moore output function. This is
done by substituting fi(X, Z) for all xi’s in ck(X) forming
a new ck(X, Z) by composing BDD functions. The Moore
and Mealy machines are not equivalent; actions are
triggered a cycle earlier in the Mealy format machine
than in the Moore machine. In the Clairvoyant system,
the designer chooses between the two forms of the action
conditions before writing the PBS specification.

The action execution conditions for the Moore and
Mealy implementations of the example design are as
follows:

• Moore:
action c1(X) = x7x6
action c2(X) = x7x6 + x4

• Mealy:
action c1(X, Z) = t2t3x1(x5 + x1)
action c2(X, Z) = t2t3x1(x5 + x1) + t2(x3 + x2)

4.5  Action Ordering and Resources

Actions are comprised of register transfer operations
destined for execution on data-paths associated with the
synthesized controller. Action precedence from the
production DAG is used to constrain the conceptual
ordering of these executions. However, the output HDL
must be carefully structured to allow subsequent
synthesis procedures to take full advantage of exclusive
control paths in the design to minimize resource usage
[36]. In conventional high-level synthesis, the exclusive
nature of the different control paths are usually apparent

from the input description HDL code. In Clairvoyant,
however, the control structure can be analyzed to find
which actions can execute simultaneously and thus
cannot share resources. The output HDL is structured to
indicate the exclusive use of the register transfers and to
meet the constraints of the partial ordering relations from
action precedence. Note, if actions are further broken into
operations, detailed scheduling could be performed using
data-flow precedence as well, however, discussions of
detailed scheduling in this context is the topic of future
research.

To determine if two actions can share resources, we
need to determine if states exist in the machine in which
both actions are simultaneously triggered. Since the
action execution conditions are functions of the control
points (state) and, in the Mealy case, the input interface
signals, we can use the symbolic Boolean representation
to determine if such states exist. Two actions ai and aj are
mutually exclusive if the following equation holds:

(EQ 5)

In this equation, R(X) is a characteristic function [9]
[22] [33] representing the set of possible deterministic
states reachable from the initial state of the intermediate
machine. This function mapping Bn → B is true if and
only if the input vector X ∈ Bn is a reachable state.

Assessing action conflicts between all pairs of
actions is not sufficient, however, to determine the
complete action conflict information. For example,
consider three action conditions all executable on a
common type of operator resource. If each pair of actions
is used simultaneously in some state, but all three never
occur together, only 2 data-path resources are needed
even though no pair of actions are exclusive. This sharing
cannot be predicted from a pair-wise analysis but is
correctly handled in the Clairvoyant model which
represents all action conflict information in a
characteristic function A(Q). Q is a vector of variables
(q1, q2, ..., qm) corresponding to the set of actions (a1, a2,
..., am). A(Q) is true if there is a state in which the set of
actions corresponding to true variables qi occur
simultaneously and thus can’t be shared. A(Q) is
computed as follows:

(EQ 6)

The existential quantification (smoothing) [9] [22]
[33] operation above is defined as:

(EQ 7)

t1(Z)

t3(Z)

t2(Z)
t2(Z)

t2(Z)

x2

x1

x3 x4

x5 x6

x7

Figure 5. Example Circuit.

ci X Z,( )c j X Z,( )R X( ) 0=

A Q( ) Z X,( ) ci X Z,( ) qi≡( ) R X( )⋅
i 1=
m∏( )∃=

X( ) f∃ x1( ) x2( )… xn( ) f∃∃∃= x( ) f∃ f x f x+=



Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 11

The characteristic function A(Q) represents the
image [9] [33] of the reachable state set R(X) projected
onto the space Bm through the action condition functions.

To see how A(Q) can be used to construct the output
control structure, consider A(Q) as a BDD. We can
impose an order on the variables Q that minimizes the
BDD size and that is compatible with the partial order
required by the precedence relations. It is very likely that
the actions naturally occur in independent sets which
have no state overlap with other such sets. If the variables
are ordered into such sets, the canonical nature of the
ROBDD representation forces all the paths from the
previous set into a unique node at the start variable of the
next set. Then, since the BDD can be interpreted as a
network of if-then-else constructs, we can construct a
feasible control structure for the output using if
statements and procedures which is no more complex
than the BDD representation of A(Q) and correctly
represents all possible resource sharing of the actions.
This can be done in time proportional to the size of A(Q),
even though the number of complete paths through the
entire control structure may grow exponentially fast.
Alternatively, A(Q) can be used to generate a a table of
overlaps for pair-wise exclusion or other approximate
analyses. Conflict analysis utilizing A(Q) is used to
generate the output VHDL coded to maximize the
effectiveness of subsequent high level synthesis
allocation and resource sharing algorithms in processing
the generated VHDL code.

4.6  Reachable State Analysis

Clairvoyant is equipped to perform a reachable state
analysis on the constructed intermediate machine to
compute the set of possible deterministic states reachable
from the initial reset state of the intermediate machine:
x1x2x3x4...xn. Reachable state analysis is not required
for the synthesis of the intermediate machine, but it is
useful in several ways. In particular, knowledge of the
reachable states is needed for the exact construction of
A(Q) shown previously. Reachable state information can
also be used to simplify portions of the intermediate
machine, for example, simplifying (EQ 1). The essential
use is to describe all deterministic states of the machine.
All state bit combinations not in this set are not states and
therefore specify don’t care conditions for any of the
functions depending on the control points.

The computation method is based on the recent
implicit fixed-point iteration techniques [9] [22] [33]
with custom heuristics based on properties of the
intermediate machine. Even using these techniques,
calculation of the set of reachable states is usually far

more time consuming than the construction of the
intermediate machine.

Recall that the set of reachable states is used in
calculating the action relation. An approximate action
conflict characteristic function can be calculated
assuming all states are reachable in the event the
reachable state computation is not invoked. For the
Mealy model machines, this approximation is useful
because particular actions are often strongly correlated to
the current inputs. For example, in the mouse example
described earlier, the increment and decrement actions
are selected by the level of a single input, so they are
clearly exclusive.

4.7  Machine Locality Property

A useful property of the intermediate machine
representation is that any node of the production DAG
can be directly related to specific portions of the
intermediate machine representation, and each control
point and excitation function can be related back to
specific productions and compositions. Specifically, each
production and each composition node is associated with
a set of closed intervals [a, b] of control points created on
each call to build() for the node. A new interval of control
points is created each time the production is re-used since
control points are allocated sequentially. This property is
important for debugging, high-level optimization, and
design information tracking. It can be used to provide
links between the specification and structure similar to
the CORAL II approach [4]. For example, the example
productions in Figure 2 can be related to the circuit in
Figure 5 as shown in Table 2.

4.8  Implementation Details

Clairvoyant synthesis system was developed in C++
and is comprised of approximately 7600 total lines. Of
this, 3160 lines represents reusable classes including a
1485 line BDD manipulation package. The output of the
Clairvoyant PBS compiler is VHDL code describing the
synthesized machine architecture. This VHDL is
composed of structural elements that describe the logic
structure of the controller, and processes that implement
the register transfers and data-path logic required by the

Table 2: PBS ↔ Intermediate Machine Linkage

sequential
production control points interval(s)

p1 {x2, x3, x4, x5, x6, x7} [2,7]

p2 {x2, x3, x4} [2,4]

p3 {x5, x7} [5,7]

p4 {x3, x4, x5, x6} [3,4] [5,6]



Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 12

actions. The structure of the VHDL action processes
satisfy the partial ordering required by action precedence.

The tool uses BDDs for the symbolic Boolean
manipulations. During the synthesis, BDD variables are
allocated dynamically as the machine construction
proceeds. This construction process also naturally creates
a reasonable heuristic variable ordering based on circuit
topology arguments [25]. BDD variables are grouped
into classes based on use and are interleaved. The
following three-way ordering is used: z1 < x1 < y1 < z2 <
x2 < y2 < z3 < x3 < y3 ... The yi’s represent an additional
set of state variables used by the reachable state analysis,
and in computing the action conflict relation A(Q).

In the Clairvoyant system, after the intermediate
machine is constructed, redundant registers may exist.
These arise for several reasons. Boundary registers with
lack of fan-out may exist if action conditions are
converted from Moore to Mealy form. Registers with
identical excitation may exist that were not filtered by the
memory function described in Section 4.3. This is due to
the existence of temporary variables allocated in the
construction process preventing identification. Finally, if
the reachable state analysis is invoked, additional
redundant registers may be identified using techniques
similar to those described in [28]. Post-processing steps
manipulate the intermediate machine to ensure that all
registers (control points) identified as reductant will be
eliminated by later logic synthesis. For example, after
logic synthesis, the registers x4, and x6 will be removed
(equivalent fan-in to x3, x5). If Mealy action conditions
are used, register x7 (output unused) will be removed as
well, in the circuit in Figure 5.

5.0  Experimental Results

5.1  Examples

Several example designs were specified using
Production-Based Specifications. These designs and their
characteristics are tabulated in Table 3. The number of

inputs includes the clock signal and the reset signal. Each
design was verified by simulation of the VHDL output
from Clairvoyant. The several mouse designs are
different versions of the 1-D quadrature decoder machine
described in the introduction of this paper. The
“mouse(a)” design is identical to this earlier example.
The “mouse(b)” design recognizes a complete quadrature
sequence as an event and so is a more restrictive version
although both versions correctly interpret quadrature
data. The “xymouse” designs are 2-dimensional versions
of the respective 1-D mouse decoder examples. The
xymouse designs are specified as a single set of
productions using the expressive power of the Boolean
representation in the language. Using the early version of
the PBS language [29], the xymouse designs would
require a symbolic alphabet consisting of the cartesian
product of the 1-D mouse alphabets, and would be far
more difficult to express. Using arbitrary Boolean
functions as tokens allows representation of enormous
symbolic alphabets, and makes specification of realistic
designs possible.

The “ count0” example is a design that counts
sequential zero’s in a valid input frame format. This
example is based on the procedural VHDL design in [7].
The “qr42” design is a handshake conversion protocol.
This design is a standard asynchronous example specified
in a PBS as a synchronous machine. This design connects
two interfaces together, one side operating with two-
phase (non-return-to-zero) signaling and the other with
four-phase (return-to-zero) signaling. This machine uses
of the “&&” operator for synchronization. The “i8251ar”
example is the asynchronous receiver protocol in the
i8251 high-level synthesis benchmark [2]. This example
uses the Boolean qualification operators in the
specification of the different modes of operation. This
design also uses an exception operator to reset the
machine if invalid stimulus is encountered. The “midi”
design is a large design example. It is an interface
controller which interprets the MIDI [26] music protocol
for a digital synthesizer chip controller. The specification
of this design also includes an exception operator to
restart the machine in case of invalid input sequences.
The “mismatch” example is the pathological regular
expression described in [18] which detects mismatches
between first and the last symbols in the input sequence.
This example is expected to produce very large numbers
of deterministic states.

5.2  Results

Results for compiling the example designs to the
intermediate machine form are illustrated in Table 4. In
this table, the number of control points in the

Table 3: Design Characteristics

design productions actions inputs outputs
mouse(a) 4 2 4 8

xymouse(a) 7 4 6 16

mouse(b) 8 2 4 8

xymouse(b) 15 4 6 16

count0 6 3 3 4

qr42 4 3 4 2

i8251ar 16 4 8 10

midi 30 12 3 16

mismatch 7 1 4 1



Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 13

intermediate machine representation after construction
are listed. Also listed in Table 4 are the construction
times in CPU seconds (SPARC compatible Solbourne

Series 5e/906 machine) and construction complexity
measured in terms of the numbers of calls to the primitive
BDD function ite() for the entire construction.

Table 5 shows the results of the reachable state
analysis. The number of reachable states represent the
total number of unique deterministic states in the
intermediate machine representation of the controller.
The diameter measures the shortest path from the initial
state of the controller to the furthest reachable state. This
number is directly related to the number of fixed point
iterations to compute the reachable states. The ite call
numbers reflect the total number of calls to ite() during
the reachable state analysis. Times are CPU seconds
(Solbourne Series 5e/906 machine).

Action conflict data is given in Table 6. In this table,
“conflict states” refers to the number of points in the
Boolean space Bm covered by A(Q) in each of the
designs. This represents the number of combinations of
possible simultaneous action execution. For example, in
the mouse designs three states are possible for its two
actions. Neither action can execute or each action can
execute individually, however, both can never execute
simultaneously. The table also indicates the number of

BDD nodes in the function A(Q) and the time (CPU
seconds for Solbourne 5e/906) and number ite calls
recorded to construct A(Q).

The intermediate machine is used in Clairvoyant for
representation, analysis, and optimization of the design.
It is also utilized in derivation of a circuit realization of
the design’s controller. This is advantageous because the
construction naturally creates machine implementations
with very small excitation functions. In practice, the
transition function to calculate a given control point tends
to depend on a very small number of other control points.
Results showing the size of the average and maximum
literal support for the control points is tabulated in Table
7. This table reflects the variable support of the control
point excitation functions (the fi(X, Z)’s in ∆) and the
action conditions (the ci(X, Z)’s in Λ) after redundant
registers are removed. Average and maximum numbers
are reported in the table. The relatively large maximum
support for the i8251ar and midi example is a
consequence of the exception operators in these designs.

Table 4: Intermediate Machine Synthesis

design control points build time ite calls
mouse(a) 8 0.08 306

xymouse(a) 15 0.12 1,047

mouse(b) 14 0.08 688

xymouse(b) 26 0.17 2,136

count0 7 0.10 1,004

qr42 21 0.19 3,421

i8251ar 14 0.34 10,004

midi 182 4.09 112,545

mismatch 69 0.28 7,465

Table 5: Reachable State Analysis

design states depth sec ite calls
mouse(a) 8 2 0.23 8,761

xymouse(a) 50 2 1.52 64,396

mouse(b) 14 4 0.71 28,863

xymouse(b) 170 4 10.72 408,505

count0 5 3 0.17 5,663

qr42 62 12 3.49 126,158

i8251ar 17 12 3.17 114,765

midi 166 40 1,791 37,331,185

mismatch 8062 16 5,191 172,797,476

Table 6: Action Conflict Data

design
action

s
conflict

s
A(Q)
nodes sec ite calls

mouse(a) 2 3 2 0.04 1,075

xymouse(a) 4 9 4 0.35 7,531

mouse(b) 2 3 2 0.06 1,701

xymouse(b) 4 9 4 0.9 18,869

count0 3 3 4 0.03 825

qr42 3 3 2 0.39 9,203

i8251ar 4 6 5 0.38 8,885

midi 12 11 26 49.0 676,379

mismatch 1 2 0 2.21 53,087

Table 7: Variable Support of Intermediate
Machine Functions

design

Variable Support

∆ Λ

avg. max. avg. max.
mouse(a) 2 4 4 4

xymouse(a) 2 4 4 4

mouse(b) 3 4 4 4

xymouse(b) 3 4 4 4

count0 3 5 4 5

qr42 3 6 11 18

i8251ar 5 20 7 12

midi 3 167 11 27

mismatch 2 4 10 10



Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 14

Comparisons of the encodings present in the
Clairvoyant implementations of the example designs to
conventional state assignment techniques are presented in
Tables 8a and 8b.These comparisons were performed as
follows. BLIF files describing the controller portion of
the designs were generated from the intermediate
machine representation by the Clairvoyant system. These
BLIF files were read into the SIS sequential and logic
synthesis system [32] for analysis. Comparisons were
made between the SIS circuit network optimizations of
the Clairvoyant implementations and those generated by
extracting the State Transition Graphs (STGs) and
performing state assignment. Three state assignment
algorithms were used in the comparisons: NOVA [37],
JEDI [22], and one hot. These algorithms were invoked
from within SIS. Table 8a shows the comparison of the
Clairvoyant encodings to state assignments of the
extracted STG. Table 8b shows the same comparisons,
however, the extracted STGs were state minimized
before state assignment. In these comparisons, standard
SIS minimization scripts were invoked for the network
optimization..

In the tables, “L” refers to the number of literals in
the factored form of the optimized technology
independent network. A measure for performance
comparison of the encodings was obtained by mapping
the optimized network to two input logic gates and
recording the maximum levels of logic required. These
numbers are listed in the columns labeled “D”. The
number of required registers for each of the encodings is
also listed in the table in columns labeled “R”. The STG
for the mismatch example could not be extracted due to
the large number of deterministic states. State
minimization for the midi STG failed due to the
example’s size. Note, in the extraction of the STGs from
the networks, not all of the network reachable states are
significant due to the presence of redundant registers
which don’t fan out. This is why the number of STG
states differs from the number reachable states in the
intermediate form. The SIS command “xdc” reports the
number reachable states of the network which are
identical to those listed in Table 5.

Results for further VHDL and logic synthesis of the
output RTL implementations generated by the system for
each of the example designs is shown in Table 9. Gate
level circuit implementations of the designs were
synthesized using the Synopsys VHDL and logic
synthesis tools. In these results, no additional sequential
optimizations such as state assignment, re-timing, or re-
encoding were invoked. The logic synthesis was directed
to optimize for speed (critical path delay) and the
synthesized circuits were optimized for and mapped to
LSI 10k gate array library cells [24]. The data for the
path delay (in nS), relative area, total number of LSI 10k
cells, and total number of flip flops is given. These
numbers include both the control as well as the data-path
portions of the designs. The relative area numbers are the
area estimates based on LSI 10k library cells returned by
the synthesis tool.

Some conclusions can be drawn from these results.
In comparing the mouse machines with the xymouse
machines, the number of productions and control points
roughly doubles while the state space of the machine is

Table 8a: Encoding Comparison #1

design
Clairvoyant

Extract STG, State Assign

state
nova jedi one hot

L D R L D R L D L D

mousea 18 5 4 5 21 7 3 19 8 26 4

xymousea 36 5 8 25 100 29 5 99 21 168 14

mouseb 36 5 10 11 42 19 4 35 9 61 10

xymouseb 72 5 20 121 1948 33 7 1844 67 943 18

count0 16 5 4 5 12 8 3 16 6 16 6

qr42 77 6 21 62 359 68 6 317 54 382 19

i8251ar 84 16 14 17 74 16 5 112 25 95 12

midi 604 22 166 166 743 81 8 1098 89 705 23

mismatch 114 6 62 unable

Table 8b: Encoding Comparison #2

design
Clairvoyant

Extract STG, State Minimize, State
Assign

state
nova jedi one hot

L D R L D R L D L D

mousea 18 5 4 3 10 4 2 10 4 10 3

xymousea 36 5 8 9 46 12 4 35 8 59 4

mouseb 36 5 10 7 29 10 3 26 16 41 8

xymouseb 72 5 20 49 528 65 6 515 50 636 22

count0 16 5 4 4 12 5 2 11 5 13 6

qr42 77 6 21 16 54 20 4 84 28 121 12

i8251ar 84 16 14 14 71 24 4 75 14 95 11

midi 604 22 166
unable

mismatch 114 6 62

Table 8b: Encoding Comparison #2

design
Clairvoyant

Extract STG, State Minimize, State
Assign

state
nova jedi one hot

L D R L D R L D L D



Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 15

squared. It is clear that the machine construction
complexity is not proportional to the growth of the
machine’s state space as would be expected from
conventional algorithms. The execution speed of the two
designs (which includes the data-path delay as well as the
control delay) is nearly the same (the Clairvoyant design
for the xy-version consists essentially of two of the single
machines in parallel thus the delay differences are
artifacts of the further synthesis). The midi design was
much more complicated in its behavior and included an
exception handling routine so that any valid data
imbedded in arbitrary invalid data would be correctly
interpreted. Considering this, the design’s cycle time was
an impressive 13.96 nS. Also, note that this design
required only 30 productions for the entire specification,
which fit easily on 2 pages of text. Finally, the
pathological mismatch design had 8062 deterministic
states, but was constructed in 0.28 CPU seconds,
showing the relative independence of the construction
time from the size of the deterministic state space. Table
6 shows that our optimal technique for generation of
action exclusion information is both feasible and is
simple to map into the output VHDL, as shown by the
very small ROBDD representations representing the
functions A(Q). Use of this information is critical in
allowing subsequent logic optimization to minimize the
required resources.

It is of interest to note the relatively high
performance of the designs derived directly from the
intermediate form. These designs typically have more
registers than conventional designs but generally have
very simple excitation logic between the control points.
This is due to the direct use of the specification in
constructing the logic and selecting the deterministic
codes. In effect, the control points provide a set of signals
from which the excitation functions can be derived with
very small literal support. These considerations are
demonstrated by the differences in logic complexity (as
reflected by factored literal counts) and in controller logic
delay (as reflected by the mapped logic depth) shown for

Clairvoyant designs and designs created by symbolic
state extraction, state assignment, minimization and
identical synthesis. In particular, in the small state
machines with little parallelism: mouse(a), mouse(b),
i8251ar, and count0, the Clairvoyant designs are
comparable to the state assigned designs. However, for
larger and more parallel cases such as xymouse and qr42,
the quality of the distributed encoding becomes much
more impressive. Note that even when the minimal
machine encodings have comparable literal counts, the
logic depth (and hence the controller delay) of these
machines is greater. In the typical case, the logic depth of
Clairvoyant was smaller than any of the other encodings,
state minimized or not. Finally, it is important to note that
the mismatch design complexity is relatively simple even
though it could not be synthesized at all using state-graph
based techniques.

The register costs for the Clairvoyant designs must
be measured relative to the implementation technology.
The encodings are ideal for FPGA implementation where
registers are virtually free since they typically occur in
every FPGA cell. In these designs, the small average
literal support and logic depth should allow efficient,
high performance designs. In other technologies where
high performance is required, these encodings may be
desirable, regardless of the register costs.

6.0  Conclusions and Future Work

We have presented a new high-level synthesis system
directed toward the synthesis of complex designs that are
specified concisely using hierarchical grammar-like
decomposition of their behavior. These specifications are
of practical use in synthesis problems that are control
dominated or require complex concurrent protocols. The
use of productions enables the specification to span many
levels of complexity, and to describe what actions should
be taken in each case. Non-determinism in the language
frees the designer from the onerous task of determining
the precise behavior required of each deterministic state.
Instead, the designer needs only to specify the kinds of
behaviors expected and what actions should take place.
The direct use of Boolean functions in both the token
recognition and production qualification processes
greatly expand the expressability of design specifications
in this format. The resulting specifications are very
concise and allow the designer to specify the design at
high levels of abstraction in which the detailed
interaction of the sub-machines is automatically derived.
The system synthesizes a hardware architecture with
VHDL register-transfer output allowing system assembly

Table 9: VHDL and Logic Synthesis Results

design delay area #cells total #FF
mouse(a) 6.43 277 61 12

xymouse(a) 7.15 514 123 24

mouse(b) 5.98 324 83 18

xymouse(b) 6.56 601 159 36

count0 4.74 116 41 7

qr42 4.65 235 77 21

i8251ar 6.82 365 138 22

midi 13.96 1,927 532 194

mismatch 3.65 656 175 62



Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 16

with VHDL modules from many sourcesand use of
commercially available tools.

The Clairvoyant system implementation makes
extensive use of symbolic constructiontechniquesto
perform this synthesis.Thesetechniquesinclude a new
direct machine construction algorithm which is not
directly impactedby the size of the deterministicstate
spaceandhenceis applicableto very large designs.The
constructedintermediatemachineform is a convenient
representationbasefor further analysisandoptimization
using both classical and more recent symbolic
techniques.With little additionaloptimization,this form
yields sequentialmachineswith superior performance
characteristics.Techniques for evaluating resources
conflictsfor designsin this representationhave alsobeen
described.

In future work, further optimization of the
intermediatemachineto reducethe numberof registers
without reducingthehigh level of performanceachieved
in the design will be studied and applied to the
Clairvoyant synthesis tool. Additional studies and
possiblefuture work includesoperationschedulingand
optimization obeying the controller and protocol
constraintsas well as optimizations to simplify the
productions.

Acknowledgments

The authorswish to acknowledgeEmil Girczyc and
Margaret Marek-Sadowska for helpful suggestionsand
discussion.Theauthorsalsothankthereviewersfor their
constructive feedback.This researchwasmadepossible
throughthe generoussupportof Synopsys,Inc. and the
University of California MICRO program— #92-019.

References

1. A. V. Aho, R. Sethi,andJ. D. Ullman, Compil-
ers Principles, Techniques, and Tools, Reading:
Addison-Wesley 1988.

2. Benchmarks of the Fourth International Workshop
on High-Level Synthesis, 1989.

3. G. Berry, “A Hardware Implementationof Pure
ESTEREL,” Sadhana, pp. 95-130,Vol. 17, Part 1,
March 1992.

4. R. L. Blackburn, D. E. Thomas,andP. M. Koenig,
“CORAL II: Linking Behavior and Structurein an
IC DesignSystem,” proc. 25th DAC, pp. 529-535,
June 1988.

5. K. S. Brace,R. L. Rudell, andR. E. Bryant, “Effi-
cientImplementationof aBDD Package,” proc.27th
DAC, pp. 40-45, June 1990.

6. R. E. Bryant,“GraphBasedAlgorithmsfor Boolean
Function Manipulation,” IEEE Transactions on
Computers, pp. 677-691, August 1986.

7. S. Carlson, Introduction to HDL-Based Design
Using VHDL, Mountain View: Synopsys, 1990.

8. W. F. Clocksin and C. S. Mellish, Programming in
PROLOG, SecondEdition, Berlin: Springer-Verlag,
1984.

9. O. CoudertandJ. C. Madre,“A Unified Framework
for the Formal Verification of SequentialCircuits,”
proc. ICCAD-90, pp. 126-129, November 1990.

10. R. W. Floyd andJ. D. Ullman, “The Compilationof
Regular Expressionsinto IntegratedCircuits,” Jour-
nal of the ACM, pp. 603-622,Vol. 29, No. 3, July
1982.

11. N. Halbwachs,Syncronous Programming of Reac-
tive Systems, Dordrecht: Kluwer, 1993.

12. D. Harel, “Statecharts:A Visual Approachto Com-
plex Systems,” Scienceof ComputerProgramming,
vol. 8, pp. 231-274, 1987.

13. D. Harel, et. al., “STATEMATE: A Working Envi-
ronmentfor the Developmentof Complex Reactive
Systems,” proc. InternationalConferenceSoftware
Engineering, pp. 396-406, 1988.

14. J. E. Hopcroft and J. D. Ullman, Introduction to
Automata Theory, Languages, and Computation,
Reading: Addison Wesley 1986.

15. IEEE Standard VHDL Language Reference Manual.
IEEE Std. 1076-1987.



Clairvoyant: A Synthesis System for Production-Based Specification IEEE Transactions on VLSI Systems 17

16. M. A. Jackson,“Constructive Methodsof Program
Design,” Lecture Notes in Computer Science, Vol.
44, Springer-Verlag, pp. 236-262, 1976.

17. S. C. Johnson,“Yacc:Yet AnotherCompilerCom-
piler,” Computing Science Technical Report 32,
AT&T Bell Laboratories, Murray Hill, NJ 1975.

18. A. R. Karlin, H. W. Trickey, and J. D. Ullman,
“Experiencewith a Regular ExpressionCompiler,”
proc. ICCD, pp. 656-665, 1983.

19. B. W. KernighanandD. M. Ritchie,The C Program-
ming Language. SecondEdition, Englewood Cliffs:
Prentice Hall 1988.

20. Z. Kohavi, Switching and Finite Automata, New
York: McGraw-Hill, 1978.

21. M. E. Lesk, “Lex -A Lexical Analyzer Generator,”
Computing Science Technical Report 39, AT&T
Bell Laboratories, Murray Hill, NJ 1975.

22. B. Lin, Synthesis of VLSI Designs with Symbolic
Techniques, Ph.D. Thesis,University of California,
Berkeley, UCB/ERL M91/105, November 1991.

23. J.Lathi, M. Sipola,andJ.Kivelä,“SADE: A Graph-
ical Tool for VHDL-basedSystemsAnalysis,” proc.
ICCAD-91, pp. 262-265, November 1991.

24. LSI Logic Corporation, 1.5-Micron Compacted
Array Technology, Databook, July 1987.

25. S.Malik, A. R. Wang,R. K. Brayton,andA. Sangio-
vanni-Vincetelli, “Logic Verification Using Binary
Decision Diagramsin a Logic SynthesisEnviron-
ment,” proc. ICCAD-88, pp. 6-9, November 1988.

26. MIDI Specification Version 1.0, InternationalMIDI
Association, 1983.

27. S. Narayan,F. Vahid, and D. D. Gajski, “System
Specificationwith the SpecChartsLanguage,” proc.
ICCAD-91, pp. 266-269, November 1991.

28. H. Savoj, H. Touati,andR. K. Brayton.“Extracting
Local Don’t Caresfor Network Optimization,” proc.
ICCAD-91, pp. 514-517, November 1991.

29. A. Seawright and F. Brewer, “Synthesisfrom Pro-
duction-BasedSpecifications,” proc. 29th DAC, pp.
194-199, June 1992.

30. A. Seawright andF. Brewer, PBS 2.x Users Guide,
ECE Tech. Report #92-21, UCSB, October 1992.

31. A. Seawright and F. Brewer, “High-level Symbolic
Construction Techniques for High Performance
SequentialSynthesis,” proc. of the 30th DAC, pp.
424-428, June 1993.

32. E. M. Sentovich, K. J. Singh,L. Lavagno,C. Moon,
R. Murgai, A. Saldanha,H. Savoj, P. R. Stephan,R.
K. Brayton, and A. Sangiovanni-Vincentelli, “SIS:
A Systemfor SequentialCircuit Synthesis,” Elec-
tronics Research Laboratory Memorandum No.
UCB/ERL M92/41, May 1992.

33. H. J.Touati,H. Savoj, B. Lin, R. K. Brayton,andA.
Sangiovanni-Vincentelli, “Implicit State Enumera-
tion of Finite StateMachinesusing BDD’s,” proc.
ICCAD-90 pp. 130-133, November 1990.

34. H. W. Tricky, “Good Layoutsfor PatternRecogniz-
ers,” IEEE Transactionson Computers,pp.514-520,
Vol c-31, No. 6, June 1982.

35. J.D. Ullman,Computational Aspects of VLSI, Rock-
ville: Computer Science Press, 1984.

36. K. WakabayashiandH. Tanaka,“Global Scheduling
Independentof Comtrol DependenciesBased on
Condition Vectors,” proc. 29th DAC, pp. 112-115,
June 1992.

37. T. Villa, T. andA. Sangiovanni-Vincentelli,“NOVA:
StateAssignmentof Finte StateMachinesfor Opti-
malTwo-Level Logic Implementation,” IEEETrans-
actionson Computer-Aided Design,vol. 9. pp. 905-
924. September 1990.

38. W. Wolf et. al., “The PrincetonUniversity Behav-
ioral SynthesisSystem,” proc. 29th DAC, pp. 182-
187, June 1992.


	Clairvoyant: A Synthesis System for Production-Based Specification
	Andrew Seawright and Forrest Brewer
	(andy@synopsys.com, forrest@ece.ucsb.edu)
	Abstract
	1.0 Introduction
	1. that are naturally specified with the use of a grammar-based decomposition of the design’s beh...
	2. that are naturally described as hierarchical compositions of interacting sub-machines. These m...

	2.0 The Production-Based Specification
	Table 1: Composition Operators
	2.1 Execution Model
	2.2 Operators
	3.0 Related Work
	4.0 Clairvoyant Implementation
	4.1 Design Representation
	4.2 Intermediate Machine Representation
	4.3 Intermediate Machine Construction
	(EQ 1)
	(EQ 2)
	(EQ 3)
	(EQ 4)

	4.4 Action Conditions
	4.5 Action Ordering and Resources
	(EQ 5)
	(EQ 6)
	(EQ 7)

	4.6 Reachable State Analysis
	4.7 Machine Locality Property


	Table 2: PBS ´ Intermediate Machine Linkage
	4.8 Implementation Details
	5.0 Experimental Results
	5.1 Examples
	5.2 Results


	Table 6: Action Conflict Data
	Table 7: Variable Support of Intermediate Machine Functions
	Table 8a: Encoding Comparison #1
	Table 8b: Encoding Comparison #2
	6.0 Conclusions and Future Work
	Acknowledgments
	References
	1. A. V. Aho, R. Sethi, and J. D. Ullman, Compilers Principles, Techniques, and Tools, Reading: A...
	2. Benchmarks of the Fourth International Workshop on High-Level Synthesis, 1989.
	3. G. Berry, “A Hardware Implementation of Pure ESTEREL,” Sadhana, pp. 95-130, Vol. 17, Part 1, M...
	4. R. L. Blackburn, D. E. Thomas, and P. M. Koenig, “CORAL II: Linking Behavior and Structure in ...
	5. K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient Implementation of a BDD Package,” proc...
	6. R. E. Bryant, “Graph Based Algorithms for Boolean Function Manipulation,” IEEE Transactions on...
	7. S. Carlson, Introduction to HDL-Based Design Using VHDL, Mountain View: Synopsys, 1990.
	8. W. F. Clocksin and C. S. Mellish, Programming in PROLOG, Second Edition, Berlin: Springer-Verl...
	9. O. Coudert and J. C. Madre, “A Unified Framework for the Formal Verification of Sequential Cir...
	10. R. W. Floyd and J. D. Ullman, “The Compilation of Regular Expressions into Integrated Circuit...
	11. N. Halbwachs, Syncronous Programming of Reactive Systems, Dordrecht: Kluwer, 1993.
	12. D. Harel, “Statecharts: A Visual Approach to Complex Systems,” Science of Computer Programmin...
	13. D. Harel, et. al., “STATEMATE: A Working Environment for the Development of Complex Reactive ...
	14. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation,...
	15. IEEE Standard VHDL Language Reference Manual. IEEE Std. 1076-1987.
	16. M. A. Jackson, “Constructive Methods of Program Design,” Lecture Notes in Computer Science, V...
	17. S. C. Johnson, “Yacc: Yet Another Compiler Compiler,” Computing Science Technical Report 32, ...
	18. A. R. Karlin, H. W. Trickey, and J. D. Ullman, “Experience with a Regular Expression Compiler...
	19. B. W. Kernighan and D. M. Ritchie, The C Programming Language. Second Edition, Englewood Clif...
	20. Z. Kohavi, Switching and Finite Automata, New York: McGraw-Hill, 1978.
	21. M. E. Lesk, “Lex -A Lexical Analyzer Generator,” Computing Science Technical Report 39, AT&T ...
	22. B. Lin, Synthesis of VLSI Designs with Symbolic Techniques, Ph.D. Thesis, University of Calif...
	23. J. Lathi, M. Sipola, and J. Kivelä, “SADE: A Graphical Tool for VHDL-based Systems Analysis,”...
	24. LSI Logic Corporation, 1.5-Micron Compacted Array Technology, Databook, July 1987.
	25. S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincetelli, “Logic Verification Using...
	26. MIDI Specification Version 1.0, International MIDI Association, 1983.
	27. S. Narayan, F. Vahid, and D. D. Gajski, “System Specification with the SpecCharts Language,” ...
	28. H. Savoj, H. Touati, and R. K. Brayton. “Extracting Local Don’t Cares for Network Optimizatio...
	29. A. Seawright and F. Brewer, “Synthesis from Production-Based Specifications,” proc. 29th DAC,...
	30. A. Seawright and F. Brewer, PBS 2.x Users Guide, ECE Tech. Report #92-21, UCSB, October 1992.
	31. A. Seawright and F. Brewer, “High-level Symbolic Construction Techniques for High Performance...
	32. E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. St...
	33. H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Implicit Stat...
	34. H. W. Tricky, “Good Layouts for Pattern Recognizers,” IEEE Transactions on Computers, pp. 514...
	35. J. D. Ullman, Computational Aspects of VLSI, Rockville: Computer Science Press, 1984.
	36. K. Wakabayashi and H. Tanaka, “Global Scheduling Independent of Comtrol Dependencies Based on...
	37. T. Villa, T. and A. Sangiovanni-Vincentelli, “NOVA: State Assignment of Finte State Machines ...
	38. W. Wolf et. al., “The Princeton University Behavioral Synthesis System,” proc. 29th DAC, pp. ...









