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by
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Abstract

This dissertation presents a set of techniques for representing the high-level b

ior of a digital subsystem as a collection of nondeterministic finite automata, N

Desired behavioral and implementation dynamics: dependencies, repet

bounded resources, sequential character, and control state, can also be sim

modeled. All possible system execution sequences, obeying imposed constr

are encapsulated in a composed NFA. Technology similar to that used in sym

model checking enables implicit exploration and extraction of best-possible ex

tion sequences. This provides a very general, systematic procedure to pe

exact high-level synthesis of cyclic, control-dominated behaviors constraine

arbitrary sequential constraints. This dissertation further demonstrates that

techniques are scalable to practical problem sizes and complexities. Exact sch

ing solutions are constructed for a variety of academic and industrial proble

including a pipelined RISC processor. The ability to represent and sche

sequential models with hundreds of tasks and one-half million control cases

stantially raises the bar as to what is believed possible for exact scheduling mo

Keywords: Scheduling; Binary Decision Diagrams; High-Level Synthes

Nondeterminism; Automata; Symbolic Model.
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Chapter 1

Introduction

Webster’s dictionary defines the verbscheduleas “to appoint, assign, or
designate for a fixed time.” Scheduling is an integral step during the design
digital subsystem. Throughout the manual design process, an engineer de
whenoperations, transactions and other events must take place. Such sche
decisions are constrained by hardware resource availability, operand depend
and control decisions. Also, interface protocols, either devised to simp
scheduling or resulting from implementation constraints, must be observed du
scheduling. An engineer often usesad hocmethods, such as timing diagrams an
simulation models, to reason through the scheduling process. The goal is to c
a correct implementation that meets design objectives such as minimum exec
latency, reduced silicon area and low power.

This dissertation presents automated scheduling techniques useful in d
subsystem design. With these techniques, a designer need only specify d
behavior. Automated scheduling then assigns behavioral events (computa
memory access, operand communication, etc.) to specific time-steps. This re
a designer from manual scheduling and shortens the design cycle. Because
reduced work requirement, more emphasis may be placed on design explor
Ideally, automated scheduling leverages a designer’s insight in tandem w
machine’s computational ability to synthesize superior schedules. The end res
substantial automation of the design process.

1.1  The Scope of Scheduling
Characteristics from a RISC processor design are used to delineate the sc

scheduling for this dissertation. Figure 1.1 shows a traditional view of a sin
issue four-stage pipelined RISC processor [55] and some low-level tasks req
to implement an instruction. The first stage fetches the instruction and increm
the program counter. The second stage decodes the instruction and ac
1
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register file data. Next, the third stage performs a particular ALU computat
Finally, the fourth stage writes a result back to the register file. When engineer
RISC processor, the designer must schedule1 when such low-level tasks
(instruction fetch, write back, etc.) occur so that any and every proce
instruction may correctly execute.

The implementation in figure 1.1 observesoperand dependencies. A
particular task, such as the write back, may execute only if the correct data e
It would be incorrect to place the write back in a pipe stage before the A
computation as the write back requires the result of the ALU computat
Scheduling must observe operand dependencies.

There is considerablecontrol-dependent behaviorin this RISC example. For
instance, depending on the decoded instruction, an integer or a floating-
computation may be required. In other cases, such as a jump instruction
computation and write back are necessary. In fact, for a RISC example sche
in chapter 6, there are over 500,000 distinguishable control-dependent exec
sequences! Scheduling must correctly consider every control case.

It is naive to assume that an instruction fetch always completes in a si
clock cycle. Real implementations must communicate to a memory hierarchy
contend with a memory-fetch protocol. For instance, an instruction fetch m
complete in a single clock cycle if a cache hit occurs but require several c
cycles if a cache miss occurs. All digital subsystems exhibit some sor
sequential behavior. In fact, for large digital subsystems, this sequential beh
may be complex and is often simplified and understood through use of proto

1. This isnotscheduling to find good orders of assembly instructions, as is done by a com-
piler, but rather scheduling of the many low-level tasks needed to implement any and
every processor instruction.

Figure 1.1Three common instructions in a pipelined RISC processor

InstructionInstruction
Decode
Register File
Reads

Fetch

PC Increment

ALU
Computation

Register File
Write Back

InstructionInstruction
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Reads

Fetch
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Computation
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Register File
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2
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Scheduling must handle all expectedsequential behavior constraintsin and for a
digital subsystem.

Every RISC processor implementation hashardware resource constraints.
To illustrate, a register file may have only two ports and allow 2 reads or 1 re
write concurrently. Other bounded hardware resources may include local sto
bus interconnect, function units, IO ports, etc. Scheduling must produce solu
which observe such hardware resource constraints. In fact, contention for hard
resources makes scheduling intractable. Were it not for resource contentio
events could execute as soon as operand dependencies were satisfied.

RISC processor execution repeats endlessly. Execution sequences for v
instructions may be linked end-to-end to create an infinite number of infi
length execution sequences. Scheduling must correctly generate suchinfinite
repeating solutionsyet do so in a finite and bounded manner even for cont
dependent and nondeterministic behaviors.

A RISC processor must becomplete. It must observeall imposed design
constraints yet correctly implementall behaviors, whether common or speci
cases. For example, a processor often executes without interruption from
hazards, but must sometimes stall until data hazards are resolved. Typical
more design effort and complexity is required to address special cases
streamlined common cases. To be practical, scheduling must solve all c
including special cases, while prioritizing the common cases.

A RISC processor must achieve a certain level ofquality. A throughput of 1
instruction per cycle is expected for common instructions in a single-is
pipelined implementation. In fact, to achieve this performance in figure 1.1,
register file fetches must be performedspeculatively or before certain they are
needed. To illustrate, the decoded instruction may be a jump and hence dis
the unneeded register file values. On the other hand, the decoded instruction
be an add and the register file values are available for immediate computatio
be used widely in industry, automated scheduling must produce results
similar quality to and preferably better than manual implementations.

1.2  Behavioral Representations
Automated scheduling requires a behavioral specification in which events

not preassigned to time-steps. This may be expressed in a program-like te
description and then converted into a program dependence graph [36] called a
flow graph, DFG, or control/data flow graph, CDFG. A program dependence g
clearly identifies operand dependencies and reveals inherent parallelism yet
not assign events to time-steps. Figure 1.2 shows a program dependence gra
one class of RISC processor instructions. Nodes represent operations or tasks
edges represent operands. Scheduling takes this graph and assigns tas
operands to specific time-steps and in so doing creates an implementation.
3
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There is no formal language for program dependence graphs. Related wo
scheduling often use representations based on program dependence ideas b
little specification compatibility among different work. As detailed in chapter
this work, Automata-Based Symbolic Scheduling, ABSS, also uses an i
specification based on a program dependence graph. The ABSS specification
beyond the basic program dependence graph and allows for sophisticated co
dependent behavior, cyclic behavior, sequential constraints as well as compos
abstraction and hierarchy.

1.3  The ABSS Methodology
The ABSS methodology is illustrated in figure 1.3. To begin, three input

required. The behavior input is based on a program dependence graph. It des
behavior as a collection of tasks with operand and control dependencies.
collection of tasks is itself a task, called acomposite task, and hence a natura
hierarchy is formed. For the second input, each of the tasks within a composite
is assigned expected sequential behaviors from the sequential library. Thes
nondeterministic finite automata, NFA, represented implicitly with Reduc
Ordered Binary Decision Diagrams, ROBDDs [16][48][90][93]. These NFA, cal
modeling automaton, MA , encapsulate anticipated sequential behaviors
targeted low-level hardware units. Additional sequential constraints, such
protocols, drawn from the sequential library, may also be included as input.
final and third input is resource concurrency constraints. These bound concu
use of hardware resources such as function units, local storage, ports
interconnect.

These three input are presented to the core of ABSS: NFA Composition.
step creates a new NFA, called acomposite modeling automaton, CMA , that
representsall valid sequences and hence implementations of the behavior in
This CMA and its sequences encompass the scope of scheduling describ

Figure 1.2Program dependence graph for a RISC processor instruction

Instruction
Fetch

PC
Increment

ALU
Computation

Instruction
Decode

Register File
Reads

Register File
Write Back

Program Counter
4



lation,
eating
t

nce,

A
ese
tency
ploys
to
tion

ay
hine
FA
section 1.1: operand dependencies, control-dependent execution and specu
sequential constraints, hardware resources constraints as well as infinite rep
solutions with bounded state. Furthermore, sinceall valid sequences are found, i
is possible to be complete and guarantee optimality. Finally, aCMA is also anMA
and is therefore of the same format used in the sequential library. He
scheduling hierarchy and abstraction are possible.

The final step in the ABSS methodology is NFA exploration. Although NF
composition produces aCMA that encapsulates all valid sequences, some of th
sequences are more desirable than others. For example, minimum la
schedules are generally preferred over other schedules. NFA exploration em
an implicit symbolic implementation of Dijkstra’s shortest path algorithm
determine all minimum latency schedules. This provides implementa
performance metrics for the behavior input. Furthermore, NFA exploration m
extract deterministic minimum latency schedules suitable for finite state mac
controller, FSM, synthesis. Finally, as with NFA composition, results from N
exploration may be used to create new sequential library members.

Figure 1.3The ABSS Methodology

Behavior
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Control Dependencies
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1.4  Related Work

1.4.1  High-Level Synthesis

ABSS is most related to work in high-level synthes
[35][39][40][66][88][137]. High-level synthesis is an automated process t
transforms an algorithmic specification of a digital system’s behavior into
hardware structure that implements the behavior. High-level synthesis offers si
and fast design specification, short and highly automated design cycles,
hopefully competitive implementations. Although high-level synthesis has rece
considerable research attention, it has yet to achieve wide-spread use in ind
This may be attributed to two primary failings. First, high-level synthesis is of
unable to address the scale or complexities of modern designs. Design team
tens of millions of transistors at their disposal. Current high-level synthesis t
are incapable of dealing with such large designs in an unpartitioned manne
have only primitive means for problem partitioning and abstraction. Furtherm
modern designs include complex control-dependent implementation and re
interface through sophisticated protocols. Such complexity issues are e
unaddressed or poorly addressed by existing high-level synthesis tools. Se
high-level synthesis rarely produces competitive implementations. W
implementation value is measured in terms of performance and silicon area, cu
high-level synthesis implementations compare unfavorably to man
implementations.

ABSS directly addresses these two primary failings of current high-le
synthesis. First, ABSS utilizes an automata-based representation to address
sequential and protocol complexities. Furthermore, although ABSS success
solves unpartitioned problems of meaningful scale, ABSS provides a rout
problem abstraction based on a hierarchy of sequential behaviors. Second,
determinesall valid sequences. Hence, ABSS is guaranteed to find the
possible sequences. This, combined with the ability to handle considerable co
complexity, certain types of speculation, and endlessly repeating behavior, en
ABSS to compare favorably with manual design.

The greatest high-level synthesis success stories are for digital filter synt
[24][25][42][60][104][110][120][134]. Such designs contain very simple contr
structure, if any, and may be behaviorally specified with a relatively small se
mathematical equations. The majority of papers in high-level synthesis re
results for digital filter benchmarks. Although ABSS produces exceptional res
for digital filters, it distinguishes itself from the bulk of high-level synthesis
addressing the full scope of scheduling. Control-dependent behavior, sequ
and protocol constraints, hardware resource constraints and cyclic behavio
addressed in concert yet exact and complete schedules are generated. This e
ABSS to be successfully applied to a much wider range of high-level synth
applications.
6
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High-level synthesis is traditionally broken into four general steps: In
specification, Allocation, Scheduling and Binding. Although not set in sto
variations of these four steps appear in all high-level synthesis flows. In
specification is typically a textual description of the desired behavior. It is of
converted into a program dependence graph as described in section 1.2. Alloc
is “determination of the type and quantity of resources to implement a design
given performance and area constraints” [40]. Scheduling is “the partitionin
design behavior into control steps such that all operations in a control step ex
in one clock cycle” [40]. Binding is “assignment of operations, memory acces
and interconnections from the behavioral design description to hardware unit
optimal area and performance” [40].

ABSS is fundamentally a scheduling technique. It assumes that behav
input specification and allocation have been performed and produces all
control-step sequences such that every event in the behavior input is assigne
control step. ABSS performs resource-constrained scheduling and hence ad
to a restricted set of subsequent bindings. In fact, ABSS may incorporate a
number of prespecified constraints, both sequential and resource utility, so
simplify or eliminate the final binding step. A fundamental premise of th
dissertation is that a scheduling technique that generates all valid exec
sequences may be initially or subsequently constrained to also represe
optimal bindings. Hence, attention is focused on comprehensive scheduling
adheres to flexible and varied constraints.

1.4.2  Scheduling

Scheduling is a well-studied problem, with a rich literature of previous wo
For this reason, discussion of related scheduling work is organized around
general approaches: Heuristic, Integer Linear Programming (ILP), and Symb
Furthermore, success of these approaches is measured by how complete
thoroughly they address the scope of scheduling introduced in section 1.
summary, the scheduling scope includes: operand dependencies, co
dependent behavior, sequential behavior and constraints, hardware res
constraints, repeating behavior, completeness and quality.

Heuristic scheduling techniques are by far the most comm
[22][25][44][45][58][68][71][104][109][110][121][132][133][134]. All heuristics,
and in fact all scheduling techniques, address operand dependencies.
scheduling technique only considers operand dependencies, then it only sche
data-flow graphs, DFGs. Within the DFG paradigm, there is considerable w
regarding repeating or cyclic behavior. Pioneering work in DFG loop schedu
and pipelining was done by Girczyc[44], Paulin[109] and Goosens[45]. Ch
rotation scheduling[25] uses a series of transformations to perform DFG
pipelining with function-unit utility constraints. Lee[71][72], Sanchez[120], a
Wang[134] all require an initial prespecified loop iteration latency and then ad
7



ling
imum
usts
lters,
nore
tion
ion
e not

tial
-art
ana’s
h-first

the
de-
ndle
ly in
ed to
the
y be
tions

teger
t,
have
ded

the
and

ILP
ssary

few
ms

xact

fairly
th
tion

olean
s an
for function-unit utility constraints. Lee employs as-soon-as-possible schedu
and then resolves resource constraint violations. Sanchez computes the min
initiation interval of the loop and then iteratively retimes, schedules and adj
resources. Wang, who has perhaps the most complete heuristics for digital fi
uses a novel cycle-finding and covering scheme. In general, heuristics that ig
control-dependent behavior can perform well for repeating behavior. Solu
quality is equivalent or close to optimum. On the other hand, solut
completeness may suffer as only single solutions are found and protocols ar
accommodated.

Heuristics also exist for control-dependent scheduling. The most influen
early work is attributed to Wakabayshi[132][133]. Two recent state-of-the
heuristics are by Lakshminarayana[68] and Dos Santos[121]. Lakshminaray
technique, which handles some repeating behaviors, uses an explicit breadt
elaboration of the available operations on each time-step that is similar to
implicit NFA exploration used in ABSS. Dos Santos’ heuristic is guided by co
motion pruning and includes some forms of speculation but does not ha
repeating behavior. In general, heuristics for CDFG scheduling perform poor
terms of quality and completeness. Quality suffers since early decisions relat
control often eliminate good solutions. Furthermore, if a substantial portion of
solution space is explored to reveal good solutions, only small problems ma
solved. Finally, as before, solution completeness suffers as only single solu
are found and protocols are not accommodated.

Some of the best known exact scheduling techniques are based on in
linear programming, ILP [42][43][61]. Although shown to be relatively efficien
ILP techniques do not readily generalize to control-dependent scheduling and
formulation difficulties with sequential constraints other than pure or boun
delays. Of the few ILP techniques that handle control, Coelho’s is perhaps
most mature [30]. Even so, only a small number of control points are allowed
code motion is substantially impacted by control formulation. In general,
techniques do not handle the amount of control nor sequential protocols nece
for practical design.

Symbolic scheduling techniques were first suggested by Kam[64]. A
preliminary experiments for tightly constrained acyclic DFG scheduling proble
were formulated using multi-value decision diagrams. ROBDD-based e
symbolic scheduling was pioneered by Radivojevi′c [113][114]. His work
addressed acyclic control-dependent resource-constrained scheduling in a
complete manner. As with ABSS,all execution sequences, including those wi
some types of speculation, are found. As such, his work is a significant founda
and motivation for ABSS. The differences between Radivojevi′c’s technique and
ABSS lie in fundamentally different problem formulations. Radivojevi′c’s
technique represents a complete schedule as a ROBDD-based implicit Bo
logic function. On the other hand, ABSS represents a complete schedule a
8
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execution sequence of an implicit nondeterministic finite automaton. This all
ABSS to naturally handle repeating behavior. Radivojevi′c’s technique only
handled repeating behavior for DFG scheduling with prespecified latencies an
at all for CDFG scheduling. Furthermore, since Radivojevi′c’s technique requires
that all schedule control steps are represented in a single Boolean logic func
schedules with long latencies require lengthy logic functions. ABSS does
record all past control steps in a single NFA state vector and hence has no
difficulty with long latency schedules. Finally, Radivojevi′c’s technique is based on
a simple non-sequential operator model and can not be generalized to an arb
sequential model as can be done in ABSS. Thus, ABSS can represent abstra
sequentially-constrained control-dependent repeating schedules w
Radivojevi′c’s technique does not.

Automata-based symbolic scheduling did not originate with ABSS but w
introduced by Yang[138]. His formulation did not address repeating behavio
sequential constraints in a general way. Although control was incorpora
necessary correctness issues related to validation and causal ensemble sch
were ignored. Yang’s formulation also did not use nondeterminism and he
suffered significantly from ROBDD representation growth. Monahan[94][95] a
proposed an automata-based scheduler. His was for predefined datapaths su
limited memory constraints. His work did not address control-dependen
repeating behavior. Finally, Yen[140][141] introduced the notion of Behavio
FSM scheduling. Although this technique was symbolic and automata-base
was explicit rather than implicit. Hence, only a single solution is foun
Furthermore, substantial difficulty is encountered when constraining resource
formulating control for general BFSM models.

1.4.3  Miscellaneous Related Work

A novel ability of ABSS is protocol and sequential constraint accommodat
Related work regarding this has focused primarily on interface synthesis sepa
from scheduling. Influential interface synthesis work is attributed to Borriello[1

Some scheduling techniques expose more problem parallelism through g
transformations [1][81][99][111]. Algebraic and retiming transformatio
restructure the DFG or CDFG. Hence, a new number of problem graph vertic
edges may result. Although ABSS may implicitly perform some algebraic
retiming transformations through use of nondeterministic alternatives, this is
the focus of this dissertation. Hence, unless otherwise stated, a scheduling pro
and solution correspond to a single static graph.

Scheduling is an essential step in code compilation[1]. Here, a heurist
usually employed to order processor instructions from thousands of lines of c
Unlike the scheduling presented here, there is predefined processor hardware
typically constrains the problem and guides the heuristic scheduler. The focus
9
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general improvement in thousands of lines of code rather than on determin
“best” processor architecture.

As ABSS is an implicit symbolic technique, it is related to symbolic mod
checking [89]. With ABSS, a model is constructed to represent only and all cor
execution sequences. This model is then used to evaluate or generate a c
implementation. With symbolic model checking, a supposedly corr
implementation model is provided. This model is then evaluated to determine i
implementation is indeed correct.

ABSS represents the execution sequences of atomic tasks in a sched
problem as NFA. These NFA closely resemble certain types of Petri N
[98][108]. This relation provides alternative conceptual models and leverage
wider range of existing research.

1.5  Dissertation Organization
This dissertation is organized around the ABSS methodology introduce

section 1.3. Chapter 2 presents the ABSS problem formulation and behav
input specification. Both are information-centric and describe how tasks inte
Care is taken to support hierarchy and abstraction. Chapter 3 describes
sequential library members,MA , are specified.MA are specified to model low-
level hardware components with the simplest of sequential behaviors. On
handful of states and transitions are required for these specifications. Chap
describes how a collection ofMA represent tasks in the behavior input. A newMA
is formed through composition. After a series of constraint applications, thisCMA
represents all valid sequences and hence implementations of the behavior
Chapter 5 presentsCMA exploration. Exploration seeks to find shortest paths a
hence minimum latency schedules. Such schedules provide performance m
as well as deterministic synthesis candidates. Throughout chapters 2 through
RISC processor example from section 1.1 is used as a touchstone. It direc
potentially tedious yet necessary details in these chapters to one common
automated design of a RISC processor. Chapter 6 presents applications of A
Scheduling problems, drawn both from academia and industry, are formulated
solved completely and precisely. Furthermore, these problems are of sufficien
and scale to demonstrate the viability of ABSS for industrial design. A comple
discussion is included here. As a capstone, RISC processor behavior for all M
integer instructions, similar to and beyond the example in section 1.1, is sched
These scheduling solutions are comparable to, and in some cases, better tha
is expected from high-quality manual design of a single-issue pipelined proce
Finally, chapter 7 draws conclusions. ABSS novelties, complexities and limitat
are summarized and future ABSS research directions are outlined.
10
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Chapter 2

The Scheduling Problem à la ABSS

Automata-Based Symbolic Scheduling, ABSS, was conceived to answe
practical high-level synthesis questions raised in chapter 1. At the heart of t
questions is a scheduling problem:whenshould operations occur to provide goo
performance given hardware constraints? Unfortunately, traditional schedu
problem definitions fail to capture enough real constraints to be representati
practical designs. As such, when formally defining the scheduling problem AB
solves, a different and expanded problem viewpoint must be taken. A
approaches the scheduling problem from an operand or information viewpoin
be precise, ABSS models all feasible, causally and sequentially correct sequ
of information consumption and production in a digital system where s
information is finite. This may be contrasted with traditional operation-cen
scheduling techniques. Rather than assigning operations to time-steps, A
determines available information at each time-step and sequentially models
new information may be produced from this available information. Once
desired information has been produced, the behavior is complete. If this is do
a minimum number of time-steps, a minimum latency schedule or execu
sequence results. Finally, by taking an information-centric approach, ABSS
separate a behavioral task from an actual sequential implementation. An A
scheduling problem specifies the desired behavior in terms of information cre
and consumption as well as anticipated sequential constraints of protocols
hardware function units used to implement this behavior. Consequently, the
behavior may be scheduled for various target hardware with differing seque
constraints.

This chapter is organized as follows. First,information is defined and
described as used with ABSS. Next, the concepts oftaskandcomposite taskare
introduced and defined. These definitions provide a foundation to formulate a
scheduling problem which is amenable to abstraction and hierarchy. B
11
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abstraction and hierarchy are essential for scheduling large digital systems a
resource-constrained scheduling problem is intractable. Finally, an exp
example provides an overview of the entire ABSS technique.

2.1  Information

Definition 2.1 Information is any bit, signal or piece of data (besides a cloc
communicated in to or out of a digital subsystem. An atomic portion of inform
tion is referred to as anoperand.

This is a very general definition as it makes no distinction concerningtypes
(control, data, bit width, etc.) orvalues of information. When symbolically
modeling system behavior for scheduling, the emphasis is not on thecorrectness
of a behavior’s computations but rather on the behavior’sfeasibility, performance,
and cost.Hence, the information’s type or value may often be ignored. For t
reason, determining only whether or not a particular operandexistsis critical. This
existence or nonexistence of information is represented as a Boolean variabl
example, supposeinfo refers to some operand necessary in the behavior. In AB
info is true if this operand exists and is available in the system, andfalse if not.
Although info corresponds to a particular operand,info does notcontain the actual
value of this particular operand. If it is necessary to distinguish between var
values of one operand, it is always possible to treat each necess
distinguishable value as a separate operand and hence reduce the problem
original simplicity. For instance, the operandsinfoval=5 and infoval=7 are two
operand names, not values, and refer to the Booleanexistenceof two separate
operands. Although there are additional system modeling considerations,
minimalist operand existence/nonexistence view is a key element of ABSS.

As described, information is encoded in “one-hot” fashion. A single Boole
variable identifies existence or nonexistence of a single operand in the d
subsystem. Although pure logarithmic encodings were experimented with [
this sparse “one-hot” encoding generally provides more efficient ROB
representation and manipulation. Still, when necessary to represent se
mutually exclusive values of an operand, a logarithmic encoding is benefic
employed.

The example RISC processor requires and produces numerous operands
execution. If considered at the level of an executing instruction, a register file
produces an operand that is required by the ALU. Likewise, the ALU produce
operand that is required by the register file write back. For scheduling purpo
the operand’s value is often irrelevant, yet a correct dependency-ordered seq
of operand production and consumption is required.
12
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2.2  Tasks
When viewed as a black box, a digital subsystemaccepts(input) and/or

produces(output) various operands in various time sequences. A digital subsys
may be as simple as an ALU, which requires two input operands and produce
output operand a short time later, to something as complex as a RISC proc
core, which requires input instructions and memory data and produces me
addresses and memory data while observing a complex dynamic sequ
protocol. Furthermore, large digital systems are typically composed of smaller
simpler digital subsystems. At any level of this natural hierarchy, this view
sequential information consumption and production holds.

All digital systems or subsystems implement a desiredtask or portion of
behavior. For instance, an ALU may implement an add or a subtract as we
other tasks. In traditional high-level synthesis, these tasks are called operation
are scheduled and bound to available hardware. Since ABSS takes a
information-centric sequential view, operations are not necessarily trivial but
range from simple combinatorial ALU functions to the transaction tasks perform
on large digital systems with sophisticated protocols. Hence, the termtaskis used
to describe a particular portion of behavior.1

Definition 2.2 A task is a four-tupletask(A, P, R, Q). Each operanda ∈ A may2

be accepted to complete the task. Each operandp ∈ P may be produced during
implementation of the task.A andP are thought of as sets of Boolean variabl
where truth value represents existence or nonexistence of the particular ope
Eachres∈ R is a named type of hardware resource (function units, buses, l
registers, etc.) which may be required to complete the task.Q encapsulates all
allowed sequential executions of the task either imposed by hardware const
or desired by the designer.

As an example, a simple add task may be specified
ADD( (a, b), (c), (ALU), (Single time-step) ). Here,a and b are the input
operands,c is the result operand, an ALU hardware resource is required, and
result operand is computed in one time-step. It is rather imprecise to spe
‘Single time-step’ asQ. Chapter 3 describes in detail how potential sequen
behaviors for a task are described with a nondeterministic finite automaton.

The setsA and P include all operands the task potentially accepts a
produces. This should not be confused with a hardware data port. It is possible
some ALU must communicate all operands through one port, yet there are

1. The term task is used commonly in hardware/software codesign. In that context, it typ
cally describes fairly complex behavior. In the context of ABSS, tasks describe behaviors
ranging from very simple to complex.
2. Operand events are potential rather than necessary as control decisions may make som
operand events unnecessary.
13
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typically three operands: 2 input and 1 result. Any single informati
communication event that provides unique information to or produces un
information from a task is considered a distinct operand and must be include
either A or P. Hence, although some data may be packetized, each disc
distinguishable piece of a packet is considered a unique operand. On the
hand, tasks often repetitively execute within loops. In this case, the setsA andP
may grow infinitely large given infinite repeated execution of a task. Whe
repeating task is encountered, exactly two instances of a particular operand, w
distinguish between past and present values, are included inA andP and hence the
representation is bounded. Section 3.2 addresses issues related to modeling cy
tasks.

When graphically representing a task, elementsR andQ may be suppressed a
shown in figure 2.1. Only elementsA and P are drawn explicitly. With this

representation, a task may be thought of as a vertex (although with pos
numerous input and output operands) in a traditional data-flow graph. Th
primarily a behavioral representation. Resource requirements,R, and sequential
constraints,Q, are separate artifacts of implementation and hence may vary fo
same behavioral task.

In the definition of a task, definition 2.2, a substantive set hierarchy w
introduced. For example,p3 ∈ P∈ task identifies an operandp3 which is one of
the produced operands oftask. This type of set hierarchy is common to ABSS. T
ease notation of this concept, dot notation from object oriented programmin
borrowed. Hence,task.P.p3 is shorthand forp3 ∈ P∈ task. This notation, as
formally defined in definition 2.3, is used throughout this dissertation.

Definition 2.3 Dot notation represents SET1∈ SET2∈ …∈ SETn as
SETn. … .SET2.SET1or representselementi ∈ SET1∈ SET2∈ …∈ SETn as
SETn. … .SET2.SET1.elementi.

2.3  A Composite Task
A collection of tasks may interact to represent a larger behavior. For exam

in a RISC processor, small tasks, such as register file reads and writes,
computations, etc., represent behaviors required to execute a complete instru
When these tasks are collected and organized appropriately, their colle

Figure 2.1A graphical representation of an add task

Add

opa opb

opc
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behavior may be viewed as a larger task representing behavior of a single
instruction.

A collection of interacting tasks, called acomposite task, is also a task albeit
at a higher level of abstraction. It falls within definition 2.2 for a task as it acce
and produces operands, requires resources, and exhibits sequential be
Furthermore, a composition specifies a particular organization of tasks and
interaction. This particular organization defines a behavior in much the same
as a control/data-flow graph does for traditional scheduling. Loosely, a comp
task is a set of tasks and a set of task interactions. Before formally defini
composite task, it is helpful to define and describe how tasks may interact
each other.

2.3.1  Operand Dependence

Fundamentally, tasks accept and produce information. Task interaction is w
one task accepts information produced by another task. This is an ope
dependence as the accepterdepends on the producer’s information.

Definition 2.4 An operand dependenceis defined ase= (f, a). The Boolean
expressionf is written in terms of produced operands,p ∈ P, from tasks in the
composite task. The variablea is a single accepted operand,a ∈ A, for some task
in the composite task. Whenf is true, the required operanda is available. Whenf is
false,the required operanda is not available.

A novel aspect of this operand dependence definition is the Boolean expre
f. If f consists of just a single operandp, then this operand dependence reduces t
simple data-flow graph data dependency edge. Sincef may be an arbitrary Boolean
expression of operand existence variables, considerable flexibility is added
instance, the operand selection that occurs typically at a CDFG join may
expressed. A task might depend on operandinfospecin some cases but operan
infonospec in other cases. The Boolean expression for this might look l

whererinfoval=1 andrinfoval=2 are
two separate operands whose existence indicates different control cases. Op
rinfoval=1 and rinfoval=2 are said toguard operandsinfospec and infonospec

respectively. As another example, there may be two legitimate sources of s
operand and the accepting task should use whichever one is available
convenient. This nondeterministic alternative might be expressed

whereinfosource1 and infosource2 are two equivalent yet
alternative instances of the required operand.

2.3.2  Control-Dependent Task Interaction

Most high-level behavioral descriptions require control-dependent execu
and/or interaction of tasks within a composition. A decision as to what task
execute or what information to use is made based on the value of some ope

info
spec

rinfo
val 1=

info
nospec

rinfo
val 2=⋅+⋅

inf o
source1

inf o
source2

+
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For instance, depending on the decoded instruction in a RISC processor, the
write back task may or may not be required. Hence, this write back task exec
is control dependent. Control-dependent execution of a task requires atask tuple
while control-dependent selection of an operand requires a guarded ope
dependence expression.

Definition 2.5 A task tuple is defined as (t, cb). The variablet is a task as in def-
inition 2.2. Boolean expressioncb is written in terms of produced operands,p ∈ P,
from tasks in the composite task. Whencb is true, the taskt is required for success-
ful completion of the composite task. Whencb is false, the taskt is not required for
successful completion of the composite task.

Consider the composite fragment shown in figure 2.2. The tasks on the
belong to the control blockdval=0 while those on the right belong to the contro
block dval=1. The tasks on the bottom and top belong to the control blo
dval=0+dval=1 as they accept or produce operands in either control case.

An operand within a control block expression is still viewed as information a
hence is included in definition 2.1. However, it is sometimes necessary
distinguish between several values of a control operand and not just its existen
nonexistence. As described in section 2.1, all necessarily distinct values ma
represented as unique operands. Consequently, each value of a control op
may thus be represented by a unique operand.

With these preliminary definitions completed, it is possible to formally defin
composite task.

Figure 2.2A scheduling problem fragment with control blocks

Task

Task

Task

Task

Task

Task

cb= dval=0+dval=1

cb= dval=0 cb= dval=1
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Definition 2.6 A composite taskis a task as defined in definition 2.2. Acom-
posite taskis also acompositiondefined byC = (T, E). Each (t, cb) ∈ T is a task
tuple as in definition 2.5. Eache ∈ E is an operand dependence as in definition 2
An operand dependence exists for every accepted input operand,a ∈ A, of every
taskt ∈ T in a composition.

Definition 2.7 A control-dependent composite taskis a composite task in
which the dynamicvalue of some operand alters behavior.

2.4  The Scheduling Problem
A scheduling problem is not a composite task, but rather the question of w

is a correct and desirable sequential behavior,Q, for a composite task. A
scheduling problem asks the important question, “What finite state mac
controllers exist which will execute this collection of tasks in acceptable time
require reasonable hardware and datapath?” Although answering this quest
potentially intractable, ABSS provides techniques to solve problems of reason
size exactly while also providing a route to higher abstraction for very la
problems.

A scheduling problem asks what are correct and desirable sequential beha
for a composite task given internal tasks that interact through oper
dependencies, exhibit their own sequential behavior and contend for resou
Furthermore, other arbitrary sequential constraints may be imposed to cons
how internal tasks interact or how a composite task interfaces externally.

Definition 2.8 A scheduling problem is defined by the three-tuple
SP= (C, R, Q). The set C is a composition as in definition 2.6. Eac
(bound, Tr) ∈ R is an ordered pair where natural numberboundis the maximum
permitted concurrent uses of classr resources andTr ⊆ C.T is the set of all tasks
requiring a classr resource at some time.Q represents a set of additional seque
tial constraints which may represent external protocols or constrain how se
tasks within the composition must interact. A solution to the scheduling proble
a correct and desirable set of sequential behaviors suitable forQ ∈ composite task
that observe all constraints of a scheduling problem.

As stated, solutions to the scheduling problem are sequential behaviors su
for Q ∈ composite task. In ABSS, solutions, as well as all other sequent
behaviorsQ, are represented as nondeterministic finite automaton. For mode
purposes, this entire nondeterministic finite automaton may be used. For syn
purposes, a deterministic finite automaton contained within the nondetermin
solution must be extracted. Solutions observe all internal task sequential beh
operand dependencies, hardware concurrency limits and additional sequ
constraints. A desirable solution strives to satisfy other objectives such
minimum execution latency for the composite task. For the RISC example,
17
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scheduling process determines correct minimum-latency sequential behavio
several concurrently executing RISC instructions.

A scheduling problem has a potentially infinite number of solutions. Supp
that a scheduling solution takesn time-steps. It is often possible to add a delay
some point in the schedule and thus requiren+1 time-steps. In this way, an infinite
number of solutions may exist which are encapsulated via nondeterminism o
ABSS formulation. Alternatively, suppose that a scheduling solution for repea
behavior produces an intermediate operando at some point in the schedule. I
dependency constraints permit, this schedule may produce the next iter
instance ofo, called o2, while o1 is still in use. Indeed, it may be possible tha
schedules exist wheren (possibly infinite) iteration instances of operando are in
use. In another case, a valid yet impractical scheduling solution might recom
thesameiteration instance of intermediate operando ad infinitum. ABSS models
schedules as instances of finite state automata and hence must bound
potential infinite state situations.

Once scheduling solutions meeting certain objectives are found, a comp
task is completely defined --itsQ is specified. This composite task itself may b
composed with other tasks and scheduled at a now higher level of abstractio
this fashion, very large tasks, represented as a hierarchy of refinement, m
described. A task’s sequential behavior,Q, at any level of this hierarchy, is the
vehicle of refinement. The scheduling process communicates refinements a
hierarchy levels.

2.5  An Overview of ABSS by Explicit Example
To provide an example of how ABSS works, an ABSS automaton mode

presented explicitly. This example is not representative of all ABSS capabili
Its purpose is to highlight what is at the core of ABSS models while ignoring,
now, other important considerations such as protocols and control-depen
behavior. In practice, all ABSS models are implicitly and efficiently represen
with Reduced Ordered Binary Decision Diagrams, ROBDDs [16][48][90][93].

Figure 2.3Example looping behavioral description

rv2 = 0;

while (TRUE) {

i0 = read();

i1 = read();

i2 = read();

rv0 = i0 + i1; // Task v0

rv1 = rv0 + rv2; // Task v1
18
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Figure 2.3 is a looping pseudocode behavioral description which may be
as a scheduling problem. For each iteration of the loop, the subsys
implementing this behavior reads three input values and writes one re
Furthermore, the result of the multiplication,rv2 , is required by an earlier
addition and hence a operand dependence between different iterations of the
an inter-iterationdependency, exists. Consequently,rv2 must be initialized upon
entering the loop.

Figure 2.4 shows both graphically and textually how figure 2.3’s behavio
specified as an ABSS problem. Read and write events and associated
dependencies are not represented as separate tasks but rather as re
requirements in this particular specification. Input and output operands
assumed to be unbuffered. Hence, external read and write events occur when
and output operands are required or produced by tasks. Finally, for brevity
control blocks for each task tuple are suppressed inSPas they are all don’t care for

Figure 2.4An ABSS specification of figure 2.3’s behavior

add_v0

i0 i1

rv0

add_v1

rv2

rv1

mult_v2

i2

add_v0 = ( (i0, i1), (rv0),

(ALU, IO Port, IO Port),

(Single time-step) )

add_v1 = ( (rv0, rv2), (rv1),

(ALU),

(Single time-step) )

mult_v2 = ( (i2, rv1), (rv2),

(Multiplier, IO Port),

(Single time-step) )

SP = ( ( (add_v0, add_v1, mult_v2),
19
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this control-less example. Also, the sets of tasks requiring a resource,Tr, are
suppressed as they may be inferred from the individual task specifications.

Correctly scheduling this DFG requires assigning each operand, and henc
in this case, to a time-step while observing several criteria. First, all oper
dependencies must be observed. Second, resource bounds, such as one a
adder or maximum four simultaneous external data transfers, must be adher
Finally, a scheduling objective, such as latency minimization typically gui
schedule selection.

If one single time-step adder, one single time-step multiplier and th
simultaneous external IO transfers are allowed, then the example’s only minim
iteration latency schedule is shown in figure 2.5. Although thedelay, or required
time-steps for a single loop iteration, is three, theiteration latency, or time-steps
between successive loop iterations, is only two time-steps3. This loop windingis
possible because operands and tasks from successive iterations are allow
overlap as seen with tasksv2  andv0  and hence with operandsrv2  andrv0 .

ABSS constructs a composite modeling automaton, aCMA , that encapsulates
all solutions for a given scheduling problem,SP,subject to problem and model
imposed constraints. For this example, the desiredCMA is explicitly shown in
figure 2.6. Eachtransition in this nondeterministic state graph represents a tim
step4. Task activities are assigned to time-steps and are identified thro
transition labeling. The distinction between successive loop iterations oriteration
senseis made with the symbol ‘~’. If a task activity is labeled with no ‘~’, such a
add_v0, thenadd_v0~represents the same task activity in the successive itera
and vice versa. For instance, the transition from state 100 to state 001 is la
add_v0and mult_v2~as these two tasks from successive loop iterations oc
during this transition time-step.

While transitions denote task activities, states encode in which sense ope
currently exist in the system. The existence/nonexistence truth value of any s
operand is evident from a state’s encoding. In the example, state vector bit
orderedrv2, rv1, rv0. To illustrate, consider the transition from state 100. The o
indicates that operandrv2 is known (present) in the regular iteration sense b
unknown(not present) in the ‘~’ iteration sense. Likewise, the two zeros indic

3. Minimizing iteration latency in this case is equivalent to maximizing throughput.
4. A time-step typically corresponds to a synchronous clock period but may be interpreted
as any integral time unit.

Figure 2.5Minimum iteration latency schedule

v0 v1 v2

v2v0 v1

v2v1v0

1 42 3 5 6 7 ...
20



ior.
ution

s the

een

nces
ll
ling
cific
f the
tion
oth
loop
n is

bed
hese

he
ausal
also

ter 3
that operandsrv1, rv0 areknown(present) in the ‘~’ iteration sense butunknown
(not present) in the regular iteration sense.

Any path in thisCMA represents a valid execution sequence of the behav
Every transition belongs to some path and is hence a step in some valid exec
sequence. Consider the transition from state 100 to state 001. Since operandrv1 is
knownin the ‘~’ iteration sense, and an IO port is free to readi2~, the taskmult_v2
may execute and does so during this transition time-step. This task produce
next iteration result of operandrv2 which is indicated by the ‘0’ in therv2 position
of the state transited to. Likewise, since the limit of three IO ports has not b
reached, operandsi0 andi1 may be read and the taskadd_v0is allowed to execute
and produce a newrv0 result operand.

All valid execution sequences of a scheduling problem, including seque
which arbitrarily stall, are modeled by aCMA . These sequences observe a
constraints, such as resource utility limits, included as part of the schedu
problem. Given such a structure, it is possible to find subsets of paths with spe
properties. As an example, minimum iteration latency repeated executions o
loop are represented by shortest cycles. In figure 2.6, the minimum itera
latency schedule is highlighted with dashed edges. Two iterations (for b
iteration senses) are scheduled in one complete traversal of this cycle. A
initialization sequence is a shortest path from state 000, where no informatio
known, to entry of the solution cycle at state 001. Symbolic exploration, descri
in chapter 5, finds such paths meeting a scheduling objective, if they exist. T
paths may then be synthesized into a finite state machine controller.

A CMA is built through symbolic composition as described in chapter 4. T
composition process insures that all scheduling problem tasks interact in a c
and concurrency-bounded manner. The pieces of this composition are
nondeterministic finite automata and are calledmodeling NFA, MA . They typically
model the sequential behavior of one task in the scheduling problem. Chap
describes howMA are specified.

Figure 2.6The example’s explicit CMA

S000

S100mult_v2~

S001
add_v0

S101

add_v0

mult_v2~

mult_v2~
add_v0

S110
add_v1~

S011
add_v1

mult_v2
add_v0~

S010

mult_v2

S111

add_v0~

add_v0~
mult_v2
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2.6  Summary
This chapter first defined terms important to the ABSS problem definiti

Information was defined as typeless and often valueless operands. Informat
represented by Boolean variables indicating the information’s existence
nonexistence at some time-step. Tasks were defined as digital subsystem
implement some desired piece of behavior. Tasks accept, process and pr
information. Furthermore, tasks require specific hardware resources, which ex
constrained sequential behavior, for implementation. Next, a composite task
defined as a collection of interacting tasks. With a composite task, a na
hierarchy of refinement and route to abstraction is provided. After the concep
information and tasks were defined, the ABSS problem was formulated
determining correct and desirable sequential behavior for a composite
Hardware utility limits as well as additional sequential constraints were inclu
in the problem definition. Control-dependent scheduling was shown to fall wi
the definitions given so far provided that actual values of ‘control’ operands
distinguished. Finally, ABSS solutions were introduced by way of example.
implicit nondeterministic automaton model called aCMA efficiently encapsulates
all valid execution sequences (schedule solutions) of the ABSS problem.
22



ata
al

y its
he
tal

s

m.
ask.
m

nd
ows

b*)*.
still
Chapter 3

Specifying Task Behaviors: MA

The fundamental building blocks in ABSS are nondeterministic finite autom
called modeling NFAor MA . An MA’s sequential behavior captures the loc
sequential behaviors possible or allowed when implementing one task1, t ∈ C.T,
from a scheduling problem,SP. In this way, a task’slocal timing constraints,Q, are
specified via itsMA . Furthermore, a task’s operands, setsA and P, as well as
resource requirements, setR, are mapped to states and transitions of anMA
through a labeling system. Every task in the scheduling problem is modeled b
own instance of anMA . In other words, to represent the entire behavior of t
scheduling problem, anewMA is instantiated for each task. This is a fundamen
departure from other symbolic modeling techniques as primarilybehavior(use of
abstract resources) rather thanimplementation(actual hardware resources) i
modeled. Finally, as related to the RISC example, specifyingMA may be thought
of as specifying the sequential behaviors of atomic hardware resourceusessuch as
register file reads and writes, ALU computations, memory accesses, etc.

Once every task from a scheduling problem is modeled by anMA , all taskMA
are composed into a larger compositeMA called aCMA . ThisCMA is refined to
encapsulate preciselyall valid execution sequences of the scheduling proble
Hence, aCMA represents all correct sequential behaviors of a composite t
Finally, aCMA may be implicitly explored or further pruned to determine syste
execution sequences or schedules with desired qualities.

This chapter focuses on specifying variousMA . As all MA are fundamentally
nondeterministic finite automata, they inherit the infinite language a
correspondence to regular expression’s of all NFA. For example, figure 3.1 sh
one possible NFA construction which encapsulates the regular expression (a*
Although this represents an infinite number of infinite sequences, it is

1. When tasks become too complicated, severalMA  may be composed to model one task.
23
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compactly represented with two states and four transitions. It is impractica
define entirely the descriptive power and general applications of a N
representation. Instead, the intent of this chapter is to demonstrate how a
representation may be used to model sequential behaviors of system tasks th
important to a digital system designer. Typically, designers strive to simp
subsystem tasks, interfaces and protocols in practical design. Because of this
a handful of explicit states and transitions are usually needed to specify anyMA .
Once anMA is specified, it is kept in a library so that it can be reused eas
Although smallMA are often specified manually, a key power of ABSS is t
ability to compose manyMA and correctly represent all valid sequential behavio
of truly complicated and large composite tasks.

This chapter is organized as follows. First, a basicacyclic MA is introduced
and a formal definition of anMA is provided. Examples and techniques for seve
more complicated and descriptiveMA are presented within an acyclic framework
Second, these acyclicMA concepts are generalized and extended to acyclic MA
representation. Finally, specific considerations for modeling control are cover

3.1  Acyclic MA
A basic MA might specify the sequential behavior of oneuse of a

combinatorial ALU. Implementing this task requires two input operan
opa, opb∈ A, at the beginning of a clock cycle and produces a result opera
opc∈ P, by the end of the clock cycle. Furthermore, one ALU hardware resou
is required,alu ∈ R. Figure 3.2 shows the graphical representation of this task
its expected sequential behavior. Figure 3.3 shows a sparsely labeledMA
representing this sequential behavior. Execution begins in state(s) lab
opc unknown. If opa is present,opb is present, and an ALU resource is availabl
this machine may nondeterministically choose to transit to state(s) lab
opc known. In general, nondeterminism allows anMA to delay execution in favor
of anotherMA when in a composition. This enables full context-independ
exploration of the solution space and hence exact results.

Figure 3.1A possible NFA construction for regular expression (a*, b*)*

a b

Figure 3.3An MA  representing an add task

opc
unknown

S0

opc
known

S1

alu busy
opa required
opb required

opc produced
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Several properties of figure 3.3’sMA are important to note. First, a
synchronous system is assumed with clock-period activity and dura
corresponding to allMA transitions (not states). The transition labeledalu busy
requires and occupies an ALU resource for theentire clock period. Also, the
transition labelsopa required, opb required, andopc producedindicate that these
communications occur sometime during the clock period. For this exam
opa requiredand opb requiredoccur at the beginning of the clock period whil
opc producedoccurs towards the end of the clock period. On the other hand, st
correspond to system knowledge present at a clock edge. The state la
opc knownindicates that operandopc is registered and available for use. Secon
this particular model represents an acyclic computation ofopc. In this acyclic
model, operandopcmay be computed only once and in fact persists forever in
system.

Real systems contain tasks with more complex sequential behavior than
example. Fortunately,MA are generalized easily to represent complex tasks. Si
designers strive to simplify subsystem interfaces and protocols in practical de
only a handful of explicit states and transitions are typically needed to spe
subsystemMA . When behavior becomes too complex to specify with a handfu
states and transitions, the behavior can often be decomposed into intera
simpler tasks represented by severalMA and then composed into a larger mo
complicatedCMA  as described in chapter 4.

3.1.1  Labels, Notation and Definitions

A task’s operands, setsA andP, and resources, setR, as well as other externally
important information are mapped to anMA with a labeling system. In section 3.1
the labelsalu busy, opc unknown, opc known, opa requiredandopb requiredwere
introduced. Table 3.1 lists and describes a subset of the most commonly
labels. Labels consist of two grammatical parts: aSUBJECT followed by a
PREDICATE. A valid SUBJECTis an operand (A andP), a resource (R) or the word
task, which is a generic reference to the behavioral task modeled by anMA . In the
table, operands are represented by the generic nameinfo but are eventually
replaced with unique operand names as specified in task setsA andP. Likewise,
resources are represented by the generic nameresbut are eventually replaced with
appropriate resource names as specified in task setR. Examples of resources ar

Figure 3.2An add task and expected sequential behavior

registered
opa, opb opc

registeredALU use

Add

opa opb

opc

clock
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ALU, multiplier, bus1, etc. Currently supportedPREDICATES are defined in
table 3.1. APREDICATE’S purpose is to describeSUBJECT properties. With this
background, it should be clear that the labelrv0 knownidentifies operandrv0 has
been produced in the system and labelalu busyindicates that an ALU is currently
occupied.

Although table 3.1 describes commonly used labels, a designer is free to c
additional labels. Consequently,MA states and transitions may be interpreted
any way a designer chooses. In general,MA states correspond to system
knowledge present at a clock edge2 and should receive labels which reflect thi
State labels such asinfo unknown, info knownand info acceptedare historical
labelsas they provide a record of past events. State labels such asinfo storedand
info resolvearecurrent labels as they identify current information availability. On
the other hand,MA transitions correspond to system activity during a clo
period3 and should receive labels which reflect this. As examples, the la
info requiredimplies thatinfo was communicated to hardware implementing t
task, and the labelres busyindicates a particular hardware resourceres is required
and occupied during this clock period. Finally,MA state encoding and labels ar
distinct. In fact, one state or transition may be referenced by multiple labels
one label may reference multiple states or transitions.

Specific notation, based on this labeling system, may be used to des
transitions and states of anMA . The notationS is reserved to represent a set o
states. The notationSlabel represents a set of all states referenced bylabel. A single
state is denoted ass. A single state referenced bylabel is denotedslabel. Likewise,
the notation∆ is reserved to represent a set of transitions. The notation∆label
represents a set of all transitions referenced bylabel. A single transition may be

Table 3.1: Label definitions

Label Description Applied To

info known The operandinfo has been produced in the system. State(s)
info unknown The operandinfo has not been produced in the system. State(s)
info accepted The operandinfo has been accepted. State(s)
info stored The operandinfo is occupying storage. State(s)
info resolve The operandinfo is resolving to multiple values. State(s)
task start The task has yet to begin execution. State(s)
task final The task has completed execution. State(s)
info required The operandinfo is required. Transition(s)
info produced The operandinfo if produced Transition(s)
info forget The operandinfo is forgotten. Transition(s)
res busy A resourceres is busy. Transition(s)
task bypass The task is bypassed to its final state(s). Transition(s)

2. This may be a time-step edge if finer synchronous granularity is used.
3. This may be a time-step period if finer synchronous granularity is used.
26
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denoted asδ. A single transition referenced bylabel is denoted δlabel.
Alternatively, a transition may be denoted as (s, s′) wheres is thepresent stateor
predecessor ands′ is thenext stateor successor. When referring to all transition
to or from a set of statesSlabel, the notations (—,Slabel) and (Slabel, —) are used
respectively.

Definition 3.1 A modeling NFA is defined by the seven-tuple,MA = (S, ∆, I, R,
L, LS, LT). S is a set of states.∆:S→S is the next state function or transition rela
tion. In some cases,∆ may be partitioned into two phases,∆dataand∆control. I is
the set of operands,info ∈ I, produced, accepted or constrained external or inter
to an MA . When a precise value of an operandinfo must be distinguished, the
notationinfoval=i is used, where the meaning ofi will be made clear from the prob-
lem context.R is the set of all resource types (function units, buses, local regist
etc.),res∈ R, which may be required in production of anMA’s operands.L is the
set of all labels,label ∈ L, used in anMA . LS is a family of labeled sets of states
Slabel ∈ LS whereSlabel ⊆ S and is the set of states referenced bylabel. LT is a
family of labeled sets of transitions.∆label ∈ LT where∆label ⊆ ∆ and is the set of
transitions referenced bylabel.

Definition 3.2 A path in an MA is a potentially infinite sequence of state
(s0, s1, s2, …), such that for each successive pair of states (si, si+1) ∈ ∆.

3.1.2  Non-Pipelined and Pipelined MA

Figure 3.4 shows a labeledMA representing the sequential behavior of
2 operand in/1 operand out 2 time-step non-pipelined task. Concretely, this m

model an addition task implemented on an ALU hardware resource requiring
clock periods. Once the required input operands are present, this machine
nondeterministically choose to begin a sequence that eventually leads to the o
operand being known after two transitions. Also, this sequence toSopc known
requires that an ALU resources is occupied for two consecutive transiti
Although not shown in figure 3.4, states S01 and S11 are also lab
opa acceptedand opb accepted.In general, Sinfo accepted includes all states
sequentially following ∆info required, Sinfo known includes all state sequentially
following ∆info producedandSinfo unknownincludes all state sequentially proceedin
∆info produced.

Figure 3.4 may be modified easily to represent the sequential behavior
2 operand in/1 operand out 2 time-steppipelined task. Instead of twoalu busy

Figure 3.4An MA  representing a 2 time-step add task

opc
unknown
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opa required
opb required

alu busy
opc
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alu busy

opc produced
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labels, a singlealu entry busylabel, as shown in figure 3.5, throttles the number
alu tasks initiated during any time-step. Allalu entry busylabels are implicitly
limited to a maximum concurrent bound during composition. In this way, n
stallable pipelined behavior is simulated. Through the use of additionalMA state
and appropriateMA transition labeling, non-pipelined and pipelined behavior
various depths may be represented.

Given these more descriptiveMA examples, several general properties of
MA may be highlighted. First, although not explicitly labeled in the figures, th
are well defined start state(s) and final state(s) in an acyclicMA . A start state has
no knowledge of any information produced by the modeled task. A task be
when transiting out of a start state. For theMA in figure 3.5, the start state is S00
In general, the set of start states are referred to asStask start. A task completes at a
final state. For a task to complete, all desired information must have b
successfully produced. For theMA in figure 3.5, the final state is S11. In genera
the set of final states are referred to asStask final. Furthermore, there are
nondeterministic paths which allow states inStask start or Stask final to idle
indefinitely. The nondeterminism ofStask startallows anMA to delay its task in
favor of another MA’s more critical task when in a composition. Th
nondeterminism ofStask final sequentially records that this task has complete
Finally, paths fromStask startto Stask final in an MA represent a task’s allowed o
imposed local sequential behaviors.

3.1.3  MA with Alternatives

Because anMA is nondeterministic, it easily encapsulates alternatives.
example, some scheduling problem task may be implemented by a three time
multiplier or by two executions of a single time-step ALU. This freedom may
directly specified in anMA as shown in figure 3.6. Nondeterminism is exploited
provide two (or more) paths fromStask startto Stask final. Each alternative path may
have a different sequential behavior and typically requires a different se
hardware resources. The better choice, if one is better, is discovered d
exploration of the composition.4

4. Alternative paths should not be confused with control cases (section 3.4). Alternative
paths offer multiple possible implementations whereonly one needs to appear in a final
solution. On the other hand, control cases offer multiple possible choices whereall
choices must appear in a final solution.

Figure 3.5An MA  representing a 2 time-step pipelined add task
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3.1.4  Aggregate MA

It is possible to specify anMA which may require several fundamenta
hardware units and implement a more constrained sequential behavior.
instance, a multiply and accumulate (MAC), r= a × b + c× d, is a commonly
implemented task which requires two multiplier uses, one adder use and invo
multiple operands. A possibleMA representing this task is shown in figure 3.
This MA requires operand pairs a,b and c,d to be presented at successive
edges yet allows either ordering. A three time-step pipelined multiplier and a
time-step pipelined adder are assumed. After six time-steps, the result ope
opr, is produced. ThisMA trades scheduling freedom for less state as well
datapath guidance. By imposing successive ordering on the input operand
forcing the add to begin immediately when its input operands are available, se
constrained MAC datapath elements may be inferred.

Another MAC datapath element might consist of a non-pipelined two time-s
multiplier and a single time-step adder. Furthermore, the timing of the last mult
stage may be such that it may bechained5 with the add. Figure 3.8 shows what a
MA representing this sequential scenario might look like. Notice that the trans

5. Both the multiply and add occur insequence within the same time-step.

Figure 3.6An MA  representing alternative task implementations
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Figure 3.7An MA  representing an aggregate MAC
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(S5,S6) is labeled with bothalu busyandmult busy. This simply indicates that for
this transition to occur, both an aluand a multiplier are required at some time
within that time-step. This may be interpreted as chaining or as two indepen
but necessarily concurrent resource uses. Hence a designer is allowed to dec
exact physical meaning ofres busy labels and the correct interpretation.

Figure 3.8 highlights some additional uses ofres busylabels. The transition
(S5,S6) is also labeledbus busy. This assumes that the add result must
communicated over one of possibly several busses to a register. Hence, one
this bus resource must be counted. Also, the transition (S0,S1) is labeled with
bus busylabels. This assumes that a multiplication requirestwo input operands and
hence must occupytwo busses to begin.6 All res busylabels have weight one and
multiple res busylabels are attached to the same transition to create larger weig
The flexibility and potential of res busy labels enables specification o
sophisticated concurrency constraints. For example, complex resource hiera
and partitions may be specified. These are meaningful in the context
composition and therefore are addressed in chapter 4.

3.1.5  Multiple Output MA

So far, all MA have modeled the production of just one output opera
. An MA with multiple output operands may be specified. As an examp

figure 3.9 shows anMA for a three time-step divide task which produces quotie
and remainder output operands. Although it is possible to specify multiple ou
operands, it often becomes state costly to represent all desired permutatio
when and how long various output operands areknown. For this reason, it is
typically easiest to partition tasks with into severalMA , each modeling the
production of just one output operand. When composed, theseMA can still be

6. MAC internal transfers are via the multiplier-to-adder bus network,mabus.

Figure 3.8An aggregate MAC task with chaining and busses
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sequentially related through use of a sequential constraint or protocol as desc
in section 3.3.

3.1.6  Recomputation and Memory

TheMA described thus far have had persistent memory. Once a task com
an output operand, it is never forgotten. It may be that register storage is lim
and it is preferred not to store a result but rather recompute it when nee
Figure 3.10 shows anMA with the option toforgeta result operand. This transition
forces theMA to Stask startand the task must be reimplemented to recreate
result operand. If allMA in a composition have∆info forget transitions, then
considerable freedom is added and hence solution space expansion occurs.
especially true if anMA is allowed toforgetunder any circumstance --even whe
the result operand was never used! Hence, to use∆info forgettransitions effectively,
a designer should only specify them when and where potentially help
Furthermore, when constructing the composition,∆info forget transitions should
only be enabled after at least one child task has accepted the result operand

Register usage is another important resource constraint. This may be mo
either in anMA or through interpretation of a composition. Figure 3.11 shows
MA ( with label SUBJECTS suppressed) which explicitly differentiates betwee
scheduling history,info known, and physical storage,info stored.7 Modeling
physical storage in anMA requires additional state and hence leads
compositions with additional state. This expense can be avoided by enfor
physical storage constraints at the composition level. In a composition, aninfo
known label may be inferred to imply physical storage ifinfo has yet to be

7. Only one execution of the task is allowed here. With∆info forget transitions,Sinfo known
states may be directly interpreted as implying physical storage and another means of
determining scheduling history must be utilized.

Figure 3.9An MA  representing a divide task with two output operands
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Figure 3.10An MA representing a 2 time-step pipelined add task with forget
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accepted by children tasks. Operand acceptance is indicated withinfo accepted
labels. The details of this preferred technique are presented in section 4.1.5.

3.2  Cyclic MA
With looping behavior, a task is scheduled multiple times and iterativ

produces result operands. For instance, a RISC processor executing an instr
stream must repeatedly perform a memory read task to access every instru
Unfortunately, keeping track of multiple coexisting result operands for o
particular task can quickly become complex and costly. In fact, it may be
unbounded state is required for full loop exploration. Consider a loop whic
unrolled to obtain as much parallelism as possible. Some tasks may produ
infinite number of result operands concurrently if this parallelism is taken to
limit. Specifically, for the RISC example, it is possible thatall instructions are
prefetched from memory and stored locally before any one instruction is exec
This requires tremendous local state and offers little practical benefit.

ABSS bounds this complexity and cost in the formulation of a cyclicMA . At a
minimum, two successively produced result operands (anodd operand labeled
with ‘~’ or an evenoperand requiring no additional label) must be distinguish
This can be done with two separate acyclicMA but will require additional state
and will not have a simple natural repeating behavior. Instead, two acyclicMA are
overlaid on one set of state encodings as shown in figure 3.12. By doing th
single state bit can distinguish betweenknown/unknownoperands in the odd or
even iteration sense for a one time-step task behavior. Furthermore, a nat
repeating automaton structure results. Complexity and cost are bounded be
an operand may only exist in one iteration sense at any given time-step. SinceSinfo

knownandSinfo~ knownstates are mutually exclusive by construction, it is impossi
to have simultaneously knowledge of an operand in both iteration senses.
“pigeon hole” analogy provides another way to think of this. A cyclicMA reserves
one pigeon hole per operand and each pigeon hole has room for one ope
Finally, consider a RISC processor composition wheren register file read tasks are
modeled byn cyclic MA . Hence, only at mostn register file read results are eve
concurrently available. The sense, odd or even, of a particular register file
result distinguishes whether it belongs to the current or previous instruction.

Two senses of information is the minimum needed to distinguish betw
successive iterative results. It is possible to generalize to a larger numbe
information senses but is not practical from the localMA perspective. Suppose

Figure 3.11An MA  with explicit physical storage
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three iteration senses were used. AnMA could be constructed which sequenc
through three result operand instances,r known, r~ knownand r# known. As all
operand instances in anMA are mutually exclusive by construction, this is n
better than the two iteration sense model which represents the same seque
r known, r~ known, r known. More importantly, the two iteration sense mod
requires less state.

What might be advantageous for some scheduling problems is if a cyclicMA
allowed multiple concurrent (not mutually exclusive) result operand iteratio
instances. This could be achieved through direct specification of anMA .
Unfortunately, as pointed out in section 3.1.5, multiple output operandMA
specification quickly becomes complex. Instead, several (rather than one) s
result-operand cyclicMA are used to model each task when in a compositi
Consequently, additional modeling state is naturally included to represent r
operands from multiple concurrent instances of a task.8 This is analogous to
“unrolling the loop” in conventional methods. To give a specific example, a RI
processor composition may represent execution of just one instruction. A pipe
RISC processor executes several instructions concurrently although at diff
stages. To model multiple concurrently executing instructions, a RISC proce
composition is duplicated so as to contain additional modeling state.
duplication process is described in chapter 4. Finally, duplication is demonstr
in chapter 6 to potentially improve solution quality at the possible expense
greater scheduling complexity.

8. When additional modeling state is included in a composition, solutions belonging to
minimum state models are still implicitly covered.

Figure 3.12Acyclic to cyclic MA transformation
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3.2.1  Duals in Cyclic MA

As with acyclic MA , cyclic MA are capable of representing comple
sequential behavior and requirements of tasks. The main difference is that a c
MA contains two symmetric sequences, even and odd, of a task’s sequ
behavior. Figure 3.13 illustrates this for a two time-step non-pipelined func
unit. The top path (S00, S01, S11) represents the sequential behavio
production of an odd result operand. Input operands are ~requiredin the odd sense
and then two time-steps later the result operand is ~known. Likewise, the bottom
path (S11, S10, S00) represents the sequential behavior for production of an
result operand. These two paths, as well as the states and transitions along
two paths, are symmetric by construction and are referred to asduals. For
example, states S00 and S11 are duals, states S10 and S01 are duals, tran
(S00, S01) and (S11, S10) are duals, and finally paths (S00, S01, S11)
(S11, S10, S00) are duals. Although not shown in figure 3.13, states S01 and
are labeledinfo~ acceptedand states S10 and S00 are labeledinfo accepted. In
general,Sinfo acceptedincludes all states sequentially following∆info required and
Sinfo~ acceptedincludes all states sequentially following∆info~ required. Finally, both
Stask~ start and Stask final include S00. Likewise, bothStask start and Stask~ final
include S11.

An acyclicMA may be transformed into a cyclicMA by mirroring states and
transitions to form dual tasks:taskandtask~. Furthermore,Stask~ startandStask final
are overlaid on one set of states. Likewise forStask startandStask~ final. These states
demark where one iteration of the tasks ends and another begins. Also, whe
task iteration ends, the next is ready to begin. Paths in a cyclicMA still represent
allowed or imposed task sequential behaviors but now may repeatad infinitum.
More specifically, a cyclicMA may be described as a connected nondetermini
Büchi automaton (accepting infinite sequences) with two symmetric mutu
exclusive halves (duals). Finally, to clearly identify duals and simplify upcom
composition exploration algorithms, encodings for dual states are assigned
that a dual encoding may be found by simple bitwise complementation.
example, the dual of a state encoded ‘1011’ would be ‘0100’.

Section 3.1.6 described how an acyclicMA is specified to model physica
storage and task result operand recomputation. This flexibility is not lost w

Figure 3.13A labeled cyclic two time-step MA
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specifying cyclicMA . Figure 3.14 shows a cyclicMA which models a two time-
step task that allows result operand recomputation. A dashed line divides thisMA
into symmetric halves. Task start/final states are S0 and S7. A cyclicMA that
models physical information storage may be specified in a similar fashion.

3.3  Protocol MA
All MA discussed up to this point are specifications of task sequen

behavior, Q ∈ t ∈ C.T∈ SP. They model anticipated sequential behaviors
hardware units implementing tasks. AnMA may also specify sequential o
protocol constraints desired by the designer or required for external interface.
MA are elements of scheduling problem sequential behavior,Q ∈ SP. TheseMA
constrain how several otherMA sequentially interact. This can range from
governing how a few taskMA interact to how an entire composition must interfa
to the external world.

A scheduling problem may represent a portion of a larger design that m
interface to the remainder of the design via specific IO protocols. In this case
IO protocol constraints may be represented as severalMA and are elements of
Q ∈ SP. For example, suppose a designer knows that a subsystem
communicate through one IO port and alternate between input and ou
transactions. Furthermore, an arbitrary delay is permitted between input and o
transactions. Figure 3.15 represents this sequential constraint as anMA . When IO
protocol MA are composed and co-executed with other traditionalMA ,
composition constraints ensure that appropriate localMA transitions are
synchronized across the composition. In this example, all taskMA transitions
requiring an input operand via the IO port must be synchronized withinput or
input~ required transitions in this protocolMA . Likewise for IO port output.

Figure 3.14An MA  for a cyclic 2 time-step task with recomputation
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In other situations, the scheduling problem may contain a complicated inte
task which is not easily described with a singleMA . Instead, several simpleMA ,
each describing only the existence or non-existence of one of the task’s r
operands and calledoperand MA9, are co-executed with a sequentialMA in the
composition. In this way, the sequentialMA imposes the task’s correct sequenti
behavior while the several operandMA keep track of information existence
Although decomposing complex tasks into multipleMA may require more state
than a singleMA representation, it is not necessarily more expensive to repre
as a ROBDD. Furthermore, complex tasks may now be easily specifie
understandable small pieces yet be represented completely and in full comp
when composed.

Sequential and protocol constraintMA belong toQ ∈ SPand constrain how
severalMA may sequentially interact. The cardinality ofQ ∈ SPmay be greater
than 1. TheseMA do not represent tasks which consume and produce informa
but instead regulate how information interacts sequentially in a composit
Sequential and protocol constraintMA may be applied at varying scopes. Th
simplest sequentialMA might constrain how two internal task or operandMA are
sequentially ordered. A complex sequentialMA might dictate how an entire
scheduling problem composition must sequentially interface to the outside w
As an example, the RISC processor may require that a sequential reconfigu
penalty is paid to switch from successive memory reads to memory writes and
versa. Finally, sequential and protocol constraintMA have labeled transitions and
states, drawn from table 3.1, that are synchronized with transitions and stat
otherMA  during the composition process described in chapter 4.

3.4  Control and Multivalue MA
The MA discussed thus far have assumed that actual operandvalues are

independent from system behavior. Hence, only the existence or non-existenc
result operand, not its type or value, are modeled. Furthermore, no prede
mutual exclusiveness of operands has been made. EachMA independently models

9. OperandMA  are single time-step acyclic or cyclicMA  as shown in figure 3.12.

Figure 3.15A protocol constraintMA
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sequential production of typically one or a small set of result operands. W
several MA are composed to represent system behavior, this oper
independence is still retained. Consequently, in a composition, potential fo
possible concurrent combinations of operand existence are modeled. Althoug
does encapsulate all potential system behavior executions, it is an overestim

With control-dependent behavior, the assumption that actual operand va
are independent from behavior is not valid. The very name ‘control-depen
behavior’ implies that control operand values do alter behavior. Hence, some
MA , which does distinguish between some possible operand values, is need
general, maintaining complete possible concurrency for all operandvalues is
potentially costly and not necessarily required. For example, the value
decoded RISC processor is necessary to select appropriate executions. O
other hand, once an instruction is decoded, it refers to exactly one instruction
need not represent multiple concurrent instructions. In this section, multiv
MA , meeting these needs, are introduced.

3.4.1  Intuitive Multivalue MA.

A generic control structure may require a control operand with potential va
in the range (0,1,...,n) which identify 0 ton possible cases of behavior. Figure 3.1
shows an intuitive acyclic multivalueMA that models single time-step productio
of a result operand required for this case statement. Rather than justinfo unknown
andinfo knownlabels, labels identifying theknownoperand value are used. Sinc
the desired final system execution sequences must be deterministic10, the model
need not support multipleconcurrent values of this result operand. Mutually
exclusive states, each uniquely and typically logarithmically encoded, differen
betweenvalues of this result operand. Figure 3.17, is figure 3.16 transform

Figure 3.16An intuitive acyclic multivalue single-time stepMA
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through standard steps of mirroring and overlaying task start/final state(s) to c
a cyclic multivalueMA . Finally, as with regularMA , multivalueMA only allow
one known operand instance at a time and are subject to the same ‘pigeon
state bounds as discussed in section 3.2.

As with a regularMA , a multivalueMA may encapsulate complex sequenti
behaviors and nondeterministic alternatives. This tends to be tedious and com
as both sequential behaviors and all possible values of result operands mu
considered in tandem. To avoid this, a multivalueMA is expressed as a
composition of twoMA . One MA specifies sequential behaviors and res
operand existence/non-existence but ignores result operand values. ThisMA is in
fact a regular cyclic or acyclicMA as previously discussed in detail. The seco
MA specifies result operand existence/nonexistence as well as result op
values but no complex sequential behavior. ThisMA is a single-time step
multivalue MA similar to what is shown in figures 3.16 or 3.17. Durin
composition, result operand existence/nonexistence for these twoMA are
synchronized. This more understandable partitioned approach achieves the d
sequentially complex yet multivalueMA . Consequently, only single time-ste
acyclic and cyclic multivalueMA  need be discussed.

10. The modeling technique uses nondeterminism. The modeled system is deterministic
In a real system,after an operand is computed, its precise value is known. Hence, there is
no need for multiple operand values to exist concurrentlyaftercomputation. This does not
exclude speculation which presumesall or some operand valuesbefore actual computa-
tion.

Figure 3.17An intuitive cyclic multivalue single-time stepMA
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3.4.2  Validation Issues and Local MA Solutions

When a multivalueMA is used, execution foreveryresult operandvaluemust
be guaranteed. Consider if a particular control case is known to never occur, th
need not be modeled as a distinct control operand value. Hence, by pro
construction, execution completion for every result operand value of a multiv
MA is necessary. Also, if a particular result operand value does not differen
behavior, then it need not be distinguished as a unique case in a multivalueMA .
Consequently, all multivalue operand cases are distinct, impact behavior in s
way and must be covered by some correct execution sequence of the sy
Finally, a collection of execution sequences covering all cases, called anensemble
schedule, must be causally compatible or valid. Validation is the process
determining causally compatible ensemble schedules. It becomes important d
the exploration of a composition,CMA , and is discussed in detail in chapter 5.

To simplify validation, a local change, discussed here, is made to ev
multivalue MA . Consider the behavior described in figure 3.18. There are th

tasks to execute:compare, addandsubtract. If only two single time-step ALUs are
available to implement these three tasks, a possible minimum latency exec
sequence isaddandcomparein one time-step. This covers thecompare truecase
and speculates11 on theadd. Thecompare falsecase must be covered also and ma
be done withsubtract and comparein one time-step. This execution sequen
speculates on thesubtract. Although these two execution sequences form
ensemble schedule (they cover allcompareresult operand cases), the ensemb
schedule is not valid. The proposed ensemble schedule requires speculat
both theadd and thesubtractas well as performing thecompareall in one time-
step. This requires three ALUs and is hence infeasible. In chapter 5, valida
avoids invalid ensemble schedules by insisting that the following propositio
always true: “At anysinglestate in any ensemble schedule occurringbeforea case
operand is known, every possible case operand still eventually complet
execution.” Although the details of validation are left to chapter 5, validation
facilitated by addingresolve-labeled states to all multivalueMA .

Figure 3.19 shows figure 3.16 modified to include aresolve-labeled state,
sinfo resolve. This new state is inserted betweenSinfo unknownandSinfo knownstates. It

11. To speculate on a task is to begin execution of a task before it is absolutely certain tha
the result operand(s) will be required.

Figure 3.18Behavior to highlight validation issues

if (c > 100)

res = a + b;

else
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is a deterministic state and provides a checkpoint for validation to ensure
execution sequences foreverypossible operand value exist. Validation checks th
all sinfo resolve-exiting transitions still exist in a valid ensemble. When in
composition, a constraint insures that the multivalueMA’s sinfo resolveoccurs in
sync with info production in the mated regularMA . Figure 3.20 shows a cyclic
multivalueMA with statessinfo resolve andsinfo~ resolve.

TheMA in figures 3.19 and 3.20 are also the first examples ofmultiple phase
MA . So far, a transition in anMA represents activity during a complete time-ste
typically a clock period. In a multiple phaseMA , a transition still represents
activity during a complete time-step, but there may bedifferent setsof transitions

Figure 3.19A two-phase acyclic multivalue single-time stepMA
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Figure 3.20A two-phase cyclic multivalue single-time stepMA
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for differenttime-steps. Imagine a clock period divided into two phases, data
control. During the data phase, all activity associated with data production
communication is handled. During the control phase, all activity associated
actual operand values and control decisions is handled. Transitions belongi
the data phase are shown solid while those belonging to the control phas
dotted. A two-phase approach permits addition ofsinfo resolve states while still
maintaining a consistent synchronous view in all models. Finally, a two-ph
approach simplifies other control related issues such as task bypassing.

3.4.3  Control-Obviated Task Bypassing

With control-dependent behavior, some portions of the behavior are n
required. For example, if thecomparein figure 3.18’s resolves true, then it is no
necessary to execute thesubtract. For acyclic MA compositions, a control-
obviated task may remain unexecuted. On the other hand, for cyclicMA
compositions, control-obviated tasks must be force bypassed to the next itera
task start state(s),Stask startor Stask~ start. If this were not done, confusion would
occur in a composition as to what particular iteration various control blocks w
executing. Furthermore, by bypassing control-obviated tasks, they are corr
primed and may immediately begin speculative or nonspeculative execution o
next iteration. Although task bypassing is a necessity for constructing a co
composition, additional bypass transitions must be added at theMA specification
level to facilitate this. Finally, although acyclicMA compositions do not require
task bypassing, it does simplify composition behavior termination detect
Hence, task bypassing is included for both acyclic and cyclicMA which model
control-dependent behavior.

Figure 3.21 shows a two time-step pipelined task with task bypassing
δtask bypasstransition is added from any state which isnot in Stask finalto Stask final.
More formally, . All ∆task bypassoccur during
the control-phase and are hence shown as dotted arcs. Furthermore, figur
also shows what other transitions exist during the control-phase for regular ac
MA . These transitions simply hold the current state during the control-phas
that no change (other than an enabled bypass) may occur. Figure 3.22 sh
cyclic MA with task bypassing. Symmetric transition sets,∆task bypassand

Figure 3.21An MA representing a 2 time-step pipelined task with bypass
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∆task~ bypass, are added. These take any state on ataskor task~execution sequence
to Stask final or Stask~ final respectively.

3.5  Summary
This chapter described modeling NFA,MA , specification. Modeling NFA are

the base building blocks used to describe sequential production of a task’s r
operands. They are the atomic pieces necessary for a first composition
instance, sequential behavior for atomic tasks in a RISC processor such as re
file reads and writes, ALU computations, memory access, etc., are specifie
MA . As described, a designer manually and explicitly specifies anMA as a
labeled nondeterministic state graph. This is kept relatively simple as on
handful of states and transitions are used in any singleMA specification. When
complexity becomes too great, a designer relies on and leverages the pow
composing severalMA . State and transition labels assign meaning to lo
sequential behavior as wells as provide “hooks” for creating correct compositi
Various useful types of acyclic, cyclic and multivalue (control)MA were
illustrated and described.

Figure 3.22A labeled cyclic two time-step MA with task bypass
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Chapter 4

Composing Modeling Automaton: CMA

Chapter 3 describes how the sequential behavior of one task in a comp
task, Q ∈ composite task,is constrained and represented by a modeli
automaton,MA . In this chapter, sequential behavior is assumed to be assigne
each task in a composition via itsMA . All such MA are composed through a
Cartesian product step to create a new, larger composite modeling autom
CMA , which represents the as yet unknown sequential behaviors of the comp
task. The Cartesian product step is not sufficient to create a correctCMA . This
chapter describes how aCMA is pruned through a series of dependency, capac
and viability refinements. Furthermore, concurrency constraints are applied
CMA to limit available system hardware resources such as function units, bu
and local memory. After aCMA is correctly pruned, it representsall valid
execution sequences of a composite task. It is possible to systematically ex
this composite model and determinebest-possible execution sequences. FS
controllers and datapath portions may be synthesized from aCMA path or
ensemble subset ofCMA paths. Finally, a prunedCMA is itself anMA and may
be used in further compositions in a hierarchical fashion.

With regard to the RISC example, the end goal of composition is to crea
NFA that represents all valid executions of all instructions. This requires mode
control-dependent execution as well as cyclic behavior. To reach this leve
sophistication, it is helpful to first discuss the composition process for sim
scheduling problems. This chapter first presents the composition proces
acyclic data-flow scheduling problems. After this introduction, composit
differences for cyclic data-flow, acyclic control-dependent and cyclic cont
dependent scheduling problems are presented and discussed in that
Common constraint formulations for all types of compositions are generali
Finally, particularly efficientCMA construction and implementation technique
derived both from experience and problem insight are described.
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4.1  Acyclic Data-Flow Composition
Consider the simple acyclic data-flow example shown in figure 4.1. T

composite task represents a behavior that requires four input operands
produces two output operands. This problem is small enough that the minim
latency schedule,add_v0 in time-step 1 followed byadd_v1 andsub_v2 in
time-step 2, is obvious. Note thatadd_v1 andsub_v2 must followadd_v0 as
they depend on the result,r0 , produced byadd_v0 . Each of the tasks in
figure 4.1 is represented by its ownMA in the composition as shown in figure 4.2
TheseMA have labelSUBJECTs that reflect operands and hardware resources in
composite task. For example, there is a specificMA for task add_v0 which
requires input operandsi0 and i1 , occupies an ALU resource1, and produces
result operandrv0 all in a single time-step. ACMA is created by first composing
theseMA and then applying pruning steps. The remainder of section 4.1 discu
the composition and pruning steps with respect to this example.

4.1.1  The Cartesian Product Composition Step

A Cartesian product of figure 4.2’s threeMA is shown in figure 4.3. There are
two important traits to note about aCMA that are evident from this figure. First, to
form a true Cartesian product, state variables for each taskMA are encoded with a
uniqueset of ROBDD variables in aCMA . This is seen in figure 4.3’s composition
state vectors. The composition state vectors require three Boolean state vari

1. Bus busy labels are left out to simplify the figures.

Figure 4.1A simple acyclic data-flow example

add_v0

i0 i1

r0

add_v1

r2

r1

sub_v2

i2

add_v0 = ( (i0, i1), (r0),
(ALU, In Port, In Port),
(Single time-step) )

add_v1 = ( (r0, i2), (r1),
(ALU, Out Port, In Port),
(Single time-step) )

sub_v2 = ( (r0, i3), (r2),
(ALU, Out Port, In Port),
(Single time-step) )

i3
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as each taskMA’s state encoding contributes exactly one Boolean state variable
fact, the composition state vectors are ordered {sub_v2 , add_v1 , add_v0 }.
Second, because a true Cartesian product machine is created, no taskMA labels or
associated properties are lost. Figure 4.3 shows transition and states with mu
labels that identify specific taskMA properties. These labels provide the necess
references to subsets of states and transitions with specific properties req
during the composition pruning steps. Finally, although figure 4.3 is sho
explicitly, all CMA of meaningful scale are implicitly represented as ROBDDs

Definition 4.1 CMA denotes the Cartesian product automaton of severalMA
and is itself anMA . Let M denote the set of allMA , m ∈ M, composing aCMA .
Then a CMA = (S, ∆, I, R, L, LS, LT) is composed asS= ∏m∈M m.S and2

∆ = ∏m∈M m.∆ where∏ represents a Cartesian product. As with allMA , ∆ may be
partitioned into at least two phases, ∆dataand∆control, and is not necessarily single
valued.I = ∪m∈M m.I where∪ represents set union. Likewise,R = ∪m∈M m.Rand
L = ∪m∈M m.L. A labeled set Slabel ∈ LS for a CMA is constructed as
Slabel = ∪m∈M m.Slabelwhenm.Slabel exists. A labeled state setSlabel is created for
eachlabel ∈ L for aCMA . The set union of allSlabel forms the composition family
of sets LS. Likewise, a labeled set∆label ∈ LT for a CMA is constructed as
∆label= ∪m∈M m.∆labelwhenm.∆label exists. A labeled transition set∆label is cre-
ated for eachlabel ∈ L for aCMA . The set union of all∆label sets forms the family
of setsLT.

4.1.2  Basic Operand Dependencies

For a single operandinfo, each possible use ofinfo must follow its creation. In
the RISC example, a result operand must be produced by an ALU comput

2. Dot notation was introduced in chapter 2, definition 2.3.

Figure 4.2AssignedMA for each task in the example

r0
unknown

S0

r0
known

S1

i0 i1 required
alu busy

r1
unknown

S0

r1
known

S1

r0 i2 required
alu busy

r2
unknown

S0

r2
known

S1

r0 i3 required
alu busy

add_v0

sub_v2

add_v1
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before it may be written back to the register file. The Cartesian product show
figure 4.3 has transitions labeledi0 required leaving states labeledi0 unknown.
This violates the core of scheduling: operand dependence, which requires thi0
may be used only if it exists in the system. These dependency violating transi
and any subsequently isolated states are removed through dependency cons

As presented in definition 2.8 of the scheduling problem, an oper
dependence,e ∈ C.E, pairs produced operand(s) with a consumption point.

Figure 4.3Cartesian product composition step for the example
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operand dependence is specified for every required input operand,a ∈ A, of every
task, t ∈ C.T, in the scheduling problem. Operand dependency constraints a
this information, operand dependence, to aCMA model of the scheduling
problem.

A basic operand dependence is of the form (task1.P.info, task2.A.info). In the
basic case, the operand dependency’s Boolean expressionf consists of just a single
operand.Task1’s locally produced operandinfo is solely required astask2’slocal
input operandinfo. This is equivalent to a data dependency edge in a traditio
DFG.

A singlebasic operand dependence3, (taskp.P.info, taska.A.info), is modeled
by the implication,

.4 (4.1)

In this implication,ma is the accepting task’sMA while mp is the producing task’s
MA . This construct insures that any transition labeledinfo required may only
occur if the required information is present in the system. The labeled state
Sinfo knownin the present state indicates that the required information exists in
system. Another way to view this is that a present state labeledsinfo knownenables
(yet does not demand) an information acceptingδinfo required-labeled transition. Let
ζe represent expression 4.1 for one operand dependence,e.The refinement of∆data

for aCMA is,

. (4.2)

Equation 4.2 only shows refinement of∆data∈ CMA . All refinements are defined
on∆dataand/or∆controlwhile refinements of other sets of anyCMA are implicit. In
practice,S∈ CMA  is never explicitly stored but always determined from∆.

Figure 4.4 shows figure 4.3 after all dependency violating transitions and s
are pruned. Now if a transition is labeledinfo required, it will only exit a state
labeledinfo known. Hence, only execution sequences which satisfy depende
conditions remain. In fact,all such valid execution sequences, even of infin
latency, remain.

4.1.3  Alternative Operand Dependencies

It is possible that two sources for one operand exist in a scheduling prob
For instance, some operandinfo may be computed through multiplication o
repeated addition. In section 3.1.3 this same alternative was represented dire

3. Other dependency constructions (Alternative, Resolved and Undetermined) will be
introduced.
4. In a ROBDD, implications may be built as .

ma.∆info required mp.Sinfo known —,( )⇒

p q⇒ pq=

∆n 1+ ∆n ζe
e C.Ebasic∈

∏•=
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an MA . It is also possible to represent this alternative at the composite task
by using severalMA . SomeMA represent the repeated addition behavior wh
anotherMA represents the multiplication behavior. Two equivalentinfo instances
are produced,infoby addsand infoby multiplication. During the exploration process, a
winning alternative, if one exists, becomes evident. This type of nondetermin
scheduling problem behavior has no equivalent in traditional DFG/CD
representations, but is somewhat similar to optimizing compiler stren
reduction. In general, alternative operand dependencies are useful to repre
single operand produced in several different ways. The precise difference bet
alternatives is left to the designer. Some useful differences are behavioral
algebraic transformation, etc.) and spatial (i.e. equivalent operand instance
computed in physical design partition a or partition b [129]).

A singlealternative operand dependence,
(taskp1.P.info+taskp2.P.info+…+taskpn.P.info, taska.A.info) is modeled by the
implication,

. (4.3)

In this implication,ma is the accepting task’sMA while mp1 throughmpn are indi-
vidualMA each producing an equivalent yet alternate instance ofinfo. This conse-
quent directly corresponds to an alternative operand dependency’s expressionf. As
long as at least one source has producedinfo, then theinfo requiredcondition is
satisfied. Implications for all scheduling problem alternative operand depende
are built and prune aCMA’s ∆data in similar fashion to equation 4.2.

Figure 4.4Dependency-constrained explicitCMA for the example
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⇒
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4.1.4  Undetermined Operand Dependencies

An MA in a composition may produce operands yet require no input opera
A random number generator is an instance of this. Or, anMA may require input
operands but these input operands are always available or will be supplied
from an external source with no timing constraints. Unconnected or unneces
input operand consumption points such as these require an undetermined op
dependence of the form (—,a.info). Since the Boolean operand productio
expression is don’t care, —, no pruning of∆datafor a scheduling problem’sCMA
is necessary.

4.1.5  Resource Concurrency Bounds

If only a single ALU is available for the example in figure 4.1, then the tw
time-step minimum latency schedule is impossible as it requires two concu
uses of an ALU during the second time-step. Prohibiting these resource viola
executions corresponds to removing transitions from theCMA where the number
of res busylabels exceeds the number of concurrentres uses allowed in the
scheduling problem, (bound, Tr) ∈ R ∈ SP. This constraint may be built by
enumerating all combinations of 0 up tobound busy-labeled transitions for a
particular resource class. At first glance, this constraint appears to be expone
but its ROBDD representation requires only time and nodes of or

(see section 4.5.2). LetAres busy be the set of all
combinations of at mostbound transitionsδ ∈ ∆res busy. Then,

(4.4)

represents all possible transitions which observe resource bounds. Expressi
is built for all resource types and intersected with∆datato prune resource violating
transitions. Letξres represent expression 4.4 applied to a resource typeres∈ R.
The refinement of∆data is,

. (4.5)

This construct may be generalized to bound any type of transition-basedconcur-
rency in a CMA . As transitions in ABSS represent activity during a time perio
any such concurrent activities may be bounded.

It is also desirable to bound the number of operands which are concurre
kept in local storage. This local storage concurrency constraint must be formu
on states as they represent what is stored or available in the system at tim
boundaries. One way to do this is to explicitly add additionalMA state that
differentiates betweeninfo knownandinfo storedas described in section 3.1.6. A
alternative preferred method is to identify memory care conditions at

O bound ∆res busy×( )

δ
δ A∈
∏ 

 
A A res busy∈

∑

∆n 1+ ∆n ξres
res R∈
∏•=
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composition level without adding state. Amemory care condition for some
operandinfo is expressed as,

(4.6)

In this equation,mp is theMA producinginfo while ma1 throughman are all com-
positionMA which requireinfo. This equation says that ifinfo is knownyet some
task requiringinfo has not acceptedinfo, then info must occupy storage. Le
Amemory carebe the set of all combinations of at mostboundmemory care condi-
tions,mcc, for all operandsinfo∈ I in a composition. Then,

(4.7)

represents all possibleCMA states which observe memory concurrency boun
Expression 4.7 is intersected with the present state portion of∆datato prune mem-
ory concurrency violating states.

4.1.6  A Completely Pruned CMA

If a single ALU resource constraint is imposed on the example in figure
then the completely pruned explicitCMA is shown in figure 4.5. This, like any

other MA , represents all possible constrained sequential behaviors for a
Execution begins at the task start state where all produced information isunknown
and proceeds until all produced information isknown. There are infinite number of
execution sequences represented as execution may stall indefinitely at va
points. A minimum latency execution sequence is the shortest path from task
to final state. For this example, there are two such minimum latency sched
requiring three time-steps.

mccinfo mp.Sinfo known

ma
1
.Sinfo accepted ma

2
.Sinfo accepted … ma

n
.Sinfo accepted+ + +( )

•=

mcc
mcc A∈
∏ 

 
A Amemory care∈

∑

Figure 4.5Final explicitCMA for the example
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4.2  Cyclic Data-Flow Composition
Cyclic data-flow composition requires two extensions of the acyclic data-fl

composition in section 4.1. First, there are two senses, odd and even, of
operand in a cyclic model. Dependency constraints must be built for both ca
Second, with the notion of two operand senses comes the possibility of itera
sense confusion.5 A cyclic data-flow composition must guarantee that on
operands from correct iteration instances are produced and accepted. This re
the formulation and application of a capacity constraint as well as a viab
pruning step.

To provide an intuitive introduction to cyclic data-flow composition, th
explicit CMA introduced in section 2.56 is duplicated in figure 4.6. An abbreviate

label system is used here which identifies actual task execution on a trans
State label information must be derived from a state vector orde
{ mult_v2 , add_v1 , add_v0 }, where ‘1’ represents the single output operan
knownin the even sense and ‘0’ represents the operandknownin the odd or ‘~’
sense. ThisCMA has been completely pruned and allows only one ALU and o
multiplier resource. Notice that dependency is observed in both senses. The
add_v1 depends on the result ofadd_v0 as input. Consequently, transitions tha
scheduleadd_v1 only leave states whereadd_v0 is known and likewise
add_v1~ is scheduled on transitions that must leave states whereadd_v0~ is
known. Furthermore, to prevent iteration-sense confusion, anadd_v0 result is not
forgotten untilafter it is accepted by dependentadd_v1 . Finally, only a single
ALU and multiplier use occur on any transition, regardless of the task sense.

This, like any other cyclicMA , represents constrained sequential behavior
a cyclic composite task. Execution may begin at the task start state wher
produced information isunknown in one sense and proceed with infinit

5. Conventionally, iteration sense is maintained by iteration counters for each operand.
Iteration counters add substantial overhead to the scheduling process without significantl
adding to the representation power.
6. The ABSS scheduling problem for this example is presented in figure 2.4.

Figure 4.6An explicit CMA  for a cyclic data-flow composite task
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executions of the loop. There are infinite execution sequences represent
execution may stall indefinitely at various points. Although infinite execut
sequences are represented, state is bounded. State represents the
concurrentlyknownoperands. As only a singleMA is assigned per task in this
composition, only three operands may be concurrentlyknown in the system,
{mult_v2, add_v1, add_v0}. These operands may be known in one of two sen
odd or even, depending of which iteration produced them. Although an opera
alwaysknownin one sense or the other, this does not imply that it is occupy
physical storage but only that it has been produced in that iteration sense. Fi
unlike an acyclicMA , a minimum latency execution sequence is not the shor
path from task start to final state. Rather, arepeating kernel7 which overlaps
iteration instances achieves minimum iteration latency. For this example,
minimum iteration latency is shown dotted and requires two time-steps as
complete iterations are represented in this four time-step cycle.

4.2.1  Basic Operand Dependencies

In a CMA modeling cyclic behavior, there are two senses, odd and even
every operand. Two dependency implications, for both operand senses, mu
built for each basic operand dependence. Forintra-iteration dependencies, o
dependencies within the same execution iteration, the two implication expres
4.8 is built.

(4.8)

For inter-iteration dependencies, or dependencies between two successive
iterations, the two implication expression 4.9 is built.

(4.9)

These implications insure that for either operand sense, the required operand
beknownto the system to allow anyrequired-labeled transitions. Letζe represent
either expression 4.8 or expression 4.9 depending oninter/intra-iteration depen-
dency type. The refinement of∆datafor a cyclicCMA is again as shown in equa
tion 4.2.

An operand dependence tuple contains no explicit information regardinginter-
or intra-iteration type. Rather, the scheduling problem is defined to be acycli
cyclic. If a scheduling problem is cyclic, then an operand dependence is wr
with consumption point,a, always in the even sense while the produced opera
in f may be in the even or odd ‘~’ sense depending oninter- or intra-iteration type.
For example, the operand dependence (info, info) represents anintra-iteration

7. Repeating kernels are discussed in section 5.3.1.

ma.∆info required mp.Sinfo known —,( )⇒( )
ma.∆info~ required mp.Sinfo~ known —,( )⇒( )

•

ma.∆info required mp.Sinfo~ known —,( )⇒( )
ma.∆info~ required mp.Sinfo known —,( )⇒( )

•
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dependence while (info~, info) represents aninter-iteration dependence. All
operand dependencies only specify the first implication of either expressions 4
4.9 while the second implication is inferred.

Since a cyclicMA represents only two instances of an operand, it is o
possible to formulateintra-iteration dependencies (within the same iteration),
inter-iteration dependencies (between successive iterations) with a singleMA . If
dependencies must be written across several iterations, then additionalMA are
added to model the additional operand instances. This may be done in two w
First, iterates, as described in section 4.4.2, build several instances of the e
composite task. Hence, several iteration instances of all operands are ava
This approach is required to model several executing instructions in a pipe
RISC example. Second, operand buffers, as described in section 4.5.4, prov
local way to model storage for several instances of one particular operand wit
CMA .

4.2.2  Operand Capacity Constraints

Operand capacity constraints maintain operand iteration-sense consisten
cyclic scheduling problems. They are not needed for acyclic scheduling probl
Consider a basic operand dependence (taskp.P.info, taska.A.info). It is possible,
due to MA nondeterminism, that the source,taskp, may continuously produce
operand info, (info, info~ info, info~, …), yet the sink,taska, idles and never
accepts or accepts someinfo operand a few iterations later. This is not on
wasteful but also leads to operand iteration-sense confusion. Which iteratio
info did taskaactually accept? What iteration do any oftaska’s result operands
really belong to? Information capacity constraints avoid this confusion by insis
that a particular produced operand remainsknown(is not forgotten) in the current
iteration sense until all accepting tasks have accepted this operand in the c
iteration sense. Hence, operand iteration-sense consistency is maint
throughout a composition.

Definition 4.2 Iteration-Sense Confusionoccurs when an operand dependen
implication is satisfied strictly by operand sense yet the satisfying operand isnot
from the iteration expected by the accepting task.

For the RISC example, operand capacity constraints insist that interme
operands relevant to one instruction are accepted before intermediate operan
the next instruction are produced. For example, suppose instructionsi4 andi5 both
require an operand from the register file. The correct register file read operan
instructioni4 may be in the even sense,rfread known, while the correct operand
for instruction i5 may be in the odd sense,rfread~ known. Capacity constraints
insist that thei4 register file read operand,rfread known,is not overwritten by the
i5 register file read operand,rfread~ known, until all i4 tasks requiring
rfread knownhave accepted. Since only oneMA represents this particularrfread
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operand, only one instance may exist. Capacity constraints insure that this s
operand instance is kept in the iteration sense expected by all accepting task

4.2.3  Basic Operand Capacities

The capacity constraint for a single basic operand depende
(taskp.P.info, taska.A.info), is modeled by the implication,

. (4.10)

This is opposite from the dependency implication in expression 4.1 as the ena
transition in expression 4.10 belongs to theproducer rather than theaccepter.
Expression 4.10 insures that transitions labeledinfo forgetmay only occur if the
required information is accepted in the present state or will be accepted by the
state. The implication’s consequent is written in terms of the next state so tha
producing task’sMA may forget an operand during the same time-step that
accepting task’sMA accepts. Figure 4.7 illustrates how this relates to a real s

tem. ABSS transitions correspond to activity during time-step periods. The o
and info is forgotten and accepted during the same time-step period. ABSS
corresponds to information available at a clock edge or time-step boundary. A
start of this time-step period,info was registered and hence may be accepted. D
ing this period,info is forgotten and hence not registered at the next clock edg
time-step boundary. More concretely, this correctly represents pipelined beh
where pipe stage a is forgettingresulta1and computingresulta2while at the same
time pipe stage b is acceptingresulta1 and computingresultb1.

Let ξe represent expression 4.10 for one basic operand dependence,e,yet built
for both operand iteration senses. The refinement of∆data for aCMA is,

. (4.11)

4.2.4  Undetermined Operand Capacities

As with undetermined operand dependencies, no refinement of aCMA’s ∆data

is required for undetermined operand capacities. Capacity constraints
important for produced operands of tasks with undetermined operand i

mp.∆info forget ma.Sinfo accepted—,( ) — ma.S, info accepted( )+( )⇒

Figure 4.7Simultaneousinfo forget and accept

registered
info info

not registered
forget info

clock

accept info

∆n 1+ ∆n ξe
e Ebasic∈

∏•=
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dependencies. Since such tasks have no constraints on wheninfo required-labeled
transition may occur, they would be free to behave in any way if it were not
capacity constraints on their produced operands. For example, a cache hi
multivalue MA cannot produce its next cache hit/miss value until the curr
operand is no longer required.

4.2.5  Alternative Operand Dependencies and Capacities

An alternative operand dependence leads to iteration-sense confusion
cyclic composition. Consider the sequence shown in figure 4.8 where taskacp
may use the operand fromsrc_a or src_b . In frame 1,src_a is knownin the

even sense as indicated by the solid circle. Consequently, in frame 2,acp accepts
this alternative result. In frame 3, it appears as ifsrc_b is ready in the odd sense
soacp accepts this alternative result for the next iteration. Unfortunately,src_b
is really from a previous odd iteration and iteration-sense confusion res
Furthermore,src_b may not even produce a current even result as a capa
constraint fromacp to src_b preventssrc_b from forgetting its odd result.
Although acp has in fact moved forward,src_b ’s odd result is still kept since
acp has not accepted in the odd sense. This situation is referred to ascapacity
deadlock.

Definition 4.3 Capacity Deadlockoccurs when an operand is kept in its curre
iteration sense even though it is not needed. It typically occurs when an acce
task some how acceptsahead of a potential producer.

Alternative dependencies are not allowed in cyclic compositions as they lea
iteration-sense confusion and capacity deadlock. Instead, alternatives
represented through use of nondeterministic control as discussed in se
section 4.4.7.

4.2.6  Viability Prune

Although all CMA states and transitions now observe dependency
capacity constraints, there are still execution sequences present which e
iteration-sense confusion. Figure 4.9 shows a three task loop and some depen
and capacity refinedCMA states and transitions. From theseCMA states and

Figure 4.8Iteration-sense confusion when alternatives are present
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Frame 1

src_b

acp

src_a src_b

acp

src_a src_b

acp

Frame 2 Frame 3
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transitions, it appears as if a new iteration instance result,r2 , is producedevery
time-step. However, the inter-dependency edge fromv2 back tov0 requires that
one iteration complete before the next iteration may begin. Hence, a minim
iteration latency schedule must require at least three time-steps.

If execution were to begin at aCMA task start state set8, the state(s) where all
composition memberMA are in their task start state(s),Stask start, then it is
impossible, due to dependency and capacity constraints, to reach iteration-
violating states and transitions. Consider the illustration in figure 4.10. All sta

reachable from Stask start are found after two time-steps and do not include t
erroneous states shown in figure 4.9. These erroneous states represent m

8. There is a singleStask startfor acyclic models while there are dual task start state sets,
Stask start andStask~ start, for cyclic models. Likewise forCMA  task final state sets,
Stask final andStask~ final.

Figure 4.9Cyclic scheduling problem and an acausal partialCMA

v0

r2

r1

v1

v2

r0
r0 known
r1~ known
r2 known

r0~ known
r1 known
r2~ known

Figure 4.10 CMA States reachable fromStask start

r2~ known  r1~ known  r0~ known

Step 0

Step 1

Step 2

r2 known  r1 known r0 known

r2 known  r1 known r0~ known

r2~ known  r1~ known r0 known

r2 known  r1~ known r0~ known

r2~ known  r1 known r0 known
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iteration instances of a single loop which is impossible given a natural initial e
of a loop.

Symbolic image, preimage and reachability computations[31][32][90]
important for viability pruning as well as futureCMA exploration. Given the
relation∆ ∈ CMA , all next states of some setSlabel ⊆ Smay be determined by the
expression,

. (4.12)

In expression 4.12, the inner product determines all transitions of∆ with predeces-
sors belonging toSlabel. The setX represents all ROBDD variables used to enco
CMA state. All predecessors states are removed through existential quantific
leaving only successor states. This is commonly referred to as a next state or i
computation. Likewise, a previous state or preimage computation can be expr
as,

. (4.13)

All states reachable fromS0 ⊆ Smay be found with a least fixed-point of expres
sion 4.12. This fixed-point is found by computing

(4.14)

until Sn+1 = Sn for some natural numbern. When the fixed-point is reached,Sn is
the set of all states reachable fromS0. A similar fixed-point may be formulated to
determine all states which eventually reach some state setrsn ∈ S.

Given a cyclicCMA’s Stask start, the set of reachable statesRSis determined
with equation 4.14. The viability pruning of∆data for thisCMA is,

. (4.15)

Theorem 4.1 The viability prune leaves only iteration-sense consistent state
aCMA.

Proof Supposes is any state reached fromStask start. Dependency impli-
cations prevent tasks from accepting operands unless the required input ope
are known. Capacity implications prevent loss of an operand before all child
tasks have accepted. Sinces is reached fromStask start, where no operands exist in
the even sense, then paths tos produce any and every operand as dictated
dependency and capacity implications. Hence,s is not subject to iteration confu-
sion because it identifies noMA in a composition that has produced an opera
without proper required input operands. Ass is arbitrary, all states reached from
Stask start are iteration-sense consistent.

∃ X —,( ) ∆ Slabel —,( )•( )

∃ — X,( ) ∆ — Slabel,( )•( )

S
n 1+

S
n ∃∪= X —,( ) ∆ S

n
—,( )•( )

∆n 1+ ∆n
RS RS,( )•=
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4.2.7  Cyclic Concurrency Constraints

Cyclic transition-based concurrency constraints are formulated as
section 4.1.5. There is no dual sense for resource usage, such asalu busyandalu~
busy. All uses of a particular resourceres are derived from a composite membe
MA and are implicitly counted and prune aCMA as in expressions 4.4 and 4.5. O
the other hand, since there are two senses of operands, two sense-distinct m
care conditions must be formulated for each operand with expression 4.6. T
are implicitly counted as in expression 4.7 and intersected with the present
portion of∆data to prune memory concurrency violating states.

4.3  Acyclic Control-Dependent Composition
Acyclic control-dependent composition introduces two new concepts bey

those introduced for acyclic data-flow composition in section 4.2. First, a con
operand may select one operand from several choices to satisfy an input op
dependence. This requires a new resolved operand dependency implic
Second, some tasks may be deemed unnecessary under certain control cond
These tasks are bypassed to their task final state. A control-dependent compo
contains a two-phase transition relation,∆dataand ∆control, reflected in theMA
forming the composition, to facilitate task bypassing and control resolution.

Figure 4.11 presents an acyclic control-dependent scheduling problem t
discussion. Each task identifies which control block,cb , it is valid in. Taskmt
produces the two-value control operandcb . Taskt2 has two potential sources fo

Figure 4.11A simple acyclic control-dependent example

t1
cb=1

t2
cb=0,1

t0
cb=0,1

mt
cb=0,1

cb

in1

out0

r1

r0

in0
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its single input operand. Ifcb=0 at this operand resolution point, thenr0 is used,
elser1  is used.

Figure 4.12 shows a partialCMA with minimum latency execution sequence
for the example in figure 4.11. In the top path, wherecb=1 , taskt2 waits untilr1
is available before executing. In the bottom path, wherecb=0 , taskt1 is bypassed
during a control phase (dotted transition) as it is deemed unnecessary. Also,
cb=0 , t2  executes withr0  as an input operand.

4.3.1  Resolved Operand Dependencies

A guarded operand dependence specifies several possible source operan
of which is selected by another operand to satisfy an input operand depend
For example, may be interpreted as “us
speculative operandaspecif multivalue operandd equals 1 or use nonspeculativ
operandanospec if multivalue operandd equals 0.” Although the true operan
dependence is on eitheraspec or anospec, the multivalue operandd is needed to
select which operand dependency is correct. This selection process is c
operand resolution and corresponds to a join in a traditional CDF
representation. A guarded operand dependence forms anoperand resolution
point where potential source operands are calledpreresolution operandsand the
final accepting task is called thepostresolution task. The multivalue control
operand, which selects a particular postresolution operand, is called theresolver
operand. Finally, as an operand resolution point example, behavior in a R
processor selects an operand from several possible sources to write back
register file. Some instructions require that a memory fetch be written to
register file while other instructions require that an ALU computation result
written to the register file.

It is possible that both preresolution operandsaspecandanospecareknownbut
the resolver operand,d, is unknown. Although all input data dependencies for th
postresolution task are satisfied, appropriatea required-labeled transitions still
may not be enabled. This is because the postresolution task fundamentally ex

Figure 4.12PartialCMA for figure 4.11

r2 unknown
r1 unknown
r0 unknown
cb unknown

S00101

r2 unknown
r1 unknown
r0 known
cb known
S00101

mt t0

r2 unknown
r1 unknown
r0 known

cb=1 known
S00111

cb to 1

r2 unknown
r1 known
r0 known

cb=0 known
S01110

cb to 0
t1 bypassed

r2 unknown
r1 known
r0 known

cb=1 known
S01111

t1

r2 known
r1 known
r0 known

cb=0 known
S11110

t2

r2 unknown
r1 known
r0 known

cb=1 known
S01111

r2 known
r1 known
r0 known

cb=1 known
S11111
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d
val 0=⋅+⋅
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a singlea input operand. Without resolver operandd, it is unclear whicha should
be used. Furthermore, the postresolution taskMA is only allocated enough state to
model result operands for one task instance and hence may not process bothaspec

andanospec. Consequently, the postresolution taskMA must stall until the resolver
operandd is knownand operand resolution occurs.

This artificial dependency on resolver operandd bounds the state in aCMA .
Consider how this dependency might be removed. Instead of a si
postresolution accepting taskMA , two accepting taskMA may be specified. One
accepts and processesaspecwhile the other accepts and processesanospec. Each
task could then begin execution immediately when its particulara input operand is
present. No dependency on resolver operandd exists. Also, enough state exists t
represent production of result operands from processing bothaspec and anospec.
This task splittingcould be carried to the limit such that no resolver operands
ever required. At the limit, aCMA may require excessive state for acyclic an
infinite state for cyclic control-dependent behavior. Furthermore, control
synthesized from such aCMA are potentially infinite while synthesized datapat
must correctly handle increased numbers of concurrent operands. On the
hand, operand resolution points are convenient and appropriate places
designer to boundCMA state growth as well as any implied FSM controller an
datapath complexity. Specification and adjustment of operand resolution point
mechanism by which a designer architects the design.

A single operand resolution point dependence is modeled by the implicati

.(4.16)

In this implication, multivalueMA mr produces resolver operandrinfo which
selects the actualinfo operand fromn possible choices. For some casei, if rin-
foval=i is knownAND infoi is known,then theinfo required-labeled transition is
allowed. Let represent expression 4.16 for one guarded operand dependee.
The refinement of∆data for a scheduling problemCMA is,

. (4.17)

Basic, Alternative and Undetermined dependencies may be formulated for c
control-dependent composition as described for acyclic data-flow compositio
section 4.1.

ma.∆info required mp
1
.Sinfo1 known —,( ) mr.S

rinf oval 1= known
—,( )

mp
2
.Sinfo2 known —,( ) mr.S

rinf oval 2= known
—,( ) …

mp
n
.Sinfon known —,( )

+

mr.S
rinf oval n= known

—,( )⋅

+⋅

+⋅⇒

Ψe

∆n 1+ ∆n Ψe
e Eguarded∈

∏•=
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4.3.2  Acyclic Task Bypassing

The CMA constraints discussed thus far, dependencies, capacities
concurrency, have all been applied to the data-phase transition relation,∆data. They
enforce causal ordering of operands and task execution, limit resource use, a
as maintain iteration-sense consistency in cyclic behavior. For schedu
problems without control dependencies, these constraints9 and∆dataare sufficient.
For control-dependent scheduling problems, constraints applied to a control-p
transition relation,∆control, are required.

A CMA’s control-phase transition relation serves two purposes. First
provides a resolve step for multivalueMA . As introduced in section 3.4, a
convenient deterministicresolve-labeled state is added to simplify validatio
during aCMA’s exploration. Validation is an exploration step and is described
detail in section 5.2. Second,∆control allows tasks to be completely bypassed
deemed unnecessary by control resolution. This section focuses primarily on
and how suchcontrol-obviated task are bypassed.

To establish the need for task bypassing, consider a memory write task
RISC processor. For some instructions, this task is required while for others
not. In the event that it is not required, it may be bypassed to its task final s
This simplifies termination detection for acyclic models and primes all tasks
the next iteration in cyclic models.

As defined, the scheduling problem associates a control block,cb, with each
task. This control block is a Boolean expression indicating when the paired tast is
necessary. Supposetask1 and itsMA are in the control block,

.

Task1is necessary whenrinfo equals 0 orrinfo andbinfo both equal 1. Assuming
multivalue operandsrinfo andbinfo are limited to the range 0 to 1,task1is unnec-
essary whenrinfo equals 1 andbinfo equals 0. When known to be unnecessa
task1may be bypassed to simplify determining a task final state in an acy
CMA . With task bypassing,Stask final for a CMA simplifies to the set of states
whereall compositionMA are in their final task state(s) and all control cases
included. This can be contrasted to a possibleStask finalwithout bypassing where
some tasks remain unexecuted. This varies from control case to control case
difficult to determine exactly withouta priori knowledge of which tasks have spec
ulatively executed. Finally, task bypassing is necessary to maintain iteration-s
consistency in a cyclic control-dependentCMA .

A single scheduling problem task’sMA is control-obviated when all operands
in the task’s control block expression have resolved yet the control bl
expression isfalse.Consider the control block expression,

9. Operand resolution dependencies are not required for data-flow only behavior as well

cb rinf o
val 0=

rinf o
val 1=

binf o
val 1=⋅( )+=
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In terms of compositionMA states, the control-obviated expression for this cont
block is,

. (4.18)

The top term in this expression insists that both multivalue operandsrinfo and
binfo are known regardless of value. The bottom term insists that the value
rinfo and binfo are something other than those required for this control blo
Hence, all control block expression operands have resolved and the control
expression is false.

The precise form of a control-obviated expression,coe, depends on the task’s
Booleancb expression. In general, the following two rules are used to crea
correct control-obviated expression. First, each operandinfo that appears in a
control block contributes aSinfo knownto a control-resolved product term. The to
portion of expression 4.18 is an example of this. Second, the entirecb term is
expressed asMA states and complemented. The bottom portion of expression
highlights this. The product of these two terms is a correct control-obvia
expression for a task.

An MA’s task bypass-labeled transition is forced if theMA’s control-obviated
expression,coe, is true and theMA  is not yet bypassed.

(4.19)

The right side of expression 4.19 is written in the next state so that theMA appears
bypassed in lock step with control block resolution. Before the control block
resolved, theMA is considered necessary and may be executed speculative
theMA has executed speculatively, it may often be in its task final state and h
need not be bypassed. LetΩm represent expression 4.19 for anMA m in the com-
position. The refinement of∆control for aCMA is,

. (4.20)

4.3.3  Concurrency Constraints

Both transition-based and state-based (memory) concurrency constraint
built for acyclic control-dependent compositions as described in section 4
Transition-based concurrency constraints are applied to∆data and hence, task
bypassing, which occurs in∆control, does not interfere. Furthermore, before contr
resolves in aCMA path or execution sequence, only a single path exi
Consequently, all task resource uses --both speculative and nonspeculative

cb rinf o
val 0=

rinf o
val 1=

binf o
val 1=⋅( )+=

Srinfo known Sbinfo known⋅( ) •

S
rinfo knownval 1= S

rinfo knownval 1= S
binfo knownval 1=⋅( )+( )

∆task bypass — coe Stask final⋅,( )⇔

∆n 1+ ∆n Ωm
m M∈
∏•=
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implicitly counted from the same pool of resources. After control resolves i
CMA , a path branches into various mutually exclusive control cases
subsequent tasks are allocated resources in a correct mutually exclusive fash

State-based concurrency constraints for acyclic control-depen
compositions highlight two issues. First, a memory care condition should
include control-obviated dependents. Fortunately, once a task is control-obvi
it is immediately bypassed and subsequently appears as if all input operand
been accepted. It would not be counted when using the existing memory
condition (expression 4.6). Second, memory care conditions through an ope
resolution point must be counted correctly. If a resolver operand has yet to res
then allknownpreresolution operands must be counted as memory care. On
resolver operand has resolved, then only the selected preresolution operand
be counted as memory care. To formulate this, an expression very similar to
control-obviated expression (4.18) is built. The difference is that the preresolu
operand’s selection condition rather than a task’s control block is used as a sta
point. For example, suppose a preresolution operand is only selected whe
resolver isknownand equal to 3. The term will be one term i
the sum of a resolved operand dependence tuple’s Boolean expressionf. Using this
term in place of a control block expression, a resolved memory care condi
rmcc, is constructed in the same manner as expression 4.18. Then, assuminma1

depends onmp through an operand resolution point, a updated memory c
condition is,

. (4.21)

Note that if a child depends on an operand through a resolution point, it is co
tioned by a resolved memory care condition.

4.4  Cyclic Control-Dependent Composition
Cyclic control-dependent compositions are the most complicated to formu

as they require concepts from all previously discussed composition types.
Cartesian product step, dependency constraints, iteration-sense issues
bypassing requirements and operand resolution all apply to cyclic con
dependent composition. What differs is how iteration-sense confusion concern
handled. In data-flow composition, it is relatively straight-forward to formulat
capacity constraint that maintains iteration-sense consistency locally at
operand dependence level. For control-dependent composition, cap
constraints are not straight-forward. First, task bypassing toggles the sense of
within a control block and consequently creates additional sources of itera

info3 rinf o
val 3=⋅

mccinfo mp.Sinfo known

rmccinfo mc
1
.Sinfo accepted⋅

mc
2
.Sinfo accepted … mc

n
.sinfo accepted

+

+ +

(

)

•=
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sense confusion. Second, operand resolution points allow postresolution tas
accept before all preresolution operands are known. This also adds to pot
iteration-sense confusion. Capacity constraints that address these new sour
iteration-sense confusion are difficult to formulate. A new method to main
iteration-sense consistency is developed and presented here.

This section begins by with a general discussion on how capacity constr
impact ABSS. Next, the impact of capacity constraints is relaxed thro
duplication of a scheduling problem composition. With this background, a glo
capacity constraint is developed for cyclic control-dependent models. An exam
illustrates how control-dependent pipelining is modeled with this techniq
Finally, nondeterministic control is presented.

4.4.1  The Impact of Capacity Constraints

An MA in a composition typically models one instance of its produc
operands. For cyclic behavior with capacity constraints, this implies one ‘l
iteration instance of an operand at a time. The operand must remain in its cu
sense until all dependent tasks have accepted. This bounds, at a cos
potentially infinite state behavior of highly parallel cyclic behavior. To illustra
how capacity constraints impact cyclic problems, two examples are considere

Figure 4.13 shows how a simple chain of three cyclic tasks are pipeline

ABSS. In time-step 1 the composition is in a composite task starting state a
internal tasks areknownin the odd iteration sense. By time-step 2 taskt1 executes
(produces its operand) in the even sense. In time-step 3, taskt2 executes in the
even sense while taskt1 may execute in the odd sense as no capacity constra
are violated. In time-step 4, taskst1 andt3 execute in the even sense while taskt2
executes in the odd sense. Now the pipeline is full and all tasks execute in
iteration sense at each time-step by toggling between states shown in time-s
and 4. Capacity constraints do not impact solution quality for this composition

Suppose that figure 4.13’s example has an additional operand dependence
taskt1 to taskt3 as shown in figure 4.14. Now capacity constraints require tast1

Figure 4.13A naturally pipelined composition

Time-step 1 Time-step 3Time-step 2 Time-step 4
t1 t2 t3

Figure 4.14A capacity constrained composition

t1 t2 t3
Time-step 1 Time-step 3Time-step 2 Time-step 5Time-step 4
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to stall and hold its current result so that taskt3 may accept the correct operand
Full pipeline behavior sequences from time-step 5 back to time-step 2 and ach
minimum iteration latency of two time-steps as two iterations require four tim
steps to complete. Thus, pipelined behavior is impacted by the constrain
representing at most only one result operand for taskt1.

The impact of capacity constraints on control-dependent cyclic compos
can be more severe than what is seen in this three task data-flow example
example, a postresolution task has a dependency on a resolver to determine
preresolution operand to accept. This dependency requires a capacity cons
from postresolution task to the resolver to prevent iteration-sense confusion.
capacity will hold a resolver in its current iteration sense until all postresolu
tasks have accepted. This is potentially costly as a resolver typically reso
numerous operand resolution points. Pipelining control operands is difficult if s
for only one ‘live’ control operand is allocated. This, coupled with the complex
of formulating correct capacity constraints in the presence of task bypassing
through operand resolution points, makes the locally applied capacity const
route a rocky choice for control-dependent cyclic composition.

4.4.2  Relaxing Capacity Constraint Impact

Sometimes it is desirable to relax the impact of capacity constraints
controlled manner. This may be done by composing several copies o
composition, callediterates, as one largerCMA . Figure 4.15 shows how two

iterates of figure 4.14’s example may be co-executed yet still under a si
resource constraint set. Even though a single iterate has iteration latency o
time-steps, final iteration latency for the two iterate composition is one time-
as both iterates execute. This improved performance is obtained because the
now twoMA for taskt1 and hence twot1 result operands may exist concurrentl
Expanding the searched solution space by duplicating the entire sched
problem is analogous to “unrolling a loop” in traditional scheduling and comp
theory. Although there are no inter-iteration dependencies in this example,
often required that dependencies from one iterate of the scheduling problem t
next are added. In particular, including artificial dependencies from one itera
the next orders the iterates and hence avoids representation of symmetric solu

Duplicating an entire composition exceeds what is minimally necessar
avoid impact of capacity constraints. In the above example, a single additionalMA

Figure 4.15Two iterates as one composition
Time-step 3Time-step 2 Time-step 5Time-step 4
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that represents another instance oft1’s result operand would be sufficient to avoi
capacity constraint impact. This additionalMA , inserted to break the dependenc
and capacity fromt1 to t3, would ‘buffer’ t1’s result operand. Consequently,t1 is
free to produce the next iteration’s result while this buffer holds the current va
required byt3. The difficulty with this approach is determininga priori where
capacity constraint impact occurs. Furthermore, with control-depend
scheduling and buffered resolver operands, task bypassing becomes illde
Which resolver should control-obviate a task and when? For these rea
duplication of an entire control-dependent cyclic composition is preferred.

4.4.3  Global Capacity Constraints in Iterates

Although duplicating a composition relieves capacity constraints, it does
eliminate them. For control-dependent scheduling, capacity constraints mu
correct even when task bypassing and operand resolution points are present.
are difficult to formulate at the local operand dependence level and hence a g
capacity constraint is introduced.

Suppose that an iterate did not mix the iteration sense of internalMA .
Beginning with iterate start states,Stask start, execution proceeds until iterate fina
states,Stask final, are reached and vice versa for an odd execution. At no time du
an even execution is a task allowed to execute or produce result operands
odd sense and vice versa. This behavior is precisely what exists in a cyclicMA
where execution in one sense is always mutually exclusive from execution in
other sense. An iterate with such a constraint could be thought of as a si
although complex and control-dependent,MA . This has the advantage that n
internal operand capacity constraints need be imposed. Since an iterate fina
for either sense must be reachedbefore the next iteration may begin, it is
guaranteed that all internal tasks of an iterate have completed, either thr
execution or bypassing, in the current iteration sense. This is, by definition, a
final state,Sfinal state. This, coupled with knowledge that an iterate is globa
executing either in one sense or the other, eliminates the need for cap
constraints among internal operands. Another way to view an iterate with a gl
capacity constraint is as a cyclicMA created from dual acyclic control-depende
MA similar to section 3.2. The acyclic control-dependentMA are constructed as
discussed in section 4.3 and as such do not require capacity constraints.

An iterate may be forced to not overlap iterations by introducing an artific
sense operand MA, mso. This is a single time-step cyclicMA as shown in
figure 3.12 that identifies the current sense of the entire iterate. It may be tho
of as a sequential constraint,mso∈ Q, of the scheduling problem. Constraints a
applied to an iterateCMA which restrict all internal tasks to even iteratio
executions if the sense operand isknownin the even sense and vice versa for od
iteration executions. In other words, an internal task of an iterate may only leav
66
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even iteration-sense task start state if the sense operand is in the even ite
sense and vice versa for the odd sense. This may be enforced with the implic

. (4.22)

This is built for allm ∈ M in an iterate and for both iteration senses. Furthermo
a capacity constraint preventsmsofrom forgetting the current sense until all inter
nal tasks of an iterate areknownor will be knownin the current iteration sense
This may be enforced with the implication,

. (4.23)

This too is built for allm ∈ M in an iterate and for both iteration senses. The pro
uct of all such implications prunes an iterate’s∆data∈ CMA as in expression 4.2.

4.4.4  The Impact of a Global Capacity Constraint

Although a global capacity constraint simplifies the construction of an ite
by eliminating local capacity constraints, an additional impact on the solu
space, due to the granularity of the global capacity constraint, occurs. Figure

shows the same three task pipelined example but now all iterates have a g
capacity constraint applied. Now, a single iterate has an iteration latency of t
time-steps and three iterates must be co-executed to achieve single time
iteration latency. In fact, the maximum number of ‘in processing’ instances o
scheduling problem is exactly equal to the number of co-executing itera
Although iteration overlap is now prohibited within an iterate, iteration overlap
still possible among iterates as shown in figure 4.17.

m.Stask start m.Stask start,( ) mso.Ssense known—,( )⇒

mso.∆sense forget m.Stask final —,( ) — m, .Stask final( )+〈 〉⇒

Figure 4.16Three global capacity constrained co-executing iterates

Time-step 3Time-step 2 Time-step 5Time-step 4 Time-step 6Time-step 1

Figure 4.17Iteration overlap among iterates with global capacity constraint

 Iterate 1

Iterate 2

Iterate 3
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Figure 4.17 further motivates the need for iterates. Imagine aCMA that
models execution of a single RISC instruction. Because of the global capa
constraint required for cyclic control-dependent models, only one instruction
be ‘in flight’ at a time. By creating several iterates of thisCMA , several
instructions may be simultaneously ‘in flight’. This models what happens i
pipelined or even superscalar RISC processor implementation.

4.4.5  Composing Iterates

Each iterate is an entire instance of a scheduling problem that is mad
appear as a single cyclicMA . All control considerations are completel
encapsulated within an iterate. Hence, when composing several iterates into a
largerCMA , all formulation steps for cyclic data-flow composition, section 4
apply.

Within an iterate there is control. Since an iterate with control will have
global capacity constraint applied, it may be constructed as described for ac
control-dependent composition, section 4.3. The only difference is that an ite
and allMA in an iterate are cyclic and hence all section 4.3 constraints mus
built for both iteration senses.

When several independent iterates are used within a composition, all sequ
permutations of one iterate executing before another are represented. This fre
may lead to inefficient representation. Furthermore, from a final sys
implementation perspective, one ordering permutation may be indistinguish
symmetric to all other ordering permutations. Artificial dependencies, from
iterate’smsoto a next iterate’smso, may be used to arbitrarily choose one orderin
permutation.

4.4.6  An Example Iterate

Figure 4.18 shows an iterate for the acyclic control-dependent compos
example of figure 4.11. This iterate is a cyclicMA . Starting at the iterate’s task
start state,Stask start={S000000, S000001}, only even sense execution occurs u
Stask final={S111110, S111111} is reached. The same is true for odd se
execution fromStask~ startto Stask~ final. Notice that iterate task start and final sta
sets contain states representative of every possible control case. Furthermor
still possible to execute acb=0 control case in two time-steps while acb=1 case
requires three time-steps. Several of these iterates may be composed into
CMA  as described in section 4.2 to model high-level task pipelined behavior.

4.4.7  Nondeterministic Control

An MA in a composition may produce operands yet require no input opera
as described in section 4.1.4. This is particular valuable for multivalueMA serving
as resolvers. To model an alternative, an operand resolution point wit
68
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nondeterministic resolver is specified. Then, during exploration, whatever reso
choice appears best is kept. This allows for alternatives in the composition yet
not require that every alternative eventually produce as some may be bypass

Figure 4.18Iterate for cyclic control-dependent example
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As a specific example of nondeterministic control, consider a memory ac
task in a RISC processor. This memory access task exhibits control-depe
behavior. If a cache hit occurs, the memory access task produces the requ
operand relatively quickly. If a cache miss occurs, a sequential penalty is pai
this example, a multivalueMA produces a control operand which decides betwe
cache hit or miss. This multivalueMA may be modeled with no required inpu
operands (undetermined operand dependencies). Then, a cache hi
probability determines how schedules should be prioritized during exploration.
example, if schedules favoring cache hits are desired, then exploration will
higher priority to schedules where the cache hit/miss multivalueMA resolves to
hit. This is not an internal timing constraint but rather a probabilistic selection
various control-dependent behaviors.

4.5  Composition Generalizations
This section highlights and generalizes some of the composition techni

used in sections 4.1 through 4.4. In particular, Boolean constraints among diff
MA , which dependency and capacity constraints are instances of, are discu
Concurrency constraints, which are also Boolean constraints a
combinatorially large when written explicitly, are discussed. In a more gen
setting, these Boolean constraints enable additional sequential constraint
hierarchy of concurrency constraints. Finally, task splitting and operand buffer
presented as ways to increase freedom in aCMA .

4.5.1  Explicit Boolean Constraints Among MA

Any Boolean constraint that may be expressed explicitly in terms
composite-memberMA states and/or transitions may be applied to aCMA . This is
a substantial amount of expressive freedom which may not always lead to co
system execution models. Iteration-sense consistency, causal operand orderi
valid control behavior are a few important system execution considerations
must be maintained by Boolean constraints. Several types of explicit Boo
constraints have proven useful and valid in ABSS and are generalized here.

Both dependency and capacity constraints fit into an implication constr
form. In a ROBDD, implications may be built as . The two mo
useful formulations are,

(4.24)

and,
. (4.25)

Implication 4.24 may be interpreted as activitymi.∆ is enabled yet not forced if
mj.Sis true in the present state for twoMA mi andmj in a composition. This impli-
cation is typically written with consequent state sets labeled withhistorical labels

p q⇒ pq=

mi.∆ mj.S —,( )⇒

mi.∆ mj.S —,( ) — m, j.S( )+( )⇒
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such asinfo knownor info accepted.Historical labels identify that certain knowl-
edge exists or has existed earlier during the execution of a task.10 This allows an
implication to enforce an ordering of events. Implication 4.24 may be interpre
as, “Activity mi.∆ occurs some time after the activity recorded bymj.S.”
Implication 4.25 differs only in that the consequent is written in the present s
or the next state. This may be interpreted as, “Activitymi.∆ occurs at the same
time or some time after the activity recorded bymj.S.”

The consequent of these implications is extended to handle alternative
resolved operand dependencies. Alternatives are simply multiple terms relate
Boolean OR in the consequent. For example,

(4.26)

may be interpreted as, “Activitymi.∆ occurs some time after the activity recorde
by mj.SOR the activity recorded bymk.S.” Although it is possible to form a simi-
lar implication with multiple terms related by Boolean AND in the consequen
is not necessary as the intersection of multiple single-term consequent implica
is equivalent. With resolved operand dependencies, alternative choices are c
tioned or guarded by an additional term. For example,

(4.27)

may be interpreted as, “Activitymi.∆ occurs some time after the activities recorde
by mj.S AND ml.S OR the activities recorded bymk.SAND mn.S.” In typical
application of implication 4.27, guard terms are chosen which are known by
struction to be mutually exclusive. Hence, at most only one alternative is
valid. Both implications 4.26 and 4.27 may include consequent states in the
state as in implication 4.25.

A double implication is used to synchronize activity or information in
ABSS composition. The double implication,

(4.28)

may be interpreted as “Activitymi.∆ must occur during the same time-step a
activity mj.∆.” Although a transition set is specified,∆, transitions in terms of
states, (s,s )̂ or even just states may be used. A double implication is used
require a task bypass transition if a bypass is deemed necessary and no bypa
occurred yet. A double implication is also used when sequential constraint or
tocol MA are included in a composition. TheseMA , as described in section 3.3
do not necessarily represent sequential behavior of operand production but
describe how severalMA in a composition must sequentially interact. Cons

10. Historical state labels are contrasted with current state labels such asinfo storedwhich
identify currently available information and do not remember that this information once
was available after it is lost.

mi.∆ mj.S —,( ) mk.S —,( )+( )⇒

mi.∆ ml.S mj.S⋅ —,( ) mn.S mk.S —,⋅( )+〈 〉⇒

mi.∆ mj.∆⇔
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quently, activities labeledinfo requiredand info producedof the various operand
MA are synchronized to appropriate transitions and states of the sequentia
straint or protocolMA with double implications.

These implications are the most applicable constructs for ABSS composi
In fact, all presented ABSS compositions only require these implications and
implicit constraint described next for all constraint pruning.

4.5.2  Implicit Boolean Constraints Among MA

Some Boolean constraints are prohibitively large when expressed explic
Consider all ways of choosing onlyr true Boolean variables from a set ofn
Boolean variables. In sum of products form, this Boolean expression requires
terms. Rather than expressing all such choices explicitly, an implicit ROB
construction technique builds all such choices efficiently. Statements such a
mostr registers are available for thesen result operands” or “at mostr ALUs are
available to implement thesen tasks” require formulation ofr-combination
expressions. Formulation of ROBDDr-combinationexpressions may be traced t
several sources [16][64][80][114].

Figure 4.19 shows an “at most 2 of 6” ROBDD. Only 12 ROBDD nodes
required to efficiently encapsulate all 127 combinations. Although figure 4
chooses at most 2 of 6 single Boolean variables,r-combinationsof Boolean
functionsare possible. Memory concurrency constraints provide a sophistic
example orr-combinationsinvolving Boolean functions. A memory care conditio
is a fairly complicated expression as it contains Boolean variables from
producingMA and all acceptingMA . Still, regardless of ROBDD ordering and
overlap, anr-combinationconstraint may be built implicitly from a set of memor
care conditions. This requires time and nodes proportional to . A mod
implementation of ROBDD r-combination constraints may be found in
PYCUDD[53].

All applications ofr-combinationconstraints so far have considered just o
set of sizen and at mostr combinations from this set. It is possible to use severar-
combinationconstraints which choose combinations from several not necess
disjoint sets to generate stronger concurrency constraints. Suppose a sche
problem has a single register file available. This register file has two ports
supports at most 2 reads or 1 read/1 write during a single time-step. Nume
tasks in the scheduling problem may access this register file. Each task’sMA may
haveδrf read busyand/orδrf write busy transition sets. Twor-combinationconstraints
are required. One considers allδrf read busyandδrf write busy transitions and creates
all combinations of at most 2. The second considers allδrf write busytransitions and
creates all combinations of at most 1. Together, these two constraints enfor
most 2 reads or 1 read/1write during any time-step.

n
r 

 

n r×
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Figure 4.19“At most 2 of 6” ROBDD
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Someres busy-labeled transitions may require more than a single resourceres.
As discussed in section 3.1.4,i unit-weight res busylabels may be attached to a
single transition to representi resource uses. The set with cardinalityn from which
all combinations are chosen must containi instances of a function with weighti.
When a ROBDDr-combinationconstraint is constructed from such a set, choos
one instance automatically chooses all other instances and hence the appro
weight results. Suppose tasks within a scheduling problem produce both s
word and double word operands. More precise local storage constraints ma
formulated by assigning weight 2 to double word memory care conditions
weight 1 to single word memory care conditions. By using concurrency weight
well as hierarchical concurrency constraints, sophisticated bounded resourc
may be modeled.

Two final points remain for concurrency-type constraints. First, conditions m
be applied to a concurrency constraints. Just as an operand value selects a
alternatives in an operand resolution, an operand value (or some other cond
may select among several static or dynamic constraint scenarios. Second, alt
a transition-based concurrency constraint applies for an entire time-step, a
step may still represent several concurrency-limited activities. For example, an
task may require two busses to transfer two input operands from local storag
arithmetic function unit, as well as an additional bus to transfer a result to lo
storage. A single time-step implementing this task may be broken down into t
time periods: input transfer, computation and output transfer. This may stil
modeled by occupying all required resources for the duration of the time-
while allowing the actual order of use to remain implicit.

4.5.3  Task Splitting

The notion of ‘task splitting’ was introduced in section 4.3.1. This perm
postresolution accepting tasks to begin execution before a resolver resolve
duplicating the postresolution task and executing a copy for all preresolu
values. Figure 4.20 shows how a postresolution task is split into three to incr

Figure 4.20Task splitting

0 1 2

No Task Splitting

0 1 2

Task Splitting
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speculation. Although more state is added, it may be done in a controlled ma
to enlarge the solution space and determine potentially better execution seque

4.5.4  Operand Buffers

As pointed out in section 4.4.1, the number of concurrent instances
particular operand is bound by the number ofMA modeling the production of this
operand. This bound may impact cyclic composition execution sequences and
prohibits dependency implications between executions iterations that are
successive. Section 4.4.2 described how this bound could be relaxed with ite
of an entire composition. In some scheduling problems, several instances oall
operands in a composition are not necessary and costly to represent. It is po
to relax this bound locally through use of operand buffers.

Figure 4.21 illustrates how a particular operandinfo may be buffered. Each
operand buffer is a single time-step cyclicMA as introduced in section 3.2. If

dependency implications are written as in implication 4.24, with no ‘look ahe
as is commonly done, then this chain of buffers is similar to a synchronous
register where the lastn result operands are preserved. This type of opera
buffering is useful when operand dependencies exist across several exec
iterations. With this style of operand buffering, operand dependencies forinfo use
the desired iteration result,buffert-i, as producer. The original producer i
considered iteration 0.

If dependency implications for figure 4.21 are written as in implication 4
with ‘look ahead’, then all buffers in this chain may simultaneously transit. Hen
buffert-n may represent any result from the current iteration, t, to the past iteration
t-n. This type of operand buffering is useful to relax capacity constraints
required by capacity constraints, a past result may be stored by a buffer wh
new result is produced. But if not impacted by capacity constraints, all buffers
immediately represent the current result with no delay. With this style of oper
buffering, all operand dependencies usebuffert-n as the sole producer and typicall
only one buffer is useful. In general, operand buffers provide a localized wa
increase model freedom yet maintain an information-centric view.

4.6  Efficient CMA Representation
Composition may result in large ROBDD structures. In particular, aCMA’s

transition relations may be exponentially large, even when expressed as ROB
As with all ROBDD-based techniques, a good ordering can significantly red

Figure 4.21Operand buffers

info buffert-1 buffert-2 buffert-n
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the size of ROBDD structures. Also, targeted partitioning of aCMA’s transition
relations reduces ROBDD representation size. Finally, the operand resol
formulation may be simplified for some cases to reduce ROBDD size. This sec
discusses these three strategies for efficientCMA  representation.

A CMA’s final encoding is relatively sparse. It more closely resembles a ‘o
hot’ encoding of operand existence rather than a logarithmic one. Altho
additional research may determine a best encoding, the current sparse enc
has one key advantage. Because all composite-memberMA are encoded over their
own unique set of ROBDD variables, a Cartesian product is easily and efficie
represented. In fact, a Cartesian product requires only total nodes equal t
summation (not product) of all nodes for allMA in a composition. This may be
contrasted to a logarithmic encoding that may identify guaranteed mutu
exclusive operands in the scheduling problem and reuse the same Bo
variables to represent both. This would result in less total Boolean variables bu
necessarily less ROBDD nodes. With the ‘one-hot’ approach, constraints
written between a small set of typically local Boolean variables. This does
greatly disturb the original efficient Cartesian product. With a logarithm
approach, constraints would have to be written between a larger, more disp
set of Boolean variables. From experience, constraints which involve a l
number of dispersed Boolean variables typically cause the most se
representation growth. Hence, ABSS strives for sparse encodings that le
efficient ROBDD representation rather than a minimal number of state variab

4.6.1  ROBDD Ordering

A good ABSS ROBDD ordering places two taskMA related by an operand
dependence as close together as possible. In other words, a good ABSS RO
ordering follows the flow of the original behavioral description. Consider
scheduling problem consisting ofn single time-step tasks where taski+1 depends
on the result of taski. Figure 4.22 illustrates how this ‘chained’ schedulin
problem looks for 10 tasks. When ordered as shown in figure 4.22, only 72 n

are required for∆ ∈ CMA . If ordered {0,2,4,6,8,9,7,5,3,1}, 3638 nodes a
required to represent the same problem! In this bad ordering, the dependency
task 0 to task 1 extends across all other tasks. An ordering which insists th
constraints cross over as small a number ofCMA ROBDD variables as possible is
typically good. With real scheduling problems, it is not always possible
productive to find this best ordering. Rather, a heuristic task ordering, which te
to minimize constraint length, is used. Traditional ROBDD sift reordering th

Figure 4.22A ‘chained’ scheduling problem

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
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finds a better ordering from this good starting point. Finally, when employ
traditional ROBDD ordering techniques such as sift, allMA in a composition are
first sifted as whole blocks and then sifting occurs within individualMA . This
grouping of MA variables during sifting speeds up reordering and results
smaller ROBDDs.

4.6.2  ‘Long’ CMA Constraints

Suppose that a ‘long’ inter-iteration dependency is added to the examp
shown in figure 4.23 to create a loop. Even though all other dependencies a

optimal length, this one long constraint causes theCMA transition relation to grow
from 72 to 237 nodes. Instead of attempting to find a better average ord
CMA’s transition relation may be partitioned. Consider a transition relat
partitioned into two partitions, 0 and 1. Both partitions are originally the Cartes
product of all compositionMA . Most constraints are applied to partition 0 while
few long constraints are applied to partition 1. Care must be taken when comp
image and preimage of such a partitioned transition relation because both sta
transition information are important to ABSS. To compute an image, a pre
state set is intersected first with partition 0. Present state variables of allMA that
do not involve any of the long constraints in partition 1 are then existenti
quantified out. Next-state variables are not mapped or shifted to present-
variables yet. Transitions of allMA involved with long constraints, whethe
accepting or producing, are preserved by delaying existential quantificatio
their present state-variables. Finally, this intermediate set is intersected
partition 1 and all present-state variables are existential quantified out and
state variables are shifted to present-state variables. This may be generaliz
several additional partitions for long constraints. There are trade-offs and it is
necessarily best to have numerous partitions. With more partitions, moreMA have
constraints appearing in later partitions. TheseMA may not have present-stat
variables existentially quantified out during early partition computations. This
lead to larger intermediate set sizes.

The scheduling problem in figure 4.23 was built in two partitions, 0 and
These two partitions require a total of 72+7=79 nodes. Tasks 1 and 9 involve
constraints and hence have present state variables existentially quantifie
during image computation only with partition 1. A partitioned transition relati
for long constraints is typically only used during the viability prune described
section 4.2.6. The viability prune removes states and transitions with itera
sense confusion. These erroneous states and transitions are the pr

Figure 4.23A “chained” scheduling problem with “long” constraint

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
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contributors to non-partitioned transition relation growth. Once they are remo
all transition relation partitions are merged into one transition relation thro
intersection. For the example in figure 4.23, the post-viability ‘flattened’ transit
relation requires only 73 nodes. Finally, concurrency constraints are typic
applied only after a transition relation is flattened.

4.6.3  Simplified Operand Resolution Formulation

Operand resolution may be simplified in compositions without capa
constraints. This includes cyclic control-dependent iterates and regular ac
control-dependent composition. In these cases, tasks are bypassed imme
when their control-obviated expression istrue. Figure 4.24 illustrates operand
resolution for these cases. In frame 1, the resolver has yet to resolve while the
in control block 2 has speculatively produced. In frame 2, the resolver resolves

the task in control block 0 is immediately bypassed. This is possible as there
chance of iteration-sense confusion for the composition cases considered. In
3, the task in control block 1 executes. In frame 4, the postresolution task
accept. The postresolution task’s dependency on preresolution operands ne
be conditioned to refer to just a single preresolution operand but may be writte
terms ofall preresolution operands. Provided that all preresolution operands a
control blocks which are only active when they supply the postresolution task,
all preresolution operands will be known in the correct sense through bypassi
speculative execution by the time the resolver resolves. Hence, an ope
resolution point may be written as,

(4.29)

For postresolution∆info required to be enabled, the resolver must beknown,
srinfo known, as well asall preresolution operands,sinfo1 knownthroughsinfon known.

Figure 4.24Operand resolution sequence with immediate task bypass

0 1 2

0~

0 1 2

1

0 1 2

1

0 1 2

Frame 2Frame 1 Frame 4Frame 3

1

ma.∆info required mp
1
.Sinfo1 known —,( ) mr.Srinfo known —,( )⋅⇒( )

ma.∆info required mp
2
.Sinfo2 known —,( ) mr.Srinfo known —,( )⋅⇒( )

•
…

ma.∆info required mp
n
.Sinfon known —,( ) mr.Srinfo known —,( )⋅⇒( )

••
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From experience, thisflat operand resolution formulation is often more efficient
to represent.

4.7  Summary
This chapter described how a composite modeling automaton,CMA , is

constructed. The Cartesian product of allMA , each representing a task o
sequential constraint from the scheduling problem, creates an initialCMA .
Dependency implication constraints, applied through intersection, prune ac
states and transitions from aCMA . Capacity implication constraints and a viabilit
pruning step prevent iteration-sense confusion in cyclic models. Task bypas
double implications, operand resolution point implications and iterates help m
correct execution of acyclic and cyclic control-dependent scheduling proble
The requiredCMA pruning steps for various types of scheduling problems
summarized in table 4.1.

This chapter stressed that concurrent operand instances are bounded in a
CMA . As an MA represents existence or nonexistence of a finite numbe
operand instances, only operand instances proportional to the number ofMA in a
composition may be simultaneously represented. Thus, a cyclicCMA bounds the
solution space. Several techniques were presented to relax this bound
controlled fashion. These include using iterates, adding operand buffers
performing task splitting.

This chapter also discussed composition techniques in general te
Implications and double implications are necessary for all dependency

Table 4.1: Summary of Composition Steps

Acyclic
Data-Flow

Cyclic
Data-Flow

Acyclic
Control-

Dependent

Cyclic
Control-

Dependent

Cartesian Product Yes Yes Yes Yes

Transition Relations ∆data ∆data ∆data, ∆control ∆data, ∆control

Task Bypassing None None Yes Yes

Dependency
Constraints

Basic
Alternative

Basic Basic
Resolved

Basic
Resolved

Capacity Constraints None Basic None Global
Iterates

Viability Pruning No Yes No Yes

Concurrency
Constraints

Transition
State

Transition
State

Transition
State

Transition
State
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capacity constraints as well as synchronization with sequential constra
Concurrency constraint hierarchies enforce sophisticated resource bounds o
system activities and local storage.

The final discussion in this chapter focused on efficient ROBDD representa
of a CMA . A good ordering is found by following the expected flow of
scheduling problem’s behavior. Some dependency and capacity constraints
excessive ROBDD growth. This is avoided by partitioning aCMA’s transition
relation. Finally, operand resolution points may be formulated in a more effic
manner for certain types of scheduling problems.
80



tion
chine
s via
istic

ns,
ises
ade

uces

e of

ment
s of

ed,
d than
imum

such

of
rom
clic

dent
s in a
els,
Chapter 5

Exploring Modeling Automata

MA andCMA as described in chapters 3 and 4 encapsulate all legal execu
sequences of a system. Still, they may not be used directly as a finite state ma
controller. Fundamentally, they represent multiple legal execution sequence
nondeterministic choices, yet a real implementation must make determin
choices. If nondeterministic choices are pruned in aCMA to leave only one
deterministic choice, or if multiple choices are made deterministic by conditio
then a finite state machine controller may be directly synthesized. But this ra
questions as to which nondeterministic choices should be kept and m
deterministic and which choices should be pruned. This chapter introd
exploration techniques that answer these types of questions.

Optimization requires an objective. The objective directs how and what typ
deterministic sequences are extracted from anMA . A common objective is
minimum latency. This may be stated as, “What execution sequences imple
the entire scheduling problem in the smallest number of time-steps?” Variation
this exist for cyclic behavior, where minimum iteration latency is often desir
and control-dependent behavior, where some control cases are more favore
others. The exploration techniques presented here are directed by a min
latency objective. They first determine if, given all constraint imposed on aCMA ,
any valid execution sequence of any length exists. Then, they determine all
sequences of minimum latency.

At the core of ABSS exploration techniques is an implicit implementation
Dijkstra’s shortest paths algorithm. For acyclic models, shortest paths f
Stask startto Stask final represent minimum latency execution sequences. For cy
models, shortest repeating sustainable paths in aCMA correspond to minimum
iteration latency or maximum throughput execution sequences. Control-depen
models require that a set of shortest paths, covering all possible control case
deterministic and causal way, is found. Finally, with control-dependent mod
81
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some control cases may be favored over others and hence shortest paths fo
favored paths are found at the expense of other control cases.

With regard to the RISC example, exploration determines execution seque
that exhibit high instruction throughput for the most common instruction ca
This requires finding shortest repeating paths in aCMA that execute all iterates
This is a difficult problem as paths for all control cases must be found
furthermore must each exhibit sustainable repeating behavior.

This chapter is organized as follows. First, exploration for acyclic data-fl
models is presented. Basic exploration ideas and a detailed example are intro
here. Next, validation and ensemble path sets, which are both required for co
dependent exploration, are discussed in regard to acyclic models. Fin
exploration techniques relevant to cyclic models, such as behavior cuts, repe
kernels and closure, are presented first for data-flow and then for con
dependentCMA .

5.1  Acyclic Data-Flow Exploration
This section introduces exploration techniques for acyclic data-flow mod

First, a detailed example illustrates basic exploration concepts required here a
later sections. Next, these exploration concepts are more formally defined
described. Finally, this section provides reasons why aCMA’s representation and
exploration is efficient.

5.1.1  Example

Section 4.1 introduced a simple acyclic data-flow example with a final pru
CMA presented in figure 4.5 and again here in figure 5.1. The two minim
latency paths in this example are evident. Either the top or the bottom path
reachStask finalfrom Stask startin three time-steps. Although this is evident here,
is not evident in most real scheduling problems. Consequently, an imp
implementation of Dijkstra’s algorithm is used to find all such shortest paths.

Figure 5.1Final CMA for acyclic data-flow example from section 4.1
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Consider states, as shown in figure 5.2, that are reached during a for
exploration starting with state S000. The state set at time-step 0 only con
S000. After a single image computation1, the state set at time-step 1 contains sta
S000 and S001. Only at time-step 3 areStask finalstates present in a time-step se
Reaching states inStask finalis the forward exploration termination condition. Thi
forward exploration process is similar to labeling graph vertices with the
distances fromStask startif all transitions are considered unit weight. For instanc
S011 appears in the state sets at time-steps 2 and 3 because it is at least two
computations away from any state inStask start. There is no guarantee that states
Stask final are ever reached during forward exploration as constraints applied
CMA may prohibit this. When this occurs, no solution is possible since AB
implicitly searches the entire solution space.

Once forward exploration terminates, abackward pruning step occurs. This
pruning starts with any states reached inStask final, computes a preimage, and the
uses this preimage set to prune the previous time-step set. Figure 5.3 illus
how backward pruning is applied to figure 5.2. The preimage of S111, the
state reached inStask final, returns states S011 and S101. This is intersected with

1. A image computation is described in section 4.2.6.

Figure 5.2Forward exploration of figure 5.1
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time-step 2 state set to prune states not on a path that reachesStask final. Next, the
preimage of this pruned time-step 2 state set is used to prune the time-step 1
set. This continues until states at time-step 0 are reached. All shortest paths
Stask startto Stask final remain.

Nondeterministic choices are still present in figure 5.3 as all shortest path
represented. It is possible to arbitrarily pick and preserve a single choice when
faced with a nondeterministic choice to create a single deterministic execu
sequence orwitness scheduleas shown in figure 5.4. This assumes that all choic
are of equal cost as they all require the same minimum latency to reachStask final.
There may be additional cost considerations that prefer one choice over anot

Figure 5.3Backward pruning of figure 5.2
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Figure 5.4A final deterministic witness schedule
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5.1.2  Basic Exploration Definitions and Algorithms

To facilitate a more formal discussion of exploration, some new definitions
notations are needed. In the example, states reached at a certain time-step
preserved in a time-step state set. This family of time-step state sets is called a
set.

Definition 5.1 A path set of a CMA is an indexed family of state sets
{ S0, S1, … , Sn} where Si+1 or Si-1 is contained in the image or preimage ofSi

respectively. This encapsulates sets ofCMA  paths as defined in definition 3.2.

Symbolic preimage and image computations, as defined in section 4.2.6
used extensively during exploration. To denote an image or next-s
computation, the function,

(5.1)

is defined. This function returns all next states of states inSlabel mapped to present
state ROBDD variables. If the argument∆ is suppressed, than the default transitio
relation for theCMA under consideration,∆data, is implied. Likewise, a preimage
or previous-state computation is denoted by the function,

. (5.2)

Minimum latency exploration of an acyclic data-flowCMA employs three
algorithmic steps: forward exploration, backward pruning and, if desired, witn
schedule extraction. Forward exploration begins with aCMA’s task start state,
Stask start, and constructs a path set,PS, of cardinality i+1 such that
PS.Si∩ Stask final≠ ∅. Figure 5.5 details the basic forward exploration algorith
As long as an image computation does not contain states inStask final, a time-step
set is added toPS.Forward exploration terminates when the last time-step state
in PS contains some states inStask final.

Once a candidate path set,PS, is created via forward exploration, backwar
pruning only preservesall paths fromStask startto Stask final. As shown in figure 5.6,

Img Slabel ∆,( ) ∃ X —,( ) ∆ Slabel —,( )•( )=

Img
1–

Slabel ∆,( ) ∃ — X,( ) ∆ — S, label( )•( )=

Figure 5.5Basic forward exploration algorithm

i = 0

PS.Si= Stask start

while( (PS.Si∩ Stask final) == ∅ ){

PS.Si+1= Img(PS.Si)

i=i+1

}
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the last state set inPSis restricted to states that also appear inStask final. A series of
preimage computations prunes all states sets inPS such that only and all paths
from Stask start to Stask final remain. A path set that contains all paths (not just
single path) is useful if further refinement is desired. For example, since
minimum latency paths are found, it is possible to further prune this path se
additional design objectives.

The pruned path set,PS, contains all minimum latency execution sequenc
This set may be restricted to represent a single witness schedule if desired
begins by choosing a single state at time-step 0, computing an image, restr
time-step 1 by this image, and continuing through all time-step state sets in
manner. The witness extraction algorithm2 is shown in figure 5.7.

2. If only a single witness schedule and no path set representing all minimum latency
schedules is desired, then backward pruning and witness extraction may be merged into
one step for acyclic data-flowCMA .

Figure 5.6Basic backward pruning

i = |PS| - 1

PS.Si= (PS.Si∩ Stask final)

while( i > 0){

PS.Si-1= (PS.Si-1∩ Img-1(PS.Si))

i=i-1

}

Figure 5.7Witness extraction algorithm

i = 0

s∈ PS.Si

PS.Si= s

while( i < | PS| - 1) {

i=i+1

PS.Si= (PS.Si∩ Img(PS.Si-1))

s∈ PS.Si

PS.Si= s

}
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A witness schedule, as well as any other execution sequence in aCMA or a
path set of aCMA , must be interpreted through transition labels. The path setPS
contains state sets representing time-step boundaries. To determine whatactivity
occurred during theith time-step, the transition(s) must b
considered. Any label which references identifies an activ
that occurred during theith time-step. In general, for each∆label∈ LT, if

, then label occurs for at least one transition in
. If represents a single transition, thenlabel

definitely occurs for that transition.

Figure 5.8 shows a conceptual view of the basic exploration steps. At the
forward exploration has created a path set that includes minimum latency p
from Stask start to Stask final. Both time-step state sets and transitions are sho
Backward pruning has been applied to the path set shown in the middle. E
minimum latency path is present. Finally, a single witness schedule remains i
path set shown at the bottom. This represents one minimum latency determi
execution sequence for theCMA .

5.1.3  Efficiency of a CMA’s Representation

Representation and exploration of aCMA is potentially very costly as up to
approximately 2200 states and an even larger number of paths may be dealt w
Still, exploration and representation of aCMA is often efficient for several
reasons. First, use of implicit ROBDD representation often, though not necess
always, provides dramatically efficient representation and manipulation of la
sets. Second, particular properties of the ABSS formulation also enh
efficiency. Note that during forward exploration, the entire reached state set
just the frontier, is propagated forward. Consider a task starting state S000
Suppose the task represented by the single time-stepMA in the most significant

PS.S
i 1–

PS.S
i,( )

PS.S
i 1–

PS.S
i,( )

PS.S
i 1–

PS.S
i,( ) ∆label⊆

PS.S
i 1–

PS.S
i,( ) PS.S

i 1–
PS.S

i,( )

Figure 5.8Conceptual view of exploration steps

S0 S1 S2 S4S3TS1 TS2 TS3 TS4

Stask start Stask final

S0 S1 S2 S4S3TS1 TS2 TS3 TS4

Stask start Stask final

S0 S1 S2 S4S3TS1 TS2 TS3 TS4

Stask start Stask final

Forward Exploration

Backward Pruning

Witness Schedule
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state bit position executes during time-step 1. Hence, S000000 and S10000
contained inPS.S1. Only the cube S-00000 need be represented and no ROB
variable is needed for the most significant state bit. On the other hand, if jus
frontier is preserved and propagated,PS.S1 will only contain S100000. This
requires an ROBDD node to represent the most significant state bit. Propag
the entire reached state set rather than the frontier results in a ~3× improvement for
ABSS.

Another reason for efficiency is merging of paths in aCMA and its path sets.
Imagine a scheduling problem with three tasks:a, b and c. These tasks are
completely independent --there are no operand dependencies among them.
tasks all require a single time-step ALU and only one such ALU is availab
Given these assumptions, there are six possible orderings ofa, b andc. A path set
that doesn’t support path merging is shown in figure 5.9. All six distinct pa
reach six distinct task final states. A path set that does support path mergi

shown in figure 5.10. Only half as many states are required when paths are all
to merge. Path merging is similar to the sharing of isomorphic subgraphs
makes ROBDDs compact. ACMA’s nondeterminism and ‘one-hot’ Cartesia
encoding naturally enables this efficient merging of paths. Although path mer
is possible in an explicit representation, the number of paths for exact search o

Figure 5.9Nonmerging path set
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scheduling solution space is typically so large that an implicit representa
which still supports path merging, is efficient and preferred in practice.

Even with these reasons for efficiency, representation and espec
exploration of aCMA may be complex and costly. Still, ABSS is practiceable f
problems of useful scale. Specific discussion regarding ABSS cost and compl
is presented in section 6.1.3 and section 7.2.3.

5.2  Acyclic Control-Dependent Exploration
To determine minimum latency schedules from an acyclic control-depen

scheduling problem’sCMA also requires finding shortest paths. Similar
section 5.1, symbolic reachability finds shortest paths from aCMA’s task start
states,Stask start, to task final states,Stask final. Unlike section 5.1, a witness
schedule is not a single path in a path set but rather an ensemble of paths
Stask startto Stask final. Such an ensemble of paths is called anensemble schedule
and must include a path for each distinct control-dependent execution sequ
For instance, a RISC processor must be able to executeall instructions and
therefore an ensemble schedule for a RISC processor contains sequences fo
instruction. As a more specific example, consider some control-depen
behavior that branches into two sets of behaviors depending on atrue/falsecontrol
resolution. An ensemble schedule for this example’sCMA must contain a path
from Stask start to Stask final that represents execution oftrue control resolution
behavior and another path that coversfalse control resolution behavior.
Furthermore, all paths of an ensemble schedule must be mutually compatibl
will be shown, it is possible to find paths fromStask startto Stask finalthat cover all
control cases yet do not represent a casual ensemble schedule. A fixed

Figure 5.10Merging path set
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pruning, calledvalidation, is performed during backward exploration pruning
insure that only valid ensemble schedules remain.

Control dependent models contain two transitions relations:∆dataand∆control.
A time-step still corresponds to a single image computation of either∆data or
∆control. When modeling clock synchronous systems, two time-steps, one for∆data

and another for∆control, correspond to a single clock period. As one∆ is now not
enough to create an entire path set, a transition set is associated with a path
identify which∆ should be used to relate one time-step state set to the next.

Definition 5.2 If multiple transition relations are required in the computation
a path set, atransition set is associated with a path set. A transition se
{ ∆0, ∆1, … , ∆n-1}, is an indexed set containing all transition relations used in t
computation of a path set. A transition relation∆i relates setsSi,Si+1.

5.2.1  The Validation Problem

To illustrate the validation problem, three possible ensemble schedules fo
behavior in figure 5.11 are discussed. Notice that this behavior contains four

(c1, m1, m2, and a1), two control blocks (d>100, d<100), and one operand
resolution point (yd>100 or yd<100 resolves toy for task a1). For discussion
simplicity, assume that each task is implemented in a single time-step. ACMA
representing this behavior is constructed and subsets of paths in thisCMA are
explicitly presented for discussion.

Figure 5.12 shows aCMA portion representing the behavior in figure 5.1
where no speculation occurs. Bits in the state vector are orde
{ c1, c1, c1, m1, m2, a1}. In the first time-step, taskc1 executes as seen by th
change in state from 00- to 01- inc1’s state portion. Asc1 is modeled by a
multivalueMA , resolution occurs during the control-phase. A path covering ev
possible control resolution leaves theresolve-labeled state, S01-000. Furthermor
during control-phase resolution, either tasksm1 orm2 are bypassed. Thetruepath,
shown at the top, executesm1 and finallya1. Likewise, thefalsepath, shown at the
bottom, executesm2 and finally a1. This results in a valid ensemble schedu
requiring 6 time-steps or 3 clock ticks for either control case. It is a valid ensem

Figure 5.11A behavioral example for discussion on validation

if (d > 100) { // Task c1

y = a × b; } // Task m1

else {

y = c × b; } // Task m2

z = x + y; // Task a1
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schedule as all control cases are covered and all possible value resolutions le
a resolve-labeled state continue toStask final.

Figure 5.13 shows an explicitCMA portion where speculation for the behavio
in figure 5.11 does occur. In the first time-step, taskc1 executes and either taskm1
or m2 executes speculatively. Tasksm1 andm2 may not both execute speculativel
during the same time-step as only one multiplier resource is available. Now t
are two resolve-labeled states, S01-100 and S01-010. Only paths favo
speculation are shown leaving theseresolve-labeled states. The paths coverin
cases for incorrect speculation arenot included. It appears as if either control cas
may complete and reachStask final in just four time-steps. In fact, there are leg
speculative paths for either control case which do complete in just four time-s
Thus, all control cases are covered, yet this is not a valid ensemble schedule.
the control operand is not known at time-step 0, a deterministic machine can
choose the appropriate speculationa priori. It must choose to speculate either o
m1 or m2. If it chooses to speculate incorrectly, then it must have a recovery p
Unfortunately, theresolve-labeled states only have exiting paths which presum
correct speculation was done. Hence, a deterministic implementation can n
synthesized which requires just four time-steps for both control cases.

Figure 5.14 shows aCMA path subset that contains recovery paths. Althou
speculation may occur for eitherm1 or m2, paths exitingresolve-labeled states
S01-100 and S01-010 now coverall possible control resolution cases. Henc
when a control value resolves, a deterministic machine always has an appro
path for the particular value resolution. In fact, figure 5.14 contains two va
ensemble schedules. One speculatively executesm1 and may complete atrue

Figure 5.12A CMA subset of a valid nonspeculative ensemble schedule
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Figure 5.13A CMA  subset of an invalid speculative ensemble schedule
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resolution in four time-steps yet requires six time-steps for afalseresolution. The
other speculatively executesm2 and may complete afalseresolution in four time-
steps yet requires six time-steps for atrue resolution. This observation leads to
deeper scheduling objective question, “Which subset of control cases shou
favored for minimum latency and at what expense to other control cases?”

A validation step is added to backward pruning to guarantee every path
member of some valid ensemble schedule. The validation step insures th
resolve-labeled states in a path set have exiting paths covering all con
resolutions. Finally, control cases may be prioritized during backward explora
to favor minimum latency of some control cases at the expense of others.

5.2.2  Unprioritized Exploration Overview

Two types of exploration are presented for acyclic control-dependent mod
unprioritized and prioritized. Unprioritized exploration does not favor so
control cases at the expense of others but rather finds a minimum latency exec
sequence that includes all control cases. This is the simpler exploration stra
and is presented first.

Figure 5.15 shows a conceptual overview of control-dependent explora
steps. These steps are described in detail in subsequent sections. First, fo
exploration creates a path set with shortest paths fromStask start to Stask final. A
further criteria is that states inStask final covering all possible control resolution
are reached. Next, backward pruning is attempted. During backward prunin
validation step insures that when a multivalueMA resolves, all control cases ar
still present and continue toStask final. As shown in the failed backward pruning
states inS2 are removed as they fail validation. No states remain and hence
valid ensemble schedules exist. Therefore, another forward step is added
original path set and backward pruning is attempted again. In the second back
pruning attempt, one state inS2 survives validation as it has exiting paths for bo
control values. Still, several ensemble schedules exist. The final step reduce
path set to a single witness ensemble schedule.

Figure 5.14A CMA  subset of two valid speculative ensemble schedules
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5.2.3  Forward Exploration

Forward exploration for acyclic control-dependent models proceeds in sim
fashion as previously described for acyclic data-flow models. With basic data-
forward exploration, termination occurs once any states inStask final are reached.
With control-dependent forward exploration, termination occurs once state
Stask final are reached which also cover all control cases. Anall-paths check is

Figure 5.15Conceptual view of control-dependent exploration steps

S0 S1 S2 S4S3TS1 TS2 TS3 TS4

Stask start Stask final

S0 S1 S2 S4S3TS1 TS2 TS3 TS4

Stask start Stask final

Forward Exploration

Failed Backward Pruning

S0 S1 S2 S4S3TS1 TS2 TS3 TS4

Stask start Stask final

Forward Step

S5TS5

S0 S1 S2 S4S3TS1 TS2 TS3 TS4

Stask start Stask final

Backward Pruning

S5TS5

S0 S1 S2 S4S3TS1 TS2 TS3 TS4

Stask start Stask final

Witness Ensemble

S5TS5

Figure 5.16Forward exploration algorithm with all-paths check

i = 0

PS.Si= Stask start

while( apc(PS.Si∩Stask final) ≠ apc(Stask final) ){

PS.Si+1= Img(PS.Si)

i=i+1 }
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formulated to determine if a state set covers all control cases. LetXno valuesbe the
set of all ROBDD variables in aCMA less those variables that encode a cont
value.3 The all-paths check for some state setS is expressed as,

. (5.3)

All variables, except those indicating control value, are existentially quantifi4

out. This leaves only control case values. Ifapcexactly equals all expected contro
case values for aCMA , then the all paths check is successful. All expected con
cases for aCMA may be determined by applying equation 5.3 to aCMA’s
Stask final. Finally, figure 5.16 shows a forward exploration algorithm modified
include an all-paths check.

5.2.4  Backward Pruning with Validation

Backward pruning for acyclic control-dependent models requires a valida
step at each state set in a path set that may containSresolvestates. Validation simply
insures that for any state labeledresolve, a transition to every possible resolve
value exists. Due to the way a multivalueMA is specified,Sresolvestates are only
reached during backward pruning in a preimage of∆control. Hence, validation is
only required when computing a preimage of∆control.

Figure 5.17 describes a validated preimage computation. An initial set,V1,
computes apartial preimage of state setS.This is a partial preimage as not all nex
state variables are existentially quantified out. Next-state variables w

3. When encoding a multivalueMA , some state variables serve only to distinguish oper-
and values. These variables are denotedXvalues. Xno values=X-Xvalues.
4. Existential abstraction is used rather than universal abstraction as states reached in
Stask finalmay cover all control cases yet still differ when considering other state variables.

apc S( ) ∃ Xno values —,( )S=

Figure 5.17Validated preimage computation

V0 = ∅

j = 1

while ( Vj ≠ Vj-1 ){

j = j + 1

}

return

V
1 ∃ — X Xvalues–,( ) — S,( ) ∆control•( )=

V
j 1+ ∀m Mmultivalue∈ ∀ — m.Xvalue,( )Vm.resolve

j( ) V
m.resolve

j
+( )=

∃ — Xvalues,( )V
j
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distinguish value for any multivalueMA in a composition remain. The validation
fixed point, within the while loop, acts on this setV. For every multivalueMA m
within the composition, two partitions are formed.Vm.resolvecontains all states inV
wherem is not in theresolve-labeled state whileVm.resolvecontains all states inV
where m is in the resolve-labeled state. Next-state variables for am which
distinguish value are universally quantified. Onlyresolve-labeled states with
transitions to next states covering all possible resolved values remain
validation for some multivaluem may remove required transitions for othe
multivaluem, validation is repeated for allm until no additional pruning occurs.
Finally, remaining next-state variables are existentially quantified out.
returned set is the validated preimage ofS.

This validated preimage computation is incorporated directly into backw
exploration pruning as seen in figure 5.18. Within the while loop, two preima

for both∆controland∆dataare computed. A validated preimage computation is on
used with∆control. This assumes that the initial path set always contains an
number of time-step state sets and forward exploration is altered to guarantee
If the validated preimage returns an empty set, then backward pruning f
Backward exploration pruning is attempted again with another path set th
extended by two time-step sets with forward exploration. For this reason, a co
PS is always used during backward exploration pruning so that the original ma
extended. When necessary, the original path set is extended through i
computations,PS.Si+1= Img(PS.Si).

Figure 5.18Backward pruning with validation

i = |PS| - 1

PS.Si= (PS.Si∩ Stask final)

while( i > 0){

PS.Si-1= (PS.Si-1∩ ValImg-1(PS.Si))

if( PS.Si-1=∅ ) break

i=i-1

PS.Si-1= (PS.Si-1∩ Img-1(PS.Si))

i=i-1

}
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5.2.5  Ensemble Witness Extraction

For control-dependent exploration, iterative calls to the witness extrac
algorithm shown in figure 5.7 are made until a complete ensemble is obta
Figure 5.19 illustrates how a complete ensemble is extracted. After a si

application of the witness extraction algorithm to acopyof PS, a single schedule
for precisely one control case is extracted. States labeledresolveare reached at
various time-step state sets in this initial schedule. Whenever asresolve state is
reached, a random choice is made as to which control case to proceed on. W
subsequent iterative call to the witness extraction algorithm is made, it begin
the original path set with thissresolvestate and at the appropriate time-step sta
set. When the image ofsresolve is computed, it is restricted by intersection t
include control cases other than what has already been completed. This is
empty as validation has guaranteed that the image of anysresolvestate includes
states covering all control cases. These subsequent iterative calls serve to e
branches for all control cases. Iterative calls to the witness extraction algor
continue until all control cases are covered. The original witness schedule an
branches are included in a final path set encapsulating a complete ense
schedule.

Witness extraction is not an essential step in exploration. It is useful prima
when a single schedule or ensemble schedule must be explicitly examined.
backward pruned path set contains all minimum latency schedules, an im
direct path from this to a dynamic finite state machine controller is preferred.

5.2.6  Prioritized Exploration Overview

The problem with unprioritized exploration is that only the longest laten
control case is optimized. It may be that other control cases have valid paths
complete in even fewer time-steps. Furthermore, other control cases ma
optimized first at the expense of the longest latency control case. For instance
RISC processor, some instructions occur more often than others. Exec
sequences for these high probability instructions may be optimized at the exp

Figure 5.19Conceptual view of ensemble witness extraction

S0 S1 S2 S4S3TS1 TS2 TS3 TS4

Stask start Stask final

Branch Extraction

S5TS5

S0 S1 S2 S4S3TS1 TS2 TS3 TS4

Stask start Stask final

Initial Witness Extraction

S5TS5
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of other infrequent, though still necessary, instructions. Figure 5.20 show
conceptual view of control-dependent prioritized exploration steps. First, forw
exploration creates a path set that adds time-step state sets untilall states are
reached. This is desired because prioritizing one control case may d
termination of another control case. For instance, speculation in favor o
prioritized control case will consequently delay other control cases. By compu
all reachable time-step sets, all possible delays are accounted for. Next, anearliest
termination algorithm finds the first time-step set where states inStask final are
reached that cover the highest priority control case(s). Future activity
terminated control cases is removed from the path set. Backward pruning then
on the entire path set. If successful, the same steps are applied for the next h
priority control case. If unsuccessful, the control cases under current consider
are allowed to terminate two time-steps later and backward pruning is attem
again. This continues until all control cases have been prioritized. Finall
witness ensemble may be extracted.

To facilitate control-case prioritization, apriority list is created. This is an
ordered list of control-case terms,cp. Each control-case term is a present sta
expression of multivalueMA values. A control-case term may be a sum
products and hence represent multiple control cases. For aCMA with numerous
control cases, it may be impractical or unneeded to prioritize each individ
control case separately. Often a set of control cases, represented by one co
case term, is prioritized. In this case, the latency of the worst control case w

Figure 5.20Conceptual view of control-dependent prioritized exploration
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Full Forward Exploration

S5TS5
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this control-case term will be minimized. The latency for all other control case
only guaranteed less than or equal to this worst-case latency. Even if better la
is possible for these other control cases, it will not be guaranteed unless these
are specifically prioritized.

Control-case prioritization is a greedy algorithm. Even if a certain control c
should only be favored slightly over another, it will be favored as much as poss
and at any expense to lower priority control cases. For this reason, a hierarc
control-case terms is often used. At first, several control cases are priori
jointly. After this, individual control cases may be prioritized. In an ideal contr
case prioritization algorithm, control cases would be prioritized such that expe
latency is minimized. The expected latency is the weighted sum of all control-
latencies where each latency is weighted by its execution probability.

5.2.7  Full Forward Exploration

Control-case prioritization requires a path set that includes all reached st
Full forward exploration, or complete reachability, is required. This allo
prioritization of one control case to delay other control cases, yet these del
control cases are still contained in a path set. A new termination condition o
new states reached is added to previously described forward explor
algorithms. Figure 5.21 describes the full forward exploration algorithm.

5.2.8  Control-Case Termination and Future Exclusion

Minimum latency prioritized schedules are not found by applying backw
pruning directly to a full path set. Rather, a full path set must be pruned to inc
earliest terminations of the control case undergoing prioritization. Earl
termination is aPS.Si such that states inStask finalare reached which cover the

Figure 5.21Full forward exploration algorithm

i = 1

PS.Si= Stask start

rs = Img(PS.S0)

while( rs ≠ PS.Si-1){

PS.Si = rs

rs = Img(PS.Si)

i=i+1

}
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currently considered control-case term,cp. Figure 5.22 describes the algorithm t
find such aPS.Si. Beginning with the first time-step set in a path set, each time-s
set is checked for intersection withStask final and containment ofcp. If so, the
algorithm breaks andetsindicates the earliest time-step where task final states
reached forcp.

Even thoughcp terminates inPS.Sets, time-step state sets past this are st
required as paths for other control resolutions, required for a valid ensemble,
terminate later. Still, for the control cases under consideration, no fu
terminations may be allowed as they would imply schedules with latencies lo
thanets.To meet these two conditions, all path set time-step sets are kept bu
time-step setsPS.Sj wherej > etsare intersected withcp to exclude any states for
the terminated control-case term.

5.2.9  Backward Pruning for Control-Case Prioritization

Earliest termination and future exclusion of terminated control-cases
performed on a copy of the original path set. As before, this allows for fail
during backward pruning and additional attempts with incrementally exten
path sets. Backward pruning for control case prioritization builds on wha
described in figure 5.18 and is detailed in figure 5.23. One difference is
preservation ofStask finalstates at each preimage computation of∆data.5 This is
required as backward pruning starts at the last time-step set inPS. This time-step
state set may have some control cases excluded due to future exclusio
terminated control cases. Consequently, these previously terminating control
will never appear in a series of preimage computations starting with the last t
step state set inPS. Hence, their termination states must be preserved when
appear in a time-step state set. Another difference is the removal of the b

5. This occurs only for preimage computations of∆data and not∆control as termination
occurs at a clock-tick boundary and not at every time-step boundary.

Figure 5.22Earliest termination algorithm for control casescp

i = 0

while(  i < | PS| ){

if ( apc(PS.Si∩Stask final) == cp) )

break

i=i+1

}

ets = i
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condition. Backward pruning now fails only ifPS.S0 is an empty set rather than
when any time-step set is empty. This allows some late time-step sets in a full
set to be reduced to empty by validation while the real schedule exists in e
time-step sets.

The entire prioritized exploration flow requires successive iterations of e
control case termination, future termination exclusion and backward pruning
all control cases,cp, in a priority list. Once all prioritization has completed,
witness ensemble may be extracted as described in section 5.2.5.

5.3  Cyclic Data-Flow Exploration
With a cyclic CMA , shortest path searches are also used to determ

minimum iteration latency. However, unlike acyclicCMA , shortest paths from
Stask startto Stask finalare not sufficient. Rather, a shortestrepeatingpath is sought.
Such a repeating path, called arepeating kernel, represents a minimum iteration
latency steady-state repeating behavior. This section describes how mini
iteration latency repeating kernels are determined for cyclic data-flowCMA .

This section presents several new concepts and algorithms required to
repeating kernels in aCMA . First, an overview of repeating kernels is presente
To determine repeating kernels, a behavior cut is made to determine a pot
starting state set as neitherStask start or Stask final may even appear in minimum
iteration latency repeating kernels. Then, in similar fashion to forward explorat
a path set, which contains all time-step state sets for candidate repeating kern
created. These candidate loop kernels are pruned so that only complete and

Figure 5.23Backward exploration with preservation of terminated states

i = |PS| - 1

PS.Si= (PS.Si∩ Stask final)

while( i > 0){

PS.Si-1= (PS.Si-1∩ ValImg-1(PS.Si))

i=i-1

Terminated= (PS.Si-1∩ Stask final)

PS.Si-1= (PS.Si-1∩ Img-1(PS.Si))

PS.Si-1= (PS.Si-1 ∪ Terminated)

i=i-1

}
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repeating kernels remain. Finally, a single witness repeating kernel may
extracted.

5.3.1  Repeating Kernels

Consider at an abstract level how execution for some repeating data-
behavior may appear. As shown in figure 5.24, execution begins with a sequen

preamble states and continues with multiple iterations of the behavior. A
enough iterations have passed, a steady-state behavior may become appar
the figure, the state sequencee,f begins to repeat. Such a repeating state seque
is a repeating kernel. In this example,iteration delay, or time required for one
complete iteration, is three time-steps, whileiteration latency, or time between
successive iterations, is two time-steps.

Two repeating kernels, shown as dotted transitions, are also seen in the ex
CMA for the example introduced in section 2.5 and duplicated here in figure 5

Because of the symmetric even/odd construction of cyclicMA and CMA , two
iteration executionlegs, even and odd, represent two potentially overlappi
execution iterations of the repeating behavior. Both legs are identical excep
sense (duals) and imply a complete closed repeating kernel consisting of a s
leg. Such a repeating kernel represents a finite state machine controller
number of control steps equal to the iteration latency.

It may be that a complete closed repeating kernel may not consist of a s
leg as in this example but rather an ensemble of legs. This may be necessa
complex repeating behaviors where the average iteration latency is optimized

Figure 5.24Repeating execution unrolled to reveal repeating kernel

a b c d e f e~ f~ e f

Preamble

Iteration 1

Iteration 2

Iteration 3

Repeating Kernel

Figure 5.25An explicit CMA  for a cyclic data-flow scheduling problem

S000

S100mult_v2~

S001
add_v0

S101

add_v0

mult_v2~

mult_v2~
add_v0

S110
add_v1~

S011
add_v1

mult_v2
add_v0~

S010

mult_v2

S111

add_v0~

add_v0~
mult_v2
101



et 3
f 2.5
state
cy as
plete
ency
with

ady-
stem
-state
this
ing

xists.
imal
, the

d.

an
The

ccur
ivity
or cut
cut

,

example, some behavior may require 2 time-steps for even iteration legs y
time-steps for odd iteration legs. This leads to an average iteration latency o
time-steps. Even more complex cases are possible. This implies a finite
machine controller with number of control steps greater than the average laten
each leg may have a different execution sequence. ABSS extracts a com
closed repeating kernel which contains such best average iteration lat
schedules. In the current algorithm for witness extraction, a repeating kernel
exactly one leg is found.

Conventional scheduling techniques do not always guarantee optimal ste
state repeating behavior. Instead, search typically starts from a natural sy
starting state, proceeds through the initial iteration, and then enters a steady
behavior based on this initial iteration. Basing the steady-state behavior on
initial iteration may lead to suboptimal solutions. On the other hand, determin
optimal steady-state behavior is challenging as no obvious end or beginning e
The questions of where and how much iteration overlap should exist in an opt
steady-state solution usually leads to circular reasoning. In this respect
technique presented here cleanly finds and guarantees an optimal (indeedevery
optimal) steady-state repeating kernel sinceall possible executions are considere

5.3.2  Overview of Repeating Kernel Algorithms

A repeating kernel is found for figure 5.25 by example. This serves as
overview of the upcoming specific discussion of repeating kernel algorithms.
first step is choosing an activity to construct a behavior cuta priori. It is not known
what state(s) occur in a repeating kernel. It is known that some activity must o
during every iteration of the scheduling problem. Consequently, any single act
that is known to be necessary in every iteration, can be chosen as the behavi
activity. All immediate next states of transitions exhibiting the behavior
activity form a behavior cut state set,Sbc. In the example, if the activityadd_v0 is
chosen as the behavior cut, thenSbc is as identified in figure 5.26. By symmetry
there is also the dualSbc~.

Figure 5.26Cyclic CMA  with behavior cut state setsSbc and Sbc~
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The next step is to find shortest paths fromSbc to Sbc~. This is just forward
exploration and creates the path se
PS={{S101,S001}0, {S101,S001,S011}1, {S101,S001,S001,S010,S110}2}. Then,
a backward pruning step preserves only states belonging to shortest p
PS={{S001} 0,{S011}1,{S010,S110}2}. This path set represents all iteration leg
with latency of two time-steps.

Some of the iteration legs contained in a backward prunedPS are not
repeatable within the same iteration latency. For example, if
{{S001} 0,{S011}1,{S010}2} is used, then it may not execute a subseque
iteration in two time-steps or less. This can be determined by examining the
time-step state, S010. Its dual, S101 is not present in the first time-step oPS.
Hence, there is no iteration leg to attach to this iteration leg which completes
next iteration in two or less time-steps. This argument may be made as a c
CMA is symmetric by construction and therefore a dualPS~ exists. A closure
algorithm prunes aPSsuch that the first and last time-step states are exactly e
as duals. After closure, the closed prunedPS={{S001} 0,{S011}1,{S110}2}. This
path set represents all minimum iteration latency repeating kernels and a wi
extraction algorithm may choose a single repeating kernel.

5.3.3  Behavior Cuts and Tags

A valid cut activityis any atomic activity of someMA in the composition that
occurs once in every complete iteration. Let∆cut activity represent the set of all
even-sense transitions for which thecut activityis true.An even behavior cut state
set is all next-states of these transitions and is computed as,

. (5.4)

The dualSbc~, may be found in similar fashion. Because of the encoding cho
used in all cyclicMA , duals may also be found by bitwise complementation. T
is the preferred method and may be implemented with the standard ROBDDCom-
pose() function.

Scheduling problems may consist of multiple independent behaviors sha
one resource set. In this case, if a cut activity is selected from indepen
behaviorg1, Sbc will contain all possible states in both even and odd senses
behaviorg2 by fact that it is independent. This implies that paths exist fromSbc to
Sbc~ which schedule the first independent behavior but stall in both senses fo
other independent behavior and consequently never execute a single task frog2.
This is illustrated in figure 5.27. Here, a state is divided into two portio
representing states contributed by both independent behaviors. The cut
determined with anMA from g1. Hence it may have a state in only on sense inSbc
or Sbc~. On the other hand, all possible permutations forg2 exist. Consequently, it
is possible to have states in both senses present for this independent beh
Closed and pruned paths are shown that reach a validSbc~yet no state change ha

Sbc ∃ X —,( )∆cut activity=
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occurred forg2. Closure mistakenly assumes that the dotted paths exist bu
reality the solid paths exist. In reality, no execution activity forg2 occurs.

To circumvent this scenario, additional ROBDD variables are added toSbc and
Sbc~ which ‘tag’ the sense of eachexternaloutput operand identified from the
scheduling problem’sToutput. These do not change during traversal and hen
provide a record of the initial sense of an output operand. Consequently, only p
producingall output operands at least once may be identified. In the example f
section 2.5 and used in section 5.3.2, the only external output isrv2 produced by
taskv2. The correctly taggedSbc is {S0001,S1101} where subscript ‘1’ tags states
labeledrv2 knownand ‘0’ tags states labeledrv2~ known. Likewise, the correctly
taggedSbc~ is {S1010,S0110} where ‘1’ tags states labeledrv2~ known(inverted
from Sbc) and ‘0’ tags states labeledrv2 known.

In the ABSS implementation, a triple of ROBDD variables is assigned for e
state bit. This triple consists of (tag, ps, ns) wherepsandnsare present and nex
state variable respectively. Applying an initial tag as required bySbc requires
intersecting the term for every state variable that belongs to a taskMA
producing an externally visible operand. Hence, the tag state is identical to
present state for these task inSbc. Likewise, a tag as required bySbc~ requires
intersecting the term for every state variable that belongs to a taskMA
producing an externally visible operand. Hence, the tag state is opposite from
present state for these task inSbc~. Consequently, any path fromSbc to Sbc~ must
toggle present state variable value relative to these taggedMA and can not simply
idle. Finally, when computing a dual, tag state bits are not complemented.

5.3.4  Forward Exploration and Backward Pruning

The states setsSbc andSbc~ are analogous toStask startandStask finalyet apply to
legs in a repeating kernel. Forward exploration, as described in section 5.1
used to create a path set,PS, containing shortest paths fromSbc to Sbc~. Also,
backward pruning, as described in section 5.1.2, is used to prune away all s
not on some shortest path fromSbc to Sbc~. The remaining sequences represe
candidate minimum iteration latency legs for repeating kernels. As the next
closure, may fail, acopyof PS is used during backward pruning. The originalPS
may then be extended by a single time-step and backward pruning attem

Figure 5.27False closure

g1.S
g2.S

g1.S
g2.S~

g1.S~
g2.S

g1.S~
g2.S~

Sbc~Sbc

tag ps⊕

tag ps⊕
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again. Furthermore, backward pruning may be applied to aPS with early
terminations. These terminations are preserved and added back to the pre
computation as in figure 5.23. Finally, closure requires that all terminations
whatever time-step they are reached, be considered. Therefore, the setRSbc~
accumulates all states inSbc~ that are reached at any time-step set. Figure 5

describes this modified backward pruning. As shown, theTerminatedset preserves
any early terminating states. Also, the setRSbc~ accumulates termination state
reached at any time-step set in the path set.

5.3.5  Closure

As illustrated in section 5.3.2, paths exist in a backward pruned path set w
are not closed --there is no way to continue their execution within the cur
minimum iteration latency bounds. A fixed-point algorithm prunes the path se
that onlyclosedshortest paths remain. Backward pruning is applied to a path
until PS.S0 equals all terminations,RSbc~, as duals. Hence, by symmetry argumen
only repeatable iteration legs of at most lengthn remain.

The algorithm in figure 5.29 describes theclosure fixed-point. Within this
fixed-point, the setsPS.S0 andRSbc~are set equal as duals. As long asPS.S0 and
RSbc~ are not equal as duals, a backward pruning is applied. Backward pru
computes a newRSbc~. Only whenPS.S0 equalsRSbc~ exactly as duals does the
fixed-point terminate. This guarantees thatall paths originating inPS.S0 ⊆ Sbc
always reach state(s) inRSbc~ ⊆ Sbc~ in at mostn time-steps. Furthermore, for any
path terminating at some states~∈ RSbc~, there exists a states ∈ PS.S0 such thats

Figure 5.28Backward exploration pruning with termination accumulation

i = |PS| - 1

PS.Si= (PS.Si∩ Sbc~)

RSbc~= PS.Si

while( i > 0){

Terminated= (PS.Si-1∩ Sbc~)

RSbc~= (RSbc~∪ Terminated)

PS.Si-1= (PS.Si-1∩ Img-1(PS.Si))

PS.Si-1= (PS.Si-1 ∪ Terminated) }
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always initiates path(s) reachingRSbc~ with length< n. This is true by way of a
CMA’s symmetry and the closure fixed-point.

Figure 5.30 illustrates a closed path set abstractly. The setsPS.S0 andRSbc~are
equal although in opposite senses. There are two paths (iteration legs),a to a~ and
d to d~, directly repeatable after five time-steps. (By symmetry, paths also ex
from a~ to a and fromd~ to d requiring five time-steps.) These paths represe
schedules with iteration latency of five and requiring five control steps for
steady-state repeating kernel. A schedule which favors minimizing itera
latency at the expense of control depth is represented by the path fromb to c~ and
by symmetry fromc~ back tob. This steady-state schedule has an average itera
latency of four but requires eight control steps. This path, wherec~ was first
reached atPS.S3, is remembered asc~ is accumulated inRSbc~. Note that if the
best possible average minimum iteration latency schedule is desired, the i
path set must extend to aPS.Sn such that all reachable states are included. In t
way, all repeatable paths are represented and the best average combina
guaranteed.

If backward pruning returns an empty set during closure, it indicates
iteration leg(s) with iteration latency ofn were found (i.e. all output operands wer
produced once) but no compatible iteration legs with iteration latency< n exist to
sustain repeating execution. A preserved copy of the forward exploration pat
is extended by one time-step and backward pruning and closure are attem
again.

As constructed, aclosed path setof cardinalityn is the set of all iteration legs
with iteration latency< n such that any of these iteration legs may be used as

Figure 5.29Closure fixed-point

while( PS.S0 ≠ dual(RSbc~) ){

PS.S0= PS.S0∩ dual(RSbc~)

RSbc~= dual(PS.S0)

PS.Sn= PS.Sn∩ RSbc~

PS = BackwardPrune(PS)

if( PS =∅ ) break

}

Figure 5.30Closed paths fromPS.S0 to RSbc~
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of a repeating kernel in which all other iteration legs (if required) also belong
this closed path set.

5.3.6  A Witness Schedule

Although a closed path set contains many execution sequences to choose
it is often desirable to find a path from some states directly to its duals~ as it
represents a FSM controller with number of control steps equal to the minim
iteration latency. This is a joint iteration latency/control depth minimizati
objective since schedules meeting other objectives such as average latenc
exist in aCMA . This may be done by adding enough additional information (ta
to every states ∈ PS.S0 such that the identity of a parent states may still be
determined for children states inRSbc~. In this way, any child states~∈ RSbc~
with tag encoding equaling state encoding as duals identifies a path from s
state s directly to its duals~. Unfortunately, adding this much additional ta
information at once is costly. Instead, this idea is implemented iteratively. Firs
small number of state bits (5-10) for all statess ∈ PS.S0 are tagged to record their
initial value. Next, a closure fixed-point leaves only repeatable paths from pa
states inPS.S0 to children states inRSbc~ in which parent and children states matc
as duals for the tagged portion of the state vector. These two steps are rep
until all state bits have been tagged. This results in adirectly closed path set.

Given adirectly closed path set, an arbitrary states from it’s PS.S0 is picked
as a witness. A closure fixed-point is applied with onlys used as a newPS.S0 and
s~as a newPS.Sn. This produces a set containing all valid executions froms to s~.
A single witness repeating kernel may be extracted as described in figure 5.7.
single schedule is for steady-state repeating behavior and may be dir
translated to FSM control steps.

Loop entry and exit sequences must still be determined as this wit
repeating kernel represents only the steady-state execution. A straight-forward
to determine entry/exit sequences is to simply ignore tasks from previous/
iterations in the witness schedule during loop entry or exit. This produces adeq
although not necessarily minimum length entry/exit sequences. Alternativ
minimum length entry/exit sequences may be determined by finding shortest
from Stask start andStask final to any state in the witness schedule.

5.4  Cyclic Control-Dependent Exploration
Cyclic control-dependent exploration requires no fundamentally n

exploration concepts. It does require combining techniques seen in acyclic con
dependent exploration as well as cyclic data-flow exploration. Conseque
cyclic control-dependent exploration is the most complex. This section reiter
the steps for cyclic data-flow exploration but includes ideas necessary for con
dependent behavior. First, behavior cuts and behavior cut state sets are des
107



clic
ith

ard

t
ility

all
lead
ISC

h
has
ssed.
se

e

e

ent

ration
an

h is
ation

ever

th
is
.3.3

tify
in
ay
This is similar to section 5.3.3 but always uses an operand senseMA transition as
the cut activity. Next, forward exploration proceeds in similar fashion to acy
control-dependent forward exploration. After this, a backward pruning step w
validation is applied. As with cyclic data-flow exploration, closure of a backw
pruned path set is required. Finally, control cases may be prioritized.

Exploration of a RISC processorCMA requires cyclic control-dependen
exploration. Minimum latency executions sequences for high probab
instructions are found. Still, valid executions sequences must exist for
instructions. Furthermore, any current instruction sequence must be able to
into another execution sequence for any instruction supported by the R
processor.

5.4.1  Behavior Cut

A cyclic control-dependentCMA typically contains several iterates. Eac
iterate has a sense operandMA as described in section 4.4.3. A sense operand
the attractive traits that it occurs once during each iteration and is never bypa
This makes a sense operandMA an ideal choice for a behavior cut. The sen
operandMA for one iterate in the composition is arbitrarily picked as the cutMA .
The transition where the even sens
operand becomes known is used as the cut activity.Sbc is determined as shown in
equation 5.4.

Consider what setsSbc and Sbc~ look like if a composition contains only a
single iterate. Remember that a sense operandMA is only allowed to change sens
when all internalMA have completed or reached theirStask final. Consequently,Sbc
is equal to the iterate’s even senseStask startandSbc~ is equal to the iterate’s even
senseStask final. In this case, exploration reduces to acyclic control-depend
exploration as paths fromStask start to Stask final determine shortest legs in a
repeating kernel. Even though both senses are present in an iterate, no ite
overlap is allowed within the iterate and hence this is equivalent to exploring
acyclic model. When several iterates are included in a composition, whic
typically the case, exploration does not reduce to the acyclic case as iter
overlap is allowed among the iterates.

For independent iterates, the possibility exists that some iterate may n
execute but stall indefinitely in paths fromSbc to Sbc~. This is the case as an
independent iterate would haveall of its states --no matter what the sense-- in bo
Sbc andSbc~. Backward pruning and closure would still permit idling paths. Th
problem was addressed in cyclic data-flow exploration with tags. Section 5
described howMA producing externally visible operands were tagged to iden
their original state inSbc. Only states where change had occurred were allowed
Sbc~. A similar approach is taken for cyclic control-dependent exploration but m
be greatly simplified by an iterate’s sense operandMA . As complete execution of

mso.Ssense knownmso.Ssense known,( )
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an iterate is represented by its sense operandMA , only thisMA need be tagged to
guarantee execution of independent iterates.

5.4.2  Forward Exploration

Forward exploration for cyclic control-dependent models is similar to acy
control-dependent forward exploration as described in sections 5.2.3 and 5
Instead of finding shortest paths fromStask startto Stask final, shortest paths fromSbc
to Sbc~are found and used to create a path set. In full forward exploration, whic
preferred6, the initial path set contains paths to all reachable states. Note that
cyclic models, this full path set represents two iteration execution sequences f
iterates.

5.4.3  Control-Case Termination and Future Exclusion

The remaining discussion describes how minimum iteration latency paths
found and prioritized in a cyclic control-dependent exploration. This clos
follows what was previously described for acyclic control-dependent explora
in sections 5.2.6 through 5.2.9. From a high-level, the procedure requires iter
application of a series of steps for each control-case term in the priority list. Th
steps are earliest control-case termination, backward pruning with validation
closure.

Earliest control-case termination takes a full path set,PS, and finds the earliest
time-step set for which states inSbc~ are reached for a particular control-case ter
cp. The algorithm described in figure 5.22 is used with cyclic control-depend
models providedStask finalis replaced withSbc~. Also, longer latency terminations
for cp must be prohibited. This restricts the search to the best-possible latenc
cp. As in section 5.2.8, allPS time-step sets are kept but all time-step setsPS.Sj

wherej > etsare intersected withcp to exclude any future termination states forcp.

5.4.4  Backward Pruning with Validation

Backward pruning for cyclic control-dependent exploration requires valida
as well as preservation and accumulation of terminated states. This upd
backward pruning is shown in figure 5.31. The salient difference from what
previously seen in figure 5.23 is the accumulation set,RSbc~, for reached
termination states. Although there are two operand senses in cyclic con
dependent models, validation still works as before. Whenever aresolve-labeled
state is reached, regardless of the iteration sense, validation still guarantee
next-state transitions exist for every possible resolution value. In the validation
from figure 5.17, ,

6. Full forward exploration is preferred as a path set containing all reachable states allows
for control-case prioritization.

V
j 1+ ∀m Mmultivalue∈ ∀ — m.Xvalue,( )Vm.resolve

j( ) V
m.resolve

j
+( )=
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both senses of resolve are considered together. In other words, the par
Vm.resolveincludes any state that is labeledresolve or resolve~ for m.

5.4.5  Closure and Prioritized Control Cases

As with cyclic data-flow models, cyclic control-dependent models requir
closure step. This insures that all legs in a backward pruned path set,PS, may be
used in repeating kernels with sustainable iteration latency less than or equ
| PS| - 1. Unlike cyclic data-flow models, cyclic control-dependent models requ
that a validensembleof legs, which cover all control cases, exists. Still, the closu
algorithm for cyclic data-flow models as described in section 5.3.5 is dire
applicable for cyclic control-dependent models.

If backward pruning or closure fail to find valid solutions, then the earli
termination state for the currentcp is delayed by one time-step and backwa
pruning and closure are attempted again. After backward pruning and closur
occurred for all control case terms in the priority list, a closed valid path set res

5.4.6  Closed Valid Path-Set

The discussion so far has focused on determining a closed valid path set
cyclic control-dependentCMA . It is helpful to discuss what a closed valid path s
is. Consider a closed valid path set,PS,with cardinality n. Let Sbc = PS.S0 and

Figure 5.31Backward pruning with validation & termination accumulation

i = |PS| - 1

PS.Si= (PS.Si∩ Sbc~)

RSbc~= PS.Si

while( i > 0){

PS.Si-1= (PS.Si-1∩ ValImg-1(PS.Si))

i=i-1

Terminated= (PS.Si-1∩ Sbc~)

RSbc~= (RSbc~∪ Terminated)

PS.Si-1= (PS.Si-1∩ Img-1(PS.Si))

PS.Si-1= (PS.Si-1 ∪ Terminated)

i=i-1

}
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Sbc~ = dual(Sbc). Let sbe an arbitrary state selected fromPS.S0. There exists a path
beginning withs that reaches some stateu~∈ Sbc~ within PS. This is true by
successful closure. This path froms to u~ is a single sequence of states and hen
represents one arbitrarily chosen control case. At some state(s) in this path, c
operands resolve and deterministic behavior may bifurcate. Lett be an arbitrary
state in this path where some control operandMA is in its local resolve-labeled
state. For every possible control operand value resolution, there exists a patht
that reaches some statev~∈ Sbc~. This is true by successful validation. Ass is
arbitrary, a path exists for every state inSbc that eventually reachesSbc~.
Furthermore, ast is arbitrary, every such path has causal branches for ev
possible control resolution that also eventually reachSbc~. Finally, asSbc equals
Sbc~ as duals and a cyclicCMA is symmetric by construction, every such path has
an path-end state which is also a path-start state (as duals) of some other p
PS.Hence, all paths are infinitely and causally sustainable within a closed v
path set.

A closed valid path set is an interesting collection of execution sequen
Imagine choosing some states∈ PS.S0. It is possible to wander endlessly throug
paths inPS.At each state in this journey, a new next-state out of a set of poss
next-states may be arbitrarily chosen. As soon as a stateu~∈ Sbc~ is reached, this
state is considered asu∈ Sbc=PS.S0 and the journey may continue. Each path fro
Sbc to Sbc~ represents a valid single execution of some control case through
iterates in aCMA . At every point a control-operand resolves, execution m
continue for every possible resolution value.

As with a closed path set for a cyclic data-flowCMA , a closed valid path set
may contain better average iteration latency solutions. This becomes even
complicated as some iteration leg may be preferred for one control resolu
history while another iteration leg may be preferred for another control resolu
history. For instance, suppose there is one control point,true/falsein an iterate and
two iterates in aCMA . Thus, there are four possible control cases,true-true, true-
false, false-true andfalse-false. It may be that after several successive iterations
true-trueexecution, iteration sequenceleg1 is preferred. Now suppose executio
shifts tofalse-true. Immediately after this shift, the best iteration sequence may
leg2 yet afterfalse-trueexecution continues for several successive iterations, l
may be best. Every possible optimal iteration sequence leg, for every pos
control pattern sequence or shift in control pattern sequence is contained
closed valid path set. Hence, all optimaldynamicfinite-state machine controllers
are encapsulated. For this reason, determining a witness schedule as done be
not very meaningful. Rather, research is required to synthesize an op
deterministic dynamic finite-state machine directly from this representation.
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5.5  Summary
This chapter described how all minimum latency execution sequences

CMA may be represented as a path set. This serves two purposes. First, it pro
a performance metric for the subsystem modeled by aCMA . Second, it provides a
route to latency-optimal finite state machine synthesis. Determining minim
latency execution sequences is equivalent to finding shortest paths in aCMA . A
series of algorithmic steps implement variations of Dijkstra’s shortest p
algorithm. Forward exploration builds an implicit unrolled network view of
CMA portion called a path set. Backward pruning restricts the path set to s
and transitions only in shortest paths. Witness extraction arbitrarily selects a s
deterministic schedule for examination or synthesis. Cyclic models require a fi
point closure step to guarantee that executions are infinitely sustainable. Co
dependent models require a validation step during backward pruning to insure
only causal speculation occurs. Finally, control cases may be latency optimiz
ranked in a priority list.
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Chapter 6

Applications

This chapter presents results and discussion for various ABSS application
is organized in four sections. Data-flow and control-dependent applications d
from academia and industry are presented in the first two sections. A R
processor model and results are presented in the last two sections.

ABSS is implemented in Python[118] and uses the Colorado Univer
Decision Diagram package[123][53]. ABSS is freely available on the web[54].
examples and applications presented in this chapter, except those from ind
are also available on the web[54].

6.1  Data-Flow Applications
In this section, experimental results are reported for several tradition

referenced acyclic and cyclic DFG benchmarks. A case study shows ho
designer can use ABSS in a practical setting. Complexity issues are discu
Results for five large synthetic benchmarks demonstrate scalability. Finally
industrial example of meaningful scale and complexity illustrates pract
application.

6.1.1  EWF Case Study

The elliptic wave filter, EWF, a common cyclic DFG benchmark[43][114],
used as a case study to demonstrate how a designer might interact with ABS
EWF composite task requires 26 addition tasks and 8 multiplication ta
Suppose a designer needs to implement EWF using a particular standard ce
IP-block library. Given the nature of EWF, the designer decides to explore reus
the IP block shown in figure 6.1. Internally, this IP block contains an optimized
stage pipelined floating-point multiplier, a single time-step floating-point ALU
small coefficient ROM and one multiplexer. The timing of the multiplier’s thi
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stage and the ALU is such that they may be chained in one clock cycle. The o
of the ROM is hardwired to one input of the multiplier. The multiplexer allows o
external input to bypass the multiplier and directly feed the ALU. Depending
the control settings of the bypasses, this IP block may implement three funct
multiply by coefficient, multiply by coefficient and accumulate, and add.

The designer codes the EWF composition task at an abstract level (< 100 l
and specifies several appropriateMA (again < 100 lines). TheseMA specify the
various executions sequences expected when using the IP block in figure
Table 6.1 summarizes results for this exploration while varying available
blocks. At this point, the designer has the freedom to explore other IP options
configurations if he wishes. Suppose he decides that a configuration with on
block and one additional adder provides acceptable performance with a s
resource contingent as the iteration latency, 18, is equivalent to using tw
blocks.

Figure 6.2 shows what type of local storage and interconnect the designe
in mind. A bank of registers stores intermediate results. Any of these regis
connects to a function block input or output through a limited number of bus
The single IO port, which feeds bus structure 2, permits communication to
from the function blocks via the register bank.

After editing the EWF description and model files, (~20 edited lines),
designer now experiments with various register and bus constraints. Severa
iterations of ABSS provide the data shown in table 6.2. Given the existing 1
block and 1 ALU constraints, execution of EWF is impossible with less tha
registers and no improvement occurs for more than 9. Varying available bu
does vary iteration latency. The designer has a trade-off decision and opts to re
interconnect at the expense of iteration latency by choosing the 3/2 bus sol

Table 6.1: Constrained IP-block results

IP Blocks Iteration Latency CPU Seconds

1 30 2.8

2 18 1.9

3 16 1.7

4 16 1.6

Figure 6.1IP block for reuse

MULTIPLIER

ROM

Input 1

Input 2
Output

Multiplier BypassCoefficient Address ALU Bypass
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shown in bold. (Even with only 3 busses, both function blocks may simultaneo
begin execution as a single operand may broadcast on one bus to mu
function-block inputs.) Once the designer decides on a final constr
configuration, ABSS provides an optimal loop-pipelined witness schedule (con
sequence) which may be directly synthesized into a FSM. Although the fi
selected solution has an iteration latency slightly greater than what is comm
reported as optimal for EWF, it incorporates practical and important interconn
memory and IO-protocol constraints necessary for a realistic design.

6.1.2  EWF Benchmarks

The next few sections summarize results for several academic cy
benchmarks. All results in these sections were produced on an Intel-donated
MHz Xeon PC running Linux. As required computation resources are ofte
concern with symbolic and exact techniques, required CPU seconds, the imp
ROBDD memory model and peak ROBDD node usage are reported. Rep
time and memory use includes all ABSS steps from parsing the schedu
problem, model construction, composition, refinement and exploration, to fin
printing a single witness schedule. Peak ROBDD nodes indicates the maxi

Table 6.2: Results with Constrained Registers and Busses

Bus 1 Bus 2 Registers IO Ports
Iteration
Latency

CPU
Seconds

- - 8 1 Impossible 1.4

- - 9 1 18 2.0

- - 10 1 18 2.2

- 1 9 1 30 2.6

- 2 9 1 18 2.0

- 3 9 1 18 2.0

2 2 9 1 29 2.4

3 2 9 1 20 2.0

4 2 9 1 18 2.0

5 2 9 1 18 2.0

Figure 6.2Target high-level architecture

Register

IO Port

IP Block

ALU B
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number of ROBDD nodes (1 node requires 16 bytes) kept by the manager a
point during symbolic scheduling. The constraint configuration column l
resource bounds such as 1 two time-step pipelined multiplier (1 2-ts piped m
imposed on the scheduling problem. Finally, when betteraverageiteration latency
solutions exist in theCMA , a lower iteration latency bound is reported i
parenthesis.

The first row in table 6.3, EWF1_IP, shows results for a highly constrain
single EWF loop using an IP block from the previous case study. The next
rows, EWF1_a and EWF1_b, duplicate previously reported optimal results[1
for a single pipelined EWF. The run times are fast enough that ABSS can be
in an iterative design environment.

As mentioned in chapter 4, allowing only oneMA per task in a scheduling
problem limits solutions by permitting only one instance of any particular oper
to exist at any time-step. By unrolling a DFG, this complexity bound may
directly controlled. EWF2 is one unrolling of EWF so that two EWF iterates are
a composition. These iterates are not independent as they contain
dependencies between them. Together, they represent one execution of EW
with two MA per task so as to potentially overcome any capacity constr
impact. Although CPU run times increase by a factor of three to four, latency d
not improve indicating that a single iterate EWF composition is not impacted
capacity constraints.

EWF contains several long inter-iteration data dependencies which pre
much benefit from loop pipelining. (Iteration latencies for optimal pipelin
solutions are typically only one time-step improved over non-pipelined solutio
Still, hardware resources may be under-utilized. By scheduling two indepen
iterates of EWF under one set of resources, additional resource utilization ma
realized. This effectively models two independent EWF streams executing
single hardware subsystem. The EWF1x1 row presents results for this experi
A resource set of 3 single time-step adders and 2 two time-step pipel
multipliers is used. This resource set is fairly ideal for asingle EWF loop as

Table 6.3: Elliptic Wave Filter Results

Benchmark
Iteration
Latency

Constraint Configuration
CPU

Seconds
Memory
Model

Peak
ROBDD
Nodes

EWF1_IP 20 3 bus1, 2 bus2, 9 reg, 1 IO port,
1 IP block, 1 1-ts alu

2.0 64 MB 251,412

EWF1_a 17 2 1-ts ALU, 1 2-ts piped mult 1.0 64 MB 107,310

EWF1_b 16 3 1-ts ALU, 1 2-ts piped mult 1.0 64 MB 98,112

EWF2 16 3 1-ts ALU, 1 2-ts piped mult 4.2 64 MB 370,986

EWF1x1 9 (>8) 3 1-ts ALU, 2 2-ts piped mult,
1 IO Port

137 64 MB 2,466,086
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reducing available resources negatively impacts scheduling results but incre
available resources does not improve scheduling results. Furthermore, a
protocol that limits the system to one external IO transaction per time-step
orders IO transactions between EWF copies is imposed. Although the itera
latency for a single EWF loop with this resource set is 16 time-steps, itera
latency for two parallel copies improves significantly to only 9 time-steps. As th
is considerable added freedom (both copies are independent except fo
ordering), ABSS finds a way to make better use of the available hardw
resources. A literature search revealed no other scheduling results reporte
parallel EWF configurations.

6.1.3  FDCT Benchmarks

Table 6.4 presents results for a fast discrete cosine transform, FD
[114][134]. The FDCT benchmark is challenging for three reasons. First
contains two independent loops. For cyclic behavior, this independence lead
substantial expansion of the solution space as solutions for every reso
compatible permutation of loopa with b over all time-steps may be represente
FDCT1_a (acyclic) and FDCT1_c (cyclic) differ only in acyclic versus cyc
modeling and highlight this solution space expansion. Second, FDCT contain
inter-iteration dependencies. This freedom permits considerable pipelining
further expands the solution space. Results for FDCT1_b, which contain
resource constraints, exhibits this freedom. Iteration latency is only 2 an
constrained only by the one live operand instance modeling state bound. (Sin
resource constraints or inter-iteration dependencies exist, two copies of a
witness schedule may be directly translated to a single FSM with iteration late
of 1.) Finally, FDCT is highly symmetric. Each path through the DFG is similar
length and operation sequence to every other path. This too enlarges the so
space and hence instance representation cost. Due to the high symmetry o
problem, a partial IO ordering is imposed to eliminate representation
structurally symmetric solutions.

FDCT1_b illustrates a general scheduling complexity concept. Although
result is for a challenging benchmark, very limited computational resources
required. On the other hand, the same benchmark scheduled with res
constraints, FDCT1_c, requires considerably more computational resources.
is expected as a scheduling problem with no resource contention such as FDC
reduces to topological ordering. Hence, in the absence of resource content
straight-forward as-soon-as-possible list scheduler will always find opti
solutions and require no search. Even so, symbolic scheduling of FDCT1_b
requires some computational resources asall schedules, even those observin
resource constraints, are encapsulated. In general, contention for resources
scheduling hard. For ABSS, the most challenging cases occur when res
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constraints tend to balance dependency constraints. When resource cons
either dominate or do not exist, ABSS is facile.

As FDCT1_c exhibits some of the greatest complexity, it is used as an exa
for a discussion on representation complexity and growth. Chapters 3 a
described how aCMA is constructed. This includes allMA construction as well as
a CMA’s composition, dependency/capacity constraint pruning, viability pruni
and resource constraint refinements. Surprisingly, all this accounts for
insignificant use of computational resources. For FDCT1_c, only 4.9 seconds
1,145,662 ROBDD nodes are needed to create aCMA with 553,670 ROBDD
nodes in the transition relation,∆. The largest growth occurs during resourc
constraint refinement when∆ grows from 58,768 to 553,670 nodes. Note that
this point,∆ contains all valid resource constrained executions of the schedu

Table 6.4: Fast Discrete Cosine Transform Results

Benchmark
Iteration
Latency

Constraint Configuration
CPU

Seconds
Memory
Model

Peak
ROBDD
Nodes

FDCT1_a 19 1 1-ts add, 1 1-ts sub, 1 2-ts piped
mult, 4 bus*, 8 reg, partial IO order

3.3 128 MB 409,822

FDCT1_b 2 - 2.7 64 MB 240,170

FDCT1_c 16 1 1-ts add, 1 1-ts sub, 1 2-ts piped
mult, 4 bus*, 9 reg, partial IO order

2375 256 MB 9,911,356

FDCT1_d 17 (>15) 1 1-ts add, 1 1-ts sub, 1 2-ts piped
mult., 4 bus*, 7 reg, partial IO order

84.7 128 MB 4,813,620

FDCT1_e 13 1 1-ts add, 1 1-ts sub, 2 2-ts piped
mult., 8 bus*, 7 reg, partial IO order

300 128 MB 5,001,668

FDCT1_f 20 2 1-ts ALU, 1 1-ts piped mult., 7 bus,
6 reg, partial IO order

33 256 MB 829,864

FDCT1_g 17 (>16) 2 1-ts ALU, 1 1-ts piped mult., 7 bus,
7 reg, partial IO order

78 256 MB 4,992,470

FDCT1_h 17 (>16) 2 1-ts ALU, 1 1-ts piped mult., 7 bus,
7 reg, partial IO order, 2 IO port
(unbuffered reads and writes)

65 256 MB 2,970,954

FDCT1_i 17 2 1-ts ALU, 1 1-ts piped mult., 7 bus,
8 reg, partial IO order, IO protocol, 2
IO port (unbuffered reads and writes)

144 256 MB 5,788,608

FDCT1_j 20 (>18) 2 1-ts ALU, 1 1-ts piped mult., 7 bus,
11 reg, partial IO order, IO protocol, 1
IO port (buff. reads, unbuff. writes)

438 256 MB 9,966,544

FDCT1_k 19 (>16) 2 1-ts ALU, 1 1-ts piped mult., 7 bus,
14 reg, strict IO order, 1 IO port
(buffered reads, unbuffered writes)

861 256 MB 9,769,298

*Assumes busses can be reconfigured from input to output in the same time-step as historic
done[60][84][114].
118



ation
conds
the

costly
476
usage
g all
onds.
s not
for
for
problem. After 123.6 seconds of ROBDD sift reordering, the size of∆ is reduced
to 341,338 nodes. Most of the representation growth occurs during the explor
steps described in chapter 5. For FDCT1_c, finding a path set requires 200 se
while total ROBDD node usage peaks to 9,911,356. The largest ROBDD in
path set is 753,831 nodes. Determining a closed repeating path set is not as
in terms of node usage but does require time. This fixed-point requires
seconds. The largest ROBDD in this set is only 36,109 nodes and peak node
remains at 9,911,356 as no garbage collection is performed. Finally, findin
schedules with control steps equal to iteration latency requires 1570.5 sec
The largest ROBDD in this set is 4,439 nodes and peak node usage doe
increase. As a reward for this hard work, ABSS finds a 16 time-step solution
FDCT1_c, bettering the best previously reported result [134] of 17 time-steps
this benchmark with the same arithmetic resources.

Figure 6.3FDCT data-flow graph
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Figure 6.3 shows the FDCT data-flow graph while table 6.5 shows a 16 ti
step iteration latency solution for FDCT1_c. Each time-step lists the tasks
begin during that time-step as well as the result operands in local storage
available at thebeginningof that time-step. For example, task m36 begins in tim
step 4. Since all multipliers are two time-step pipelined, it produces a result a
end of time-step 5. This is latched into local storage and ready to be used a
beginning of time-step 6. Tasks and result operands are shown in both the eve
odd, ‘~’, iteration senses. Iteration sense toggles when looping back from t
step 16 to time-step 1. For instance, the result of s11~ is in storage at time-st
but appears as s11 in time-step 1. Although iteration latency is 16 time-steps,
for one complete FDCT execution is 27 time-steps. This is the delay from the
odd tasks, a4~ and s5~ in time-step 3, through flipping sense when looping
time-step 16 to time-step 1, to the final now even task, a40, in time-step 13+1

Result rows FDCT1_f through FDCT1_k from table 6.4 show more pract
and useful configurations of FDCT than are typically reported. Two AL
resources rather than separate add and subtract resources are used. Also, on
busses, where each bus is occupied in one way for the duration of a clock cyc
used. FDCT1_g shows results for a minimal register contingent. FDCT1_h ad
two bidirectional IO port constraint. Reads and writes through this IO port
assumed unbuffered. FDCT1_i adds the protocol constraint described
figure 3.15. Even with this forced alternation between reads and writes, sche
with excellent iteration latencies are found. FDCT1_j restricts IO ports to o

Table 6.5: Witness Schedule for FDCT1_c

Time-step Task In Storage

1 m31 a30 s29 m16 s11 m19 a27 s8 s28 s22

2 a23 s24 m37 m15 m16 s11 m19 a27 a30 s29 s28

3 m17 a4~ s5~ s11 m19 a27 m31 a30 s29 s28

4 a39 m36 m19 a4~ s5~ a27 m31 m37 a30 s29 s28

5 s25 m34 m17 m19 a4~ s5~ a27 a30 s29 s28

6 a3~ m32 s6~ a4~ s5~ a27 a30 s29 m36 s28

7 m38 s41 a3~ a4~ s5~ a30 s29 m36 m34 s28 s6~

8 a2~ m35 s7~ a3~ a4~ s5~ m32 s29 s28 s6~

9 a10~ s11~ m14~ a2~ a3~ a4~ s5~ m32 m38 s28 s7~ s6~

10 s42 m13~ a10~ s11~ a4~ s5~ m32 m38 m35 s28 s6~

11 a1~ s8~ m33 a10~ s11~ a4~ s5~ m35 s28 m14~

12 a9~ m16~ s12~ a1~ a10~ s11~ a4~ s5~ s8~ m35 m13~ m14~

13 m20~ a40 a9~ s11~ s12~ s5~ s8~ m35 m33 m13~ m14~

14 m18~ a21~ s22~ a9~ m16~ s11~ s12~ s5~ s8~ m13~ m14~

15 m19~ a27~ s28~ a9~ m16~ s11~ m20~ s12~ s5~ s8~ a21~ s22~

16 m15~ a26~ a9~ m16~ s11~ m18~ m20~ a27~ s8~ s28~ s22~
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Now, IO reads must be buffered and are modeled with several additional ope
MA . All optimal solutions are readily found even with this tight set of constrain
FDCT1_k forces a strict ordering of input and output operands communic
though one IO port. This models what might happen in a real design wh
samples can not be reordered but must be accepted and produced in seq
Although more registers are required, iteration latencies similar to loos
constrained configurations are still achieved. As these examples demons
ABSS handles real-world design constraints, produces optimal results yet req
acceptable computational resources.

6.1.4  Miscellaneous Academic Benchmark Results

Table 6.6 presents miscellaneous academic benchmark results. Thes
smaller cyclic DFGs reported in the literature[25][134]. As would be expect
their smaller size requires less computational resources for scheduling. T
benchmarks, as well as all other benchmarks in section 6.1 with the exceptio
fdct1_a and the upcoming industrial example, are cyclic. ABSS has been ap
to acyclic versions of EWF and FDCT[50]. These simpler acyclic solutions a
subset to what is presented here.

6.1.5  Comparison to Other Work

Table 6.7 compares ABSS, with existing work. SST[114] is a symbo
scheduler while the others are heuristic. Where possible, register use is repor
parenthesis. As can be seen, existing techniques produce optimal or near o
results for these well-studied examples. For the heuristics, required computa
time is typically a few seconds. For ease of comparison, only limited additio
constraints are applied. In fact, only TCLP bounds register usage and only
and Theda.Fold bound bus usage.

Table 6.6: Miscellaneous Academic Benchmark Results

Benchmark
Iteration
Latency

Constraint Configuration
CPU

Seconds
Memory
Model

Peak
ROBDD
Nodes

DIFFEQ1 6 1 1-ts add, 1 2-ts piped mult, 4 reg 0.2 64 MB 3,066

FIR16P1_a 8 (>6) 2 1-ts add, 1 2-ts piped mult, 3 reg 0.8 64 MB 73,584

FIR16P1_b 15 (>14) 2 1-ts add, 1 2-ts piped mult, 2 reg 0.7 64 MB 29,638
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6.1.6  Synthetic Benchmarks

Five larger synthetic benchmarks demonstrate the scalability of ABSS
cyclic data-flow problems. A set of guidelines generated realistically sha
synthetic benchmarks. These guidelines ensure that the synthesized DFG is
connected, contains several inter-iteration dependencies, yet is reasonably ra
All synthetic benchmarks contain 100 tasks assigned to one of two reso
classes. Resource class A consists of 2 single time-step units and resource c
consists of 1 two time-step pipelined unit. Each unit accepts two input opera
and produces one output operand as would be the case for an ALU and pipe
multiplier. A large number of synthetic benchmarks were produced and from
pool, five finalists meeting the following two criteria were selected. First
minimum iteration latency schedule requires loop winding. (i.e. a non-pipeli
schedule cannot be an optimum throughput schedule.) Second, both depend
and resource bounds must impact schedule solutions. Resource bounds a
made meaningless by tight dependency constraints and vice versa. Table 6.8
results for the five final synthetic benchmarks. A 128 MB memory model is u

Table 6.7: Academic Benchmark Comparisons

EWFa EWFb FDCTc FDCTd

ABSS 17 (9r) 16 (10r) 16 (9r) 13 (7r)

SST[114] 17 16 19e (9r) 14e (11r)

Theda.Fold[60] 17 16 17 13

RS[25] 17 16 NA NA

TCLP[120] 17 (10r) 16 (10r) 16f (12r) NA

MARS[134] 17 16 17 13

a. 3 1-ts ALU, 1 2-ts piped mult
b. 3 1-ts ALU, 1 2-ts piped mult
c. 1 1-ts add, 1 1-ts sub, 1 2-ts piped mult, 4 bus
d. 1 1-ts add, 1 1-ts sub, 2 2-ts piped mult, 8 bus
e. Not loop pipelined
f. Assumes 1 1-ts mult

Table 6.8: Synthetic benchmark results

Benchmark
Iteration
Latency

Res. A Res. B
CPU

Seconds
Peak Nodes

216 43 79 21 15.6 1,101,716

229 37 (>35) 73 27 154.3 4,806,466

278 44 (>43) 72 28 41.7 3,859,072

282 40 74 26 14.2 1,670,970

288 37 67 33 26.6 3,244,850
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for all cases and computation times range from 15 to 154 seconds. T
benchmarks, all academic benchmarks, as well as the ABSS source cod
available on the web[54] for comparison with other scheduling techniques.

6.1.7  An Industrial Example

ABSS was applied to a substantial industrial example. The assembly cod
computing f=xy on Intel’s new Itanium architecture was statically scheduled. T
127 task acyclic data-flow example is interesting because of the real-w
peculiarities of the Itanium VLIW architecture. The Itanium contains 6 pipelin
processors (m0, m1, i0, i1, f0 and f1), each of which may compute some subs
Itanium instructions. Depending on the type and complexity of the instruct
some instructions may only be assigned to one of processors m0, m1, i0 o
some may only be assigned to f0 or f1, some may only be assigned to i0 or i1
so on. In the worst case, some instructions must be assigned to two process
and f0, concurrently.

A hierarchical resource bound (section 4.5.2) was constructed to enforce
complex constraints. Figure 6.4 illustrates the six hierarchical resource bo
applied to model these constraints. They are hierarchical as an instruction w
must be assigned i0 and f0 concurrently must belong to five resource cons
groupings: ( (i0), (f0), (i0, i1), (f0, f1), (m0, m1, i0, i1)). On the other hand,
instruction which may be assigned to i0, i1, m0 or m1 only need belong to
resource constraint grouping: (m0, m1, i0, i1). Through use of these
hierarchical constraints, all Itanium resource bounds were correctly modeled.

For this Itanium example, it was also necessary to model a communica
penalty. This penalty varied depending onwhichchild processor consumes a resu
operand. For example, processora may compute a result which may b
communicated to processorb after a delay of>5 but may only be communicated to
processorc after a delay of>9. This type of sequential constraint was natura
modeled during specification of allMA . For instance, figure 6.5 shows anMA that
requires one time-step to reach states labeledearly knownyet requires two time-
steps to reach states labeledlate known. Depending on the required
communication delay, a child’s input would be enabled by eitherearly knownor
late knownlabeled states. This approach to modeling both computation of a re

Figure 6.4Hierarchical resource bounds

m0 m1 i0 i1 f0 f1
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and communication delays within oneMA was generalized to pipelined delays o
up to 9 time-steps.

An ABSS speed-up technique,over-estimation, was devised and used with
this example. As described, ABSS creates a path set from a completely constr
transition relation,∆. Forward exploration to create this path set is often the m
computationally expensive step in ABSS --especially with certain resou
concurrency constraints applied. In over-estimation, ABSS creates a path se
a partially constrained∆. Some or all resource concurrency constraints are left
and hence an over-estimation of the true solution space results. Once back
pruning has reduced the size of the path set, a completely constrained∆ is used to
determine if true solutions actually exist. Although over-estimation requ
iterative refinements of a path set, it avoids costly completely-constrained forw
exploration. After all is said and done, all schedules plus an optimal witn
schedule with latency of 81 time-steps required 131 seconds and 9,910,334
(256 MB memory model) for computation.

6.2  Control-Dependent Applications
This section presents several academic control-dependent examples as w

an industrial control-dependent application. First, two academic exam
illustrate iterate use for pipelining, control prioritization, average latencies
local registers constraints. Finally, an acyclic industrial control-dependent exa
is discussed. A new partitioning strategy,time-zone partitioning, reduces
computational requirements for this industrial example.

6.2.1  ROTOR Benchmark

ROTOR, as shown in figure 6.6, was introduced by Radivojevi′c [114]. ROTOR
performs a rotation of coordinate axes by angleθ and is used in applications
ranging from graphics processing to positional control systems. As see
figure 6.6, ROTOR requires computation of trigonometric functions. Hig
performance systems often precompute these values and store them in a lo
table. As a compromise between numerical accuracy and storage requirem
values for only one quadrant are stored. It is possible to compute trigonom
values for all quadrants based on a single quadrant table. ROTOR assumes th

Figure 6.5Acyclic MA with communication delay

early
unknown

late
unknown

S00

early
known

late
unknown

S01

early
known

late
known

S11
124



nt.
s for

s to
s are
ntial
ion,
OR

valent
a single look-up table is available for sine values in the first quadra
Consequently, four control cases, covering correct look-up table modification
each quadrant, occur in ROTOR.

If only a single ROTOR iterate is used in a composition, then ABSS reduce
finding acyclic (non-overlapping) ROTOR execution sequences. Such result
directly comparable to SST[114] and are shown in table 6.9. Four seque
behaviors are defined for four classes of tasks: ALU (addition, subtract
negation), table look-up, multiplication, and compare. Consequently, a ROT
composition task contains 28 internal tasks. The schedule latencies are equi
to, yet the computation times are 5-10 times improved1 over those for SST[114].

Figure 6.6ROTOR example

X = x*cosθ + y*sinθ

Y = -x*sinθ + y*cosθ

X’

Y’

X’’

Y’’
x

y

X

Y θ

a = 180-θ;
if (a>=0) {

b = 90-θ;
if (b>=0) {

sinθ = T(θ);
cosθ = T(b);

} else {
sinθ = T(a);
cosθ = -T(-b);

}
} else {

c = 270-θ;
if (c>=0) {

sinθ = -T(-a);
cosθ = -T(c);

} else {
sinθ = -T(360-θ);
cosθ = T(-c);

}
}
X = x*cosθ + y*sinθ;
Y = -x*sinθ + y*cosθ;
125



sults

ned
tes,
a
sed

were
ings

of
asks
tized
n to

w 2
ource
For comparison purposes, no control-case prioritization is applied in these re
and consequently only the worst control case is optimized.

Two ROTOR iterates may be included in a composition to explore pipeli
solutions. Table 6.10 shows results for this depth of pipelining. With two itera
there are 16 care control cases as both iterates may independently processθ in
one of four possible quadrants. A priority list with 21 control-case terms was u

to produce the reported average iteration latencies. First, all control cases
prioritized together so as to optimize the worst control case. Then, four group
prioritized the quadrant combinations with the most tasks (combinations
quadrants 4 and 3) down to quadrant combinations with the fewest t
(combinations of quadrants 1 and 2). The last 16 control case terms priori
individually all possible control cases starting with the most task intensive dow
the least task intensive.

The results in table 6.10 show that ROTOR benefits from pipelining. The ro
result (113 seconds, 4.4 average iteration latency) has the exact res

1. Comparison is adjusted for differences in computation resources.

Table 6.9: Acyclic ROTOR Results

Function Units Schedule
Latency

CPU
SecondsALUa

a. ALU is single time-step

Multiplyb

b. Multiply is two time-step pipelined. ‘-’ implies ALU does multiplication.

Tablec

c. Table is single time-step

Compared

d. Compare is single time-step

1 - 1 1 12 1.0

2 - 1 1 7 1.0

1 2 1 1 10 1.1

2 2 1 1 8 1.1

Table 6.10: Results for Cyclic ROTOR with Two Iterates

Function Unitsa

a. Function unit sequential behavior as in table 6.9.

Average
Iteration
Latency

CPU
SecondsALU Multiply Table Compare

2 1 1 1 4.8 15

2 2 1 1 4.4 113

2 3 1 1 4.4 117

3 2 1 1 3.95 9.35

Unlimited Unlimited Unlimited Unlimited 3.4 5
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constraints as the row 4 result from table 6.9 (8 time-step latency). Although
table 6.9 result is for the worst control case, the sustained pipelined itera
latency for this worst control case is 4.5 time-steps. Pipelining almost double
performance. This worst control case, quadrant 4 followed by quadrant 4,
does have a non-integer average latency of 4.5 time-steps. ABSS finds a c

sequence that adjusts even when two identical computations are in the pipe
that the best average is found. In this specific case, a quadrant 4 calculation t
4 time-steps may only be followed by another quadrant 4 calculation requirin
time-steps.

The control-case priority list used in table 6.10 was carefully crafted to aver
iteration latency equally among all control cases. The driving assumption was
θ may lie in any quadrant with equal probability. This is not the case in all cont
dependent behavior as there are often control cases which occur with conside
higher probability than others. It is possible to reverse the control-case priority
used in table 6.10 so that quadrants with the smallest number of tasks are
favored. This optimizes an expected ROTOR use whereθ almost always lies in the
first quadrant. Figure 6.7 contrasts iteration latencies for all 16 possible qua
mixes given these two different priority lists. As can be seen, the reversed pri

Figure 6.7Results from two contrasting priority lists

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

1,1 1,2 2,1 1,3 3,1 1,4 4,1 2,2 2,3 3,2 2,4 4,2 3,3 3,4 4,3 4,4

Quadrant Mixes

✧ ✧ ✧

✧

✧

✧

✧

✧ ✧

✧

✧

✧ ✧ ✧ ✧ ✧

✛ ✛ ✛

✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛

Best Average

Favor Quadrant 1 Mixes

Iteration Latencies
127



trol

OR
ent
ined
B

n but

dering
be
e task
egin,
lowed
oided

ocal
e. IO
ning
rage
hich
, are
void
list heavily favors quadrant 1 mixes. ABSS is capable of favoring particular con
case(s) if directed by simulation data or design intent.

Row 3 and 4 configurations from table 6.10 were extended to three ROT
iterates in one composition. Figure 6.8 plots the iteration latency improvem
achieved by doing this. The required computation resources for the constra
three iterate solution was 7 minutes on a 733 MHz Pentium III with a 400 M
memory model. Four iterates were attempted for the constrained configuratio
computation exceeded an imposed two hour limit.

Complexity dramatically increases with additionalindependentiterates. The
only dependencies and capacities imposed between ROTOR iterates is an or
of operand senseMA . This allows all solutions, some potentially absurd, to
represented. Imagine a solution where iterate 1 begins and executes just on
and then nondeterministically stalls. Iterates 2 and eventually higher may b
and even finish, as all prior iterates have begun. Hence, every dependency-al
meshings of iterates is represented at often considerable cost. This may be av
by adding additional constraints. IO protocols and orderings as well as l
storage bounds are real constraints that may help prune the solution spac
protocols and orderings eliminate some of the impractical meshings by defi
more precisely when events in various iterates may take place. Local sto
constraints group communicating tasks so that other impractical meshings, w
typically require some operand to remain in local storage for an extended time
pruned. Finally, artificial dependencies or groupings may be imposed to a

Figure 6.8Iteration latency versus ROTOR iterates
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Constrained Configuration
Row 3, Table 6.10

Unconstrained Configuration
Row 4, Table 6.10
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impractical meshings. Time-zone partitioning, presented in section 6.2.3, i
example of this approach.

6.2.2  S2R Benchmark

S2R, as shown in figure 6.9, was also introduced by Radivojevi′c [114]. S2R
translates spherical coordinates [R,Θ, Φ] into the Cartesian (rectangular
coordinate values [X, Y, Z]. Both cosine and sine must be computed forΘ andΦ.
As with ROTOR, a single look-up table with trigonometric values for only the fi
quadrant is available. Consequently, four control-dependent behaviors are req
to compute trigonometric values for bothΘ andΦ in all four quadrants (2 parallel
ROTORs). An S2R composition task contains 48 internal tasks, 16 care co
cases, and requires similar resources as ROTOR.

Table 6.11 presents results for a single iterate of S2R. Of particular intere
the effect of local register bounds2. Both rows 1 and 3 achieve the same sched
latency yet row 3 constrains local storage to 4 registers. In fact, row 3 takes
computation resources even though it is more constrained than row 1. In s
cases, register constraints tend to temporally group communicating tasks.
serves to beneficially prune the solution space. This is not always the case as
when comparing rows 5 and 7. In fact, if a register constraint is slightly over w
is minimally necessary, required computation resources often grow dramatic
Imagine now that there is always one (or more) extra registers at each time-
ABSS searches all solutions and hence propagates all possible though
productive uses of extra registers. Consequently, stringent register constrain

2. In this particular configuration, local register bounds apply to any internal operand stor-
age. External input and output operands are unbuffered and must be either supplied on
demand or stored separately.

Φ

sinΦcosΦ

R Θ

sinΘcosΘ

X YZ

Figure 6.9S2R example
129



aint
s.

nly
and
The
hat
ity of
not

es all
12

arable
applied first and then iteratively relaxed. Alternatively, a register constr
hierarchy (section 4.5.2) may help reduce computation resource requirement

A literature search identified only one heuristic[121] and SST[114] as the o
other scheduling techniques to report results for acyclic instances of ROTOR
S2R. SST produces exact results for acyclic ROTOR and S2R instances.
heuristic[121] can achieve exact acyclic results although it is unclear w
computation resources are required. An average search time plus a dens
optimal solutions is reported. Consequently, estimated times for finding, but
guaranteeing, optimal solutions range from 1 to 20 seconds. ABSS determin
schedules, including minimum latency for individual control cases, in 1 to
seconds. Guaranteed exact minimum latency schedules are provided in comp
time to a well-built heuristic.

Table 6.11: Acyclic S2R Results

Function Units
Registers

Schedule
Latency

CPU
SecondsALUa

a. ALU is single time-step

Multiplyb

b. Multiply is two time-step pipelined. ‘-’ implies ALU does multiplication.

Tablec

c. Table is single time-step

Compared

d. Compare is single time-step

2 1 1 1 - 10 7

2 1 1 1 3 11 5

2 1 1 1 4 10 7

2 1 1 1 5 10 12

3 2 1 1 - 9 5

3 2 1 1 3 10 6

3 2 1 1 4 9 7

3 2 1 1 5 9 11

3 2 1 - - 8 4.3

- - - - - 8 2

Table 6.12: Cyclic S2R Results

Function Unitsa

a. Function unit sequential behavior as in table 6.11.

Registers
Worst

Iteration
Latency

CPU
SecondsALU Multiply Table Compare

3 2 1 1 3 5 330

3 2 1 1 4 5 414

3 2 1 1 5 5 716

3 2 1 1 - 5 822
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Table 6.12 presents results for two S2R iterates. As shown, it is possib
achieve worst control-case iteration latency of five time-steps. This is alm
double the performance achieved in row 7 of table 6.11. Interestingly, fe
registers are needed when pipelining S2R. The five time-step iteration laten
found even with only three local storage registers. No improvement occurs
additional registers. In fact, only computational complexity increases w
additional register freedom. A configuration with two registers was attempted
failed to find any valid solutions.

6.2.3  Industrial Example

ABSS was applied to an industrial example with control-dependent beha
This acyclic example, abstractly shown in figure 6.10, is a specialized grap
processing task containing 132 internal tasks and 6 care control ca
Furthermore, the behavior is such that it may be partitioned into 3 distinct blo
where each block contains two control-dependent behaviors. Consequ
depending on control value resolution, either the first block only, the first
second block, or all blocks are executed. Finally, an IO protocol defines w
external input and output operand transactions occur.

Table 6.13 presents results for the control-dependent industrial example. T
results were produced on a 400 MHz PII Linux machine with 512 MB of memo
Latencies are reported for all 6 care control cases. Both register file ports and
storage constraints are included since the behavior accesses a large num
coefficients stored in a register file as well as maintains a small numbe
intermediate results in local registers.

Figure 6.10High-level behavior of industrial control-dependent example

Block 1 Block 2 Block 3

IO Protocol
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Configurations 2 and 3 in table 6.13 employtime-zone partitioning to reduce
computational complexity. Without time-zone partitioning, tasks from the th
behavior blocks have ample freedom to be scheduled over a wide range of
steps as illustrated in the top of figure 6.11. This freedom causes exce
representation growth during exploration. With time-zone partitioning, tasks f
the three behavior blocks may be scheduled only in one of three time-step ra
These zones, which may overlap, allow a designer to restrict the sched
freedom according to high-level design intent. This reduces representation gr
during exploration at the expense of not guaranteeing optimal solutions.

Table 6.13: Control-Dependent Industrial Example Results

Configuration 1 Configuration 2 Configuration 3

ALU Units 1 1-ts 1 2-ts piped 1 3-ts piped

Multiply Units 2 1-ts 2 3-ts piped 1 3-ts piped

XOR Units 1 1-ts 1 1-ts 1 1-ts

MAC Units - - 1 4-ts piped

Local Registers 9 4 Single, 3 Double 5

Register File Ports 3 Read, 1 Write 2 Read, 1 Write 3 Read, 1 Write

IO Protocol Yes Yes Yes

Interconnect Guide- Yes -

Schedule Latencies8, 11, 19, 27, 27, 37 12, 17, 26, 34, 36, 43 12, 18, 35, 36, 44, 46

CPU Seconds 29 865 11

Figure 6.11Time-zone partitioning

Block 1
Block 2

Block 3

Schedule Time-Steps

Block 1
Block 2

Block 3

Schedule Time-Steps

No Time-Zone
Partitioning

With Time-Zone
Partitioning
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Configuration 2 employs interconnect guides to produce bindable sched
which require less interconnect. Figure 6.12 shows where interconnect is req
in this example. With a single pool of local registers, a result operand from an
the three function units may be stored in any register. Consequently, i
operands for any of the three function units may exist in any register. Hence
connectivity in interconnect blocks A and B is assumed. On the other h
suppose that results produced by the ALU and accepted by the multiplier may
be stored in a restricted subset of registers. Furthermore, suppose that analy
communications in the original composite task allows all such communication
be ‘routed’ through a subset of registers3. If this is done, it is possible to exclude
some connectivity in interconnect blocks A and B. These types of regi
concurrency constraints are imposed in a hierarchical fashion as describ
section 4.5.2. Along with bus concurrency constraints, interconnect guides h
the upper bound for multiplexing requirements in this industrial example.

Configuration 3 replaces numerous individual multiply and add tasks wit
MAC IP-block aggregate task. A use of this MAC is modeled by an aggregateMA
as described in section 3.1.4. This reduces the task count to 58 Multiply, 7 AL
XOR and 21 MAC for a total of 80 tasks in the composition. By using a MAC w
a constrained set of sequential behaviors, a more restricted set of datapath us
hence interconnect is assumed. Finally, less state is needed to mode
composition and consequently computation requirements are significa
reduced.

6.3  A RISC Processor Model
A RISC processor model, implementing the SimpleScalar[20] instruction

architecture, ISA, was constructed. The SimpleScalar ISA is asupersetof the
MIPS IV ISA. The primary reason for choosing this ISA is that the open-sou
SimpleScalar tool suite provides easily modifiable simulation and tracing to

3. The number of registers in the register bank may be increased to make such subsets d
joint.

Figure 6.12Abstract view of interconnect in industrial example

ALU Multiply XOR Register Bank

Interconnect Block B

Interconnect Block A
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With this simulation capability, benchmarks from the MediaBench[70] suite
representative embedded applications may be profiled. These profiles are u
both prioritization and evaluation of the resulting schedules. This is critical si
no processor can guarantee high throughput for every control case w
contention for resources exists. Finally, the floating point subsystem is
modeled. However, all other instructions, including all control, integer and lo
store instructions are modeled.

6.3.1  An Instruction Task

RISC processor behavior is modeled at two levels of abstraction. At the hi
level of abstraction, tasks represent execution of one entire instruction and
called instruction tasks. Figure 6.13 shows an instruction task graphically. Giv

an instruction operand,inst, an instruction task sequences through some subse
behaviors depending on the decoded instruction. Internal to an instruction tas
memory and register access tasks which are often sequentially constrained.
instruction task represents a single, complete instruction execution. An instru
task computes the next preincremented program counter valuenppc, as well as
prefetching the next instruction,ninst, at the correct next program counterppc
address. Bothnppc and ninst are heavily control-dependent on the current
decoded instruction and on the processor state. Finally, to avoid dynamic
hazards between values that have yet to be updated and future instructions th
read the same values, abypassoperand is provided. Bypass allows a sing
operand to be forwarded to the next instruction as well as being written to
register file. Bypass can also cause processor stall behavior in cases of mu
data hazards.

This particular abstraction lends itself to ordered instruction fetch and ord
commit. Note that more sophistication may be added to instruction tasks.
instance, additional input operands, representing conditional register
commitment, may be added. These would prove useful for enabling limited ou
order execution. Also, instruction prefetch could be separated from the instru
task, and a separate instruction fetch task, providing a model of out-of-o
instruction fetch, would provide instruction operands to instruction tasks.

Figure 6.13Abstracted instruction task

inst ppcbypass

bypass ninst nppc

Instruction Task
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6.3.2  A Processor Composition

Each instruction task is atomic. Several instruction task iterates are comp
to represent the behavior of several simultaneously executing instructions
example, figure 6.14 composes three instruction task instances to repr
behavior of three instructions. Resource concurrency constraints as well as
sequential constraints are applied globally in a processor composition. Thus
resultingCMA describes all execution sequences for three ‘in-flight’ instructio
on a target hardware. Clearly, if higher performance is desired, a compos
consisting ofn instruction iterates may be built with the trade-off of great
storage, resource, and control complexity. Finally, this technique models beh
independently of any anticipated structural hardware pipeline. TheCMA
exploration step reveals an appropriate hardware implementation --which
well may resemble a structural hardware pipeline.

Figure 6.14A processor composition of three instruction iterates

inst ppcbypass

bypass ninst nppc

inst ppcbypass

bypass ninst nppc

inst ppcbypass

bypass ninst nppc
Instruction Task

Instruction Task

Instruction Task
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6.3.3  Modeling an Instruction Task

An instruction task is composed of smaller low-level tasks such as registe
access, memory access, integer computations, instruction decoding and
activities. The complete set of low-level tasks used in the model is show
table 6.14. SmallMA specify the target sequential behaviors of each of these l
level tasks. A low-level task’s input operands are enclosed in the first se
parenthesis while its output operands are enclosed in the second set.

Table 6.14 and upcoming descriptions use generic operand names such aop1,
op2 and addr. These are name place holders and should not be confused
physical registers or global composition operand names. The high-level inte
an operand is revealed by its generic name. Table 6.15 summarizes the g
operand names used in an instruction task.

Table 6.14:  Low-Level Tasks

INTUS( (op1, op2, cop), (op) ) Simple integer computation

INTUC( (op1, op2, cop), (ophi, oplow) ) Complex integer computation

RFRD( (regi), (op) ) Integer register file read

RFWR( (regi, op), () ) Integer register file write

MEMRD( (addr), (op) ) Memory read

MEMWR( (addr, op), () ) Memory write

DMEMRD( (addr), (op1, op2) ) Double word memory read

DMEMWR( (addr, op1, op2), () ) Double word memory write

RDHL( (cop), (op) ) Read architecture hi or lo registers

WRHL( (op, cop), () ) Write architecture hi or lo registers

DECODE( (inst), (class, subclass, cop) ) Instruction decode

Table 6.15: Generic Operand Names used in an Instruction Task

op, op1, op2, ophi, oplow Generic integer operands

addr Generic address operand

regi Generic register index operand

pc, ppc, npc, nppc Instruction address operands

inst, ninst Instruction operands

rs, rt, rd Register index portions of inst
(source, transfer, destination)

imm Some immediate portion of the instruction

cop A control operand produced by the decode task

bop A branch control operand produced by comparison
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Instructions are grouped into three sequentially distinct instruction clas
Integer, Load/Store and Control. Each class is further broken down into subcla
that describe additional variations of behavior. All instructions in a particu
instruction class::subclass require the same organization of low-level tasks
hence exhibit the same expected sequential behavior. The class and subclas
instruction is determined by the instruction decode task. Before the instruc

Table 6.16: Integer Arithmetic and Load/Store Instruction Class

Subclass SimpleScalar Instructions Necessary Tasks

rr1 add, addu, sub, subu, and, or, xor,
nor, sll, srl, sra, slt, sltu

RFRD( (rs), (op1) )
RFRD( (rt), (op2) )
INTUS( (op1, op2, cop), (op) )
RFWR( (rd, op), () )

rr2 mult, multu, div, divu RFRD( (rs), (op1) )
RFRD( (rt), (op2) )
INTUC( (op1, op2, cop), (ophi, oplow) )
WRHL( (cop, ophi), () )
WRHL( (cop, oplow), () )

ri addi, addiu, andi, ori, xori, slti,
sltiu

RFRD( (rs), (op1) )
INTUS( (op1, imm, cop), (op) )
RFWR( (rt, op), () )

tohilo mthi, mtlo RFRD( (rs), (op) )
WRHL( (op, cop) )

fromhilo mfhi, mflo RDHL( (cop), (op) )
RFWR( (rd, op), () )

lds lb, lbu, lh, lhu, lw RFRD( (rs), (op1) )
INTUS( (op1, imm, cop), (addr) )
MEMRD( (addr), (op) )
RFWR( (rt, op), () )

ldd dlw RFRD( (rs), (op1) )
INTUS( (op1, imm, cop), (addr) )
DMEMRD( (addr), (op1, op2) )
RFWR( (rt, op1), () )
INTUS( (rt, 1, cop), (op) )
RFWR( (op, op2), () )

strs sb, sbu, sh, shu, sw RFRD( (rs), (op1) )
INTUS( (op1, imm, cop), (addr) )
RFRD( (rt), (op) )
MEMWR( (addr, op), () )

strd dsw RFRD( (rs), (op1) )
INTUS( (op1, imm, cop), (addr) )
INTUS( (rt, 1, cop), (op) )
RFRD( (rt), (op1) )
RFRD( (op), (op2) )
DMEMWR( (addr, op1, op2), () )
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decode is completed, every instruction class::subclass is possible and ca
speculatively executed. For example, a register file read task is typically specu
simultaneously or prior to decode despite the specification order.

6.3.4  Integer and Load/Store Behavior Subclasses

Instructions in the Integer and Load/Store classes will exhibit one of
behaviors described in table 6.16. Most of these instructions represent si
behaviors which are largely distinguished by the operand fetch behaviors.
exceptions aremult and div instructions which use a special integer tas
INTUC. This task can be customized to represent the practical issues of mak
scalar multiply/divide pipeline including potentially complex sequent
constraints. Other exceptions are the memory access tasks, MEMRD, DMEM
MEMWR and DMEMWR, used in load/store instructions. These too may req
more complex sequential constraints representing memory subsystem a
protocols and/or delays. Additionally, memory access tasks may h
nondeterministic control to model cache hits and misses. Since these sequ
constraints are represented by automata models, they may be more flexibl
realistic than interval based constraints and hence lead to potential improvem
in scheduling efficiency.

6.3.5  Control Behavior Subclasses

The control class consists of those instructions primarily involved with upd
and management of the program counter, and hence correct instruction pre
Their behavior is dependent on whether the current instruction is a jump or br
and, if a branch, on whether the branch is taken or not. Next-pc calculation
instruction prefetch are often bottlenecks in processor architecture becaus
correct next pc and consequently the correct instruction prefetch location ar
known until relatively late in an instruction’s execution. In manual desig
speculative pc increment and instruction prefetch are used to improve perform

Figure 6.15Possibilities for next-pc calculation and instruction prefetch

if (branch taken) {
INSTUS( (pc, 4, cop), (op1) )
INSTUS( (op1, imm, cop), (npc b) ) }

elseif (jump taken) {
INSTUS( (pc, imm, cop), (npc j ) ) }

elseif (jump register taken) {
RDRF( (rs), (npc jr ) ) }

elseif (default) {
INSTUS( (pc, 4, cop), (npc def ) ) }

MEMRD( (npc ??), (ninst) )
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for the most common cases. Although fork-type control behaviors are implic
speculated in ABSS, join-types of behaviors (operand resolution) are not. To a
speculative pc increment and instruction prefetch in at least the most com
cases,multiple pc increment and instruction prefetch tasks must be mode
through task-splitting.

Figure 6.15 shows a pseudo-code if statement representing all possible w
next pc may be calculated. This pseudo-code calculates the next pc,npc, based on
the decoded instruction. The correctnpc is used to prefetch the instruction
executed by the next instruction iterate in the processor composition. Since th
only a single instruction prefetch task modeled, the current instruction mus
decoded to distinguish and correctly resolve thenpc used in the prefetch.

Additional speculation freedom is added to the model by duplicating
instruction prefetch before thenpc resolution point. Figure 6.16 shows this sam
pseudo-code but now with two instruction prefetches: speculative
nonspeculative. The speculative instruction fetch occurs only under default c
Although the current instruction must be decoded to resolve the correct prefet
next instruction,ninst, the speculatively prefetched instruction,ninstspec, may
often be usedimmediatelyif the current instruction decodes to the default cas
The dependency from current decoded instruction to instruction prefetc
removed for the default case by task splitting (section 4.5.3) an instruction pre
within the default case.

Figure 6.16 still requires thatpc be incremented in the default case. Furth
optimization of the default case is achieved by speculatively preincrementingpcas
shown in figure 6.17. Notice that both the branch and default cases now u
preincrementedpc, calledppc. Furthermore, the next preincrementedpc, nppc, is
computed speculatively in the default case and nonspeculatively in other case

Figure 6.16Speculative instruction prefetch in the default case

if (branch) {
INSTUS( (pc, 4, cop), (op1) )
INSTUS( (op1, imm, cop), (npc b) ) }

elseif (jump taken) {
INSTUS( (pc, imm, cop), (npc j ) ) }

elseif (jump register taken) {
RDRF( (rs), (npc jr ) ) }

elseif (default) {
INSTUS( (pc, 4, cop), (npc def ) )
MEMRD( (npc def ), (ninst spec ) ) }

if (not default) {
MEMRD( (npc ??), (ninst nospec ) ) }
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with the speculatively prefetched instruction,nppcspecmay be correctly resolved
and usedimmediatelywhen the current instruction decodes to the default case.
dependency on whichpc to increment in the default followed by default instructio
case is removed by addition of a speculatively preincrementedpc in the default
case.

With these speculative pc preincrement and instruction prefetch goals in m
it is possible to specify control class and subclass behaviors. Table 6.17 des
control subclasses and necessary tasks. Of particular note is the branc
subclass. This subclass is necessary if the instruction decodes to a branc
represents a branch’s comparison behavior. A new control operand,bop, is
produced in sync with this comparison. For branch instructions,bop, determines
whether branch not taken, bnt, or branch taken, bt, subclass behaviors are va

Table 6.17: Control Class

Subclass SimpleScalar Instructions Necessary Tasks

default
or bnt

all except j, jal, jr, jalr (No task - ppc is used as npc)
INTUS( (npc, 4, cop), (nppc) )
MEMRD( (npc), (ninst) )

ji j INTUS( (pc, imm, cop), (npc) )
INTUS( (npc, 4, cop), (nppc) )
MEMRD( (npc), (ninst) )

jil jal INTUS( (pc, imm, cop), (npc) )
INTUS( (npc, 4, cop), (nppc) )
RFWR( (31), (ppc) )
MEMRD( (npc), (ninst) )

jr jr RFRD( (rs), (npc) )
INTUS( (npc, 4, cop), (nppc) )
MEMRD( (npc), (ninst) )

Figure 6.17Speculative pc preincrement in the default case

if (branch taken) {
INSTUS( (ppc, imm, cop), (npc b) ) }

elseif (jump taken) {
INSTUS( (pc, imm, cop), (npc j ) ) }

elseif (jump register taken) {
RDRF( (rs), (npc jr ) ) }

elsif (default) {
MEMRD( (ppc), (ninst spec ) )
INSTUS( (ppc, 4, cop), (nppc spec ) ) }

if (not default) {
MEMRD( (npc ??), (ninst nospec ) )
INSTUS( (npc ??, 4, cop), (nppc nospec ) ) }
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6.3.6  Data Hazards

An instruction task has bypass output and input operands to resolve
hazards. Incorporating data hazard detection and bypass freedom in an instr
task requires three additions. First, when an instruction is decoded, an addit
control operand,hazardop, is produced which distinguishes between data haz
or no data hazard. Second, bypassed values must be passed and available from
previous instruction task. This bypass operand is an operand resolution ofevery
potential register-file write-back operand from the previous instruction ta
Finally, an operand resolution point is added whenever a register file opera
required in the current instruction task. At this operand resolution point,hazardop
selects either the register file operand or the bypassed operand from the pre
instruction-level task. For example, instructions in the rr1 class require the reg
file entry at rs. It may be that the last instruction iterate is computing a n
operand that has yet to be written to this register file location. Instead of alw
reading a value at locationrs, an operand resolution point is added to one input
rr1’s INTUS task. Depending on the value ofhazardop, either the register file read
result or the bypassed value is accepted.

jrl jalr RFRD( (rs), (npc) )
INTUS( (npc, 4, cop), (nppc) )
RFWR( (rd), (ppc) )
MEMRD( (npc), (ninst) )

b beq, bne, blez, bgtz, bltz, bgez RFRD( (rs), (op1) )
RFRD( (rt), (op2) )
INTUS( (op1, op2, cop), (bop) )

bt (only if
branch
taken)

beq, bne, blez, bgtz, bltz, bgez INTUS( (ppc, imm, cop), (npc) )
INTUS( (npc, 4, cop), (nppc) )
MEMRD( (npc), (ninst) )

Table 6.17: Control Class

Subclass SimpleScalar Instructions Necessary Tasks

Figure 6.18Single bypass modeling

Iterate i Potential bypassed operands

Iterate i+1
Potential use of bypassed operand

hazardop

decode
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In the worst case, three register file reads may be required by a si
instruction belonging to the store double, strd, subclass. It is also possible tha
hazards exist on at most two of these register file reads as instructions belong
the load double, ldd, subclass perform two register file write-backs. A desig
may choose to model bypasses for as many situations as desired. This come
cost as each additional bypass value implies additional or expanded ope
resolution points as well as anotherhazardopoperand to indicate when this new
bypass value is required. Because of this added complexity, often only a s
operand is bypassed from one instruction iterate to the next. The production s
of a bypassed operand is a resolution point ofeverypotential register-file write-
back from the previous instruction iterate. A singlehazardopcontrol operand
distinguishes between three situations: no hazard,rs read hazard orrt read hazard.

When a single bypass is modeled, it is still necessary to correctly ha
scenarios where multiple data hazards exist. Since no bypass route exis
additional data hazards, the dependent instruction task must stall until the pre
instruction task has finished all register file (or other state) write-backs. This
be modeled with an additional control operandstallopwithin each instruction task.
The operandstallop indicates whether or not thenext instruction iterate should
stall. If stallopresolvestrue, then the prefetched instruction is deemed to have
many data hazards and is not made available to the next instruction iterate. H
the next instruction iterate is forced to stall. Only when every register file wr
back has occurred is the prefetched instruction made available. This implie
operand resolution for the passed prefetched instruction. Whenstallop resolves
true, this operand resolution point requires the correct prefetched instruction A
all write-backs to beknown. Whenstallop resolvesfalse, this operand resolution
point only requires that the correct prefetched instruction isknown. Finally,stallop
is used to stall dependent instructions for other data hazards, such as haza
architecture registers hi and low, as well.

The control operandshazardopandstallopare both non-deterministic. This is
because without actual data values, it is impossible for this model to determ
precisely when data hazards occur. Whathazardopand stallop do provide is
distinguishable variations in behavior for data hazard and bypass scenarios
allows probabilistic data, gathered from profiling actual code, to guide sche
prioritization during exploration.

6.3.7  Operand Resolution Points

As discussed in section 4.3.1, ABSS limits state growth and guarantees
state representation in control-dependent behavior through use of ope
resolution points. To better understand the freedoms and limitations of
SimpleScalar ABSS model, it is helpful to summarize all such resolution poi
The most important resolutions are for instruction prefetches,ninstspec and
ninstnospec, and for program counter preincrements,nppcspecandnppcnospec. These
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may be correctly resolved once the current instruction is decoded. If the cu
instruction decodes to a branch, correct resolution is delayed until the co
operandbop is known. Other important resolution points relate to data hazards
data hazards are modeled, then hazard-prone data fetches and mated bypass
be correctly resolved. These too may occur once the current instruction is dec
and presence or absence of data hazards is determined. Finally, other op
resolutions occur in the presented SimpleScalar model which are hidde
covering dependencies. For instance, the integer write-back task occurs for th
the five Integer subclass behaviors. Operand resolution is required to deter
which subclass’ result should be the write-back value. For each of these
subclasses, an earlier task already depends oncop from the instruction decode
task. Hence, instruction decode will have had to occurredbefore the operand
resolution point is reached. Thus, some operand resolution points may be h
and do not impact model freedom.

6.4  RISC Processor Results
As described in section 6.3 and shown in figure 6.19, an instruction ite

contains 25 low-level tasks4 and 37 care control cases. Only 25 low-level tasks a
required as many instruction subclasses share common tasks. For example, s
subclass behaviors require anrs register fetch, yet only a singlers register fetch
task is instantiated and all tasks requiringrs depend on this task.

When three instruction iterates form a processor composition, a cy
scheduling problem with 75 tasks and 50,653 care control cases is created
processor composition represents three ‘in-flight’ instructions and does not re
that these instructions be initially pipelined as is traditionally done. This sec
presents results for scheduling a three in-flight instruction processor model
control cases and cyclic considerations are handled automatically and exac
ABSS. Although the behavioral specification does not demand pipelining but
ordered instruction fetches, what results is a pipelined implementation suitabl
embedded applications with performance equivalent to what one expects fr
well-done manual implementation.

The MediaBench[70] suite of benchmarks serve as a measurement poin
exploration guide for RISC processor scheduling results. The MediaBench
consists of 11 representative embedded applications. For the present purpo
applications were eliminated due to substantial floating-point content or inab
to compile correctly for the SimpleScalar tool suite. The remaining 7 consiste
three speech compression/decompression applications: adpcm, gsm and
three graphics applications: jpeg compression and decompression, m
compression and ghostscript postscript rendering, as well as one encryp
decryption application: pegwit.

4. The figure shows more than 25 tasks as synced multivalueMA for control are included.
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The SimpleScalar tool suite was modified to produce simulation statis
relevant to the processor model. Instruction class mix, correlation between

pc in
 o0 fe
tc

h
in

st
i0 o0

in
cr pc

i0 o0

lo
ad pc

i0
i1

o0
ad

ju
st

pc
i0

i1
o0

w
rit

e
rd

i0
i1

i2
o0

by
pa

ss
ou

t
i0 o0

in
st in

 o0

in
st

de
co

de
i0 o0

re
ad rs

i0 o0
re

ad rt
i0 o0

al
u

si
m

pl
e

i0
i1

i2
o0

w
rit

e
rt

i0
i1

o0

m
em

ad
dr

i0
i1

o0

in
cr

m
em

 a
dd

r
i0 o0

by
pa

ss
in

 o0

br
an

ch
co

m
pa

re
i0

i1
i2

o0
fe

tc
h

in
st

i0 o0
in

cr pc
i0 o0

w
rit

e
hi

 lo
i0

i1
o0

al
u

co
m

pl
ex

i0
i1

i2
o0

o1

w
rit

e
m

em
i0

i1
i2

o0
o1

re
ad

hi
 lo

i0 o0

in
st

ou
t

i0 o0

pc ou
t

i0 o0

w
rit

e
lo

i0 o0

re
ad

m
em

i0
o0

o1

re
ad rf

i0 o0

Figure 6.19RISC processor instruction iterate
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instruction classes, single and blocking hazard probabilities, and branch take
taken statistics were generated and analyzed. All 7 benchmarks exhibited si
behavior and hence the following generalizations were made. The majorit
executed instructions, ~88% average for all benchmarks, were in the registe
register simple integer (rr1), register-to-immediate simple integer (ri), branch ta
(bt) or load single word (lds) subclasses. Within these four majority subclasses
and rri were most common, then bt and finally lds. Correlation among these
majority subclasses was also high at 72% on average for all benchmarks. Bra
were taken about 80% of the time. Hazards which could be eliminated wi
single bypass occurred for roughly 35% of all executed instructions. Haz
which stall successive instructions occurred for only approximately 1% of
executed instructions.

6.4.1  Priority Mix Set 1

With this application character in mind, two exploration control prioritizatio
mix sets were devised to help evaluate and direct the expected performanc
FSM controller synthesized from this symbolic processor model. Priority mix
1, as shown in table 6.18, gives highest priority to register-to-register, registe
immediate and branch taken mixes. Other mixes, each with slightly less prio
are prioritized with load single word, branch not taken mixes being the
specifically prioritized mix. After this, all remaining instruction mixes a
prioritized together in a final step. Likewise, mix set 2 also prioritized
instruction mixes but favors load single word, branch mixes over register
register, register-to-immediate mixes. A particular instruction mix in a mix
includes all permutations of three instructions with exactly one branch if a bra
is present in a mix. Similarly, if no branch is present in a mix, but only register
register, register-to-immediate and load single word instructions, then exactly
load single word instruction is present in every mix permutation. For example
mix ‘rr1,ri,lds’ includes all permutations (rr1,rr1,lds), (rr1,ri,lds), (ri,ri,lds
(ri,rr1,lds), (rr1,lds,rr1), etc. with exactly one lds.

Two sequential constraint scenarios, A and B, were modeled. Withi
scenario, constraints were added in two phases: sequential and concur
Scenario A assumes all tasks complete in a single time-step except for do
word memory reads and writes and complex integer computations. A double w
memory read returns the first word after a single time-step and then the final
in the immediate next time-step. Likewise, a double word memory write requ
the first write word during the first time-step and requires the second write w
during the second time-step. A complex integer computation returns the hi r
after a single time-step and then the lo result in the second time-step. Scena
extends scenario A such that all memory reads, whether instruction fetch or
instruction, require two time-steps. The read value is only available after two ti
steps. These scenarios model a probable embedded processor core with two
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Three resource concurrency constraint configurations, none, moderate
tight, were applied to sequential constraint scenarios A and B. No concurr
constraints were applied for the none configuration and hence only sequentia
dependency constraints apply. The moderate configuration assumes two me
ports for all memory read/write and instruction fetch tasks. Furthermore,
register file has 3 ports and supports at most 2 register file reads and 1 regist
write concurrently during any single time-step. A single integer function uni
available for all instruction implementation computations. An additional inte
function unit is available for all program counter updates and calculations. On
single instruction decode unit as well as single access to architecture hi/lo reg
are allowed. The tight configuration is a restricted version of the mode
configuration in which only one memory port is available. Also, the register
has 2 ports and supports at most 2 register file reads or 1 register file read/1 re
file write concurrently during any single time-step. Finally, just a single inte
function unit is available for all program counter and instruction implementat
computations.

Table 6.18 shows expected cycles per instruction, CPI, data for a synthe
FSM controller which prioritizes mix set 1. In some cases, two CPI numbers

Table 6.18: Expected CPI Given Mix Set 1

Prioritized
Mix

Resource Configurations

Aa none

a. All tasks 1 ts except double word read, write, multiply and divide which are 2 ts piped.

A moderate A tight Bb nonec

b. All tasks 1 ts except read, write, instruction fetches which are 2 ts, multiply and divide
which are 2 ts piped.
c. No hardware utility constraints.

B moderated

d. 1 datapath ALU, 1 pc ALU, 1 3-port register file (at most 2 reads, 1 write), 2 memory
ports, 1 decode unit, 1 port to architecture hi/lo registers.

B tighte

e. 1 datapath/pc ALU, 1 2-port register file (at most 2 reads or 1 read/1 write), 1memory
port, 1 decode unit, 1 port to architecture hi/lo registers.

rr1,ri,bt 1.67 1.67 2.67 2.67 2.67 3.00

rr1,ri,bnt 1.33 1.33 2.00 2.00 2.00 2.00

rr1,ri,lds 1.33 1.33 2.00 2.33 2.33 2.67

lds,lds,bt 2.33 2.33 2.67 3.33 3.33 4.33/4.00

lds,lds,bnt 2.00 2.00 2.00 2.67 2.67 3.33

no stall 3.00 3.00 3.33 4.00 4.00 4.67

stall 5.00 5.00 5.00 5.00 6.00 6.00

best 1.00 1.00 1.33/1.00 2.00 2.00 2.00

CPU Seconds 180 848 1648 156 717 1610
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reported. The larger one is the expected CPI for entering this instruction mix f
any arbitrary instruction and the smaller one is the expected CPI for sustaining
instruction mix. If a single CPI is reported, than the expected CPI is the sam
matter what earlier instructions were executed. In all prioritized cases,
moderate resource configuration achieves the same performance as the
configuration. ABSS is able to find optimal schedules for these prioritized con
cases as well as all 50,653 care control cases for three instructions in-flight. Th
stall (no multiple data hazards) and stall (multiple data hazards) rows indicates
for worst control cases while the best row indicates CPI for the best control c

Many of the 50,653 control paths do achieve single cycle throughput e
though the expected FSM machine has been optimized for a particular subs
instruction mixes. For example, the mixes ‘rr1,rr1,rr1’ and ‘ri,tohi,rr1’ achie
single cycle throughput and are included in the best row. Of particular intere
the ‘rr1,rr1,rr1’ mix with an A tight resource configuration. Due to the restrict
register file access, this mix only achieves single-cycle throughputif hazards exist.
Because of the comprehensive exploration, a correct optimal sequence fo
particular control case which utilizes the speed-up of a bypass is found. Althou
single-issue MIPS pipelined processor is a well understood structure with expe
high performance for any manually implemented design, ABSS meets this s
level of expected performance yet does so automatically.

6.4.2  Priority Mix Set 2

Table 6.19 presents expected CPI data for a synthesized FSM controller w
prioritizes mix set 2. There is not much difference when compared to table 6
This may be attributed to the original RISC philosophy of few, simple and sim
instructions. Four differences do occur for the B tight configuration and are sh
in bold. Since the mix ‘lds,lds,bt’ is at a higher priority in table 6.19, a soluti
with CPI of 4.00 rather than 4.33 is found. By selecting this 4.00 CPI soluti
other control cases of less priority are impacted. The ‘lds,lds,bnt’ mix is n
actually slightly worse, 3.67 versus 3.33 CPI. Also, the ‘rr1,ri,bnt’ is sligh
worse, 2.33 versus 2.00 CPI. Yet, some of the worst case control paths benefit
the choice to heavily optimize the ‘lds,lds,bt’ mix. Their CPI improves to 4.
from 4.67. Even with tight resource constraints, ABSS helps find particular de
trade-offs and best-possible control sequences.

Required CPU times range from 3 minutes to 30 minutes. All results in ta
6.18 and 6.19 were produced on a 866 MHz Xeon PIII processor with 2 GB
memory and running under Linux. It was a choice, not a necessity, to use a 2
memory model. As the memory is available, it is preferred to trade memory us
time. The most computational resource demanding example, B tight with mix
2, is solvable on a 733 MHz PIII machine with 128 MB of memory and requires
minutes CPU time.
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6.4.3  Representation Growth

Peak exploration path set time-step state set sizes, typically the largest, a
as transition relation sizes are shown for several configurations in figure 6
Configurations with resource concurrency constraints are most costly to solv
resource concurrency constraints make scheduling intractable. Consid
scheduling problem with no resource concurrency constraints. An as-soo
possible list scheduler will never have to choose execution of one task over an
as every task with satisfied dependencies may always begin execution. O
other hand, contention for resources during scheduling force choices as to w
task executes and consequently makes this problem intractable. Still, sched
without resource concurrency constraints with this technique takes s
computational resources asall schedules ofevery latency are represented.

6.4.4  A Cache Hit/Miss Model

Configurations A and B model relatively simple sequential memory acc
Configuration A assumes single time-step access while configuration B ass
two time-step access. Configuration A was modified to include two behaviors
each memory read. The cache hit behavior defaults to single time-step a
while the cache miss behavior requires three time-steps to complete ac
Furthermore, if a cache miss occurs, the memory subsystem is pipelined and
continue processing other memory requests, regardless of whether they prod
cache hit or miss. Nondeterministic control distinguishes between a cache h
miss. Three memory access tasks: speculative instruction fetch, nonspecu
instruction fetch and memory read, were subject to cache hit or miss

Table 6.19: Expected CPI Given Mix Set 2

Prioritized
Mix

Resource Configurationsa

a. Same as table 6.18.

A none A moderate A tight B none B moderate B tight

lds,lds,bt 2.33 2.33 2.67 3.33 3.33 4.00

lds,lds,bnt 2.00 2.00 2.00 2.67 2.67 3.67

rr1,ri,lds 1.33 1.33 2.00 2.33/2.00 2.33/2.00 2.67

rr1,ri,bt 1.67 1.67 2.67 2.67 2.67 3.00

rr1,ri,bnt 1.33 1.33 2.00 2.00 2.00 2.33

no stall 3.00 3.00 3.33 4.00 4.00 4.00

stall 5.00 5.00 5.00 5.00 6.00 6.00

best 1.00 1.00 1.33/1.00 2.00 2.00 2.00

CPU Seconds 184 867 1522 160 737 1795
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individually required nondeterministic control values. With these additio
control points, the number of distinct care control cases in a three in-fl
instruction composition increases to 474,552.

Table 6.20 summarizes results given priority mix 1. Because of cache
penalties (one cache miss is assumed in each mix), all resource configura
achieve the same CPI for the prioritized instruction mixes. This indicates th
tight resource configuration is appropriate when cache miss probabilities are
30%. Finally, because of the additional control cases, required computation tim
greater.

6.4.5  2, 3 and 4 Iterates

Tests cases with 2, 3 and 4 iterates for resource configuration A were so
Solutions for the 2 iterate composition were impacted by capacity constra
Solution iteration latencies for the 4 iterate composition did not improve w
compared to the 3 iterate composition. For this particular model and configura
a 3 iterate composition contains sufficient state to represent most pro
freedoms. Computation times range from 44 to 806 to 19,435 seconds for 2, 3
4 iterates respectively. Complexity increases by a factor of roughly 20 for e
additional iterate.

Figure 6.20ROBDD node usage
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6.4.6  Summary

This chapter presented applications of ABSS. First, data-flow examples, d
from academia and industry, were scheduled. These included the elliptic w
filter, the fast discrete cosine transform, and a math library function for Int
Itanium processor. Growth and practicality issues were discussed in this se
Next, control-dependent examples, again drawn from academia and industry,
scheduled. These included a rotation of coordinates algorithm, spherica
rectangular coordinate conversion and a graphics processing subsystem.
register use, additional iterates and control case prioritization were discu
Finally, a RISC processor model, based on the MIPS architecture, was introd
A suite of common embedded benchmarks was used to guide and interpret re
Although no pipeline direction existed in the original specification, ABSS fou
such pipelined execution sequences for three ‘in-flight’ instructions that
comparable to high-quality manual implementations.

Table 6.20: Expected CPI For Model with Cache Hit/Miss

Prioritized
Mix

Resource Configurations

none moderate tight

rr1,ri,bt 2.67 2.67 2.67

rr1,ri,bnt 2.00 2.00 2.00

rr1,ri,lds 1.67 1.67 1.67

lds,lds,bt 3.33 3.33 3.33

lds,lds,bnt 2.67 2.67 2.67

worst (no stall) 4.00 4.00 4.00

worst (stall) 6.00 7.00 7.00

best 1.67 1.67 1.67

CPU Seconds 719 7291 13,369
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Discussion

This chapter discusses the novelty and limitations of ABSS. Also, future AB
research directions are outlined. Finally, a brief conclusion summarizes the
concepts presented in this dissertation.

7.1  ABSS Novelty
Chapter 1 expanded the scope of the scheduling problem to encom

operand dependence, control dependence, sequential requirements, ha
resource requirements, repetition and pipelining. Although prior work
scheduling has addressed all these issues to some extent, ABSS makes sub
advances regarding sequential constraints as well as repetition and pipelining
control. Furthermore, ABSS accommodates all scheduling problem sc
constraints in concert while systematically determining high-quality practica
solutions for problems of useful scale. The ability to represent and sche
sequential models of repeating behavior with hundreds of tasks and over 500
control paths substantially raises the bar as to what is believed possible for
scheduling models.

7.1.1  Sequential Representation

The fundamental and pervasive structures in ABSS are nondeterministic
automata, NFA. These naturally represent any sort of sequential constrain
requirements in a finite digital system design. This was most clearly demonst
with sequentially constrained IP blocks and external IO protocols used in the E
case study (section 6.1.1), FDCT configurations (section 6.1.3), the con
dependent industrial example (section 6.2.3), as well as the RISC example
cache hit/miss protocols (section 6.4.4). ABSS lays a foundation for e
scheduling of such sequential models. Future work in ABSS will build on t
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foundation to represent and schedule models with even greater sequ
complexity.

Notable prior work on scheduling automaton models is attributed
Yen[140][141] and Yang[138]. The work by Yen used an explicit FSM model a
did not produce exact results. Furthermore, Yen’s technique had difficulties
practical design constraints and problem scale. Yang’s technique was symboli
implicit but experienced severe difficulties with problem scale and did
guarantee correct solutions for control-dependent problems. ABSS is uniqu
that it represents and exactly schedules automaton models of practical scale
hardware resource requirements, repeating behavior and control dependence

7.1.2  Repeating Behavior with Control

Scheduling repeating behavior with control in the absence of seque
constraints is itself a difficult problem as evidenced by the scarcity of prior wo
Lakshminarayana’sWavesched[68] is perhaps the best recent attempt. Th
heuristic targets control-flow intensive (limited control case) loop behavio
ABSS provides a theoretical advance because it represents and exactly sch
repeating behavior with control. Moreover, as demonstrated by the RISC exa
(section 6.1.1), ABSS can accommodate close to 500,000 control cases! T
unparalleled in the literature. Furthermore, ABSS still supports some type
speculation as demonstrated by the ROTOR examples (section 6.2.1). Fi
ABSS does all this exactly --also unparalleled in the literature.

7.1.3  Quality

Perhaps the most novel aspect of ABSS is the quality of solutions. Quality
be measured in terms of how completely all necessary design constraint
accommodated. In this respect, ABSS is able to accommodate all de
constraints, except final explicit binding,in concert. Some demonstrations of this
are the FDCT configurations in section 6.1.3 that incorporate function unit
register bounds as well as internal and external sequential constraints. Quality
also be measured as exactness. ABSS exhaustively encapsulates and explo
entire solution space and hence can guarantee exact solutions. Furthermore
all solutions are represented, ABSS provides a complete set of solutions that
potential odd-ball yet necessary control cases and constraints. The RISC exa
with bypass and potential stall for multiple hazards (section 6.3.6) demonstrate
completeness. The constructive automata approach to scheduling pro
solutions with quality and completeness unmatched by any prior scheduling w

7.1.4  Useful Scale

Although ABSS is exact and exhaustive, it still solves problems of useful sc
This is evidenced by the two industrial examples (sections 6.1.7 and 6.
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Compared to exact schedulers, the largest problems presented (100, 127 an
tasks) substantially raise expectations regarding problem scale. Compar
heuristic schedulers, the largest problems ABSS solves often exceed or equ
scale of typically reported problems with resource contention. If control scal
considered, the ABSS RISC examples (section 6.3) with over 50,000 control c
or even the pipelined S2R example (section 6.2.2) with 256 control cases
unrivaled. Finally, ABSS is able to solve problems of useful scale on reason
hardware and in reasonable time. The problems presented in this dissertation
often solved on a modern PC (733 MHz) with 512 MB of memory or less.

ABSS does not overcome the intractable nature of resource-constra
scheduling. ABSS does provide an exact and workable technique for m
problems. With respect to problems of very large scale, a novel aspect of ABS
its formulation forethought regarding abstraction. A composite task and assoc
CMA are fundamentally the same as a task and its associatedMA . Hence, a
mechanism exists to create a hierarchy of refinement, as described in section
that addresses such large problems.

7.2  Limitations and Complexity of ABSS
Scheduling with resource contention is an NP-complete problem[41][1

Still, implicit ROBDD-based techniques have dramatically raised expectat
regarding what variations and scale of NP-complete problems are solv
Although ROBDD-based techniques are time-and-space exponential in the w
and often typical case, they are often practicable for many problems of us
scale. Through careful formulation, ABSS exploits this potential ROBD
speedup. Unfortunately, this potential speedup makes it difficult to preci
quantify the complexity of ABSS. This section examines where complexity occ
in ABSS and identifies when problem limits are reached with conventio
computational resources.

7.2.1  Finite State

ABSS complexity is directly proportional to the number of state bits neede
construct aCMA . To model a composite task, anMA is assigned to each task
within the composition. Hence, the amount of state in aCMA is directly
proportional to the number of tasks, orMA , in a composition. Furthermore, if the
low-level tasks within a composition exhibit complex sequential behav
additional state is required for eachMA which again leads to state growth in
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CMA . The largest examples solved in chapter 6 are summarized in table 7.1.

these experimental results, one may conclude that, given a current comp1,
present ABSS limits are roughly 100-135 tasks represented with 130-340CMA
state bits. Required computation times range from a few minutes to a few hou

An MA represents production and existence of system operands. As anMA
contains finite state, the set of operands it represents is also finite. This bou
particularly important for operands that are produced iteratively in loops
pipelines. In fact, only one instance of an operand per cyclicMA is allowed as
described in section 3.2. This bound may be relaxed in a controlled way, a
expense of additional state, by adding iterates, section 4.4, or operand bu
section 4.5.4, to a composition. Finally, a finite set of operands is also mainta
at operand resolution points. Since only one postresolutionMA exists, only one set
of operands may be produced with one set of preresolution input operands.
state-related limit is fully described in section 4.3.1 and may be relaxed
controlled manner at the expense of additional state with task splitt
section 4.5.3.

7.2.2  Composition Character

State requirement is not the only factor contributing to ABSS complexity. T
overall structure and number of operand dependencies in a composition, as w
the imposed hardware concurrency bounds, significantly influences comple
For example, a fast discrete cosine transform contains highly symmetric ope
dependencies and two independent behavior subgraphs. Computa
requirements to solve this relatively ‘loose’ behavior are significantly higher t
for the ‘tight’ behavior of the elliptic wave filter (section 6.1). In general, le
complexity is encountered if a composition contains many freedom-constrai
operand dependencies, ordersMA in a ROBDD to minimize operand dependenc
length and overlap (section 4.6), and imposes either no or extremely constra
hardware concurrency bounds. On the other hand, greater complexit

Table 7.1: Select Largest ABSS Examples

Example Tasks State Bits CPU Seconds

288 from section 6.1.6 100 133 26.6

Itanium from section 6.2.3 127 339 131

Configuration 2 from section 6.2.3 132 271 865

4 Iterate RISC from section 6.4.5 100 159 19,435

1. A current computer is a 733 MHz Pentium II with 512 MB of memory.
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encountered if a composition contains few operand dependencies organiz
allow significant freedom, ordersMA in a ROBDD to maximize distance betwee
operand producers and accepters, and imposes hardware concurrency cons
that interact with operand dependency constraints in a balanced way. In fac
ability for these techniques to solve very highly constrained problems offers
complement to conventional techniques which typically are more efficient
weakly constrained problems.

7.2.3  Exploration Complexity

TheCMA exploration steps presented in chapter 5 are the greatest algorit
contributors to ABSS complexity. The discussion in section 6.1.3 indicates
exploration often accounts for 80-90% of the computation CPU seconds
particular, exploration’s fixed-point algorithms are the prime sources of s
complexity.

To facilitate a summary of exploration complexity, two broad definitions
fixed-point algorithms are defined. Agreatest-fixed point, GFP(), begins with a
larger state set S0, and uses a series ofn preimage, image, existentia
quantification, and/or universal quantification steps to reach asmaller Sn such that
Sn=Sn+1 andSn⊆S0. Likewise, A least-fixed point, LFP(), begins with asmaller
state setS0, and uses a series ofn preimage, image, existential quantification, o
universal quantification steps to reach alarger Sn such thatSn=Sn+1 andS0⊆Sn.

Table 7.2 summarizes exploration algorithms for the four classes of sched
problems: acyclic data-flow, acyclic control-dependent, cyclic data-flow and cy
control-dependent. From this summary, complexity conclusions may be made

least complex exploration, requiring just two least-fixed points, is for acyclic d

Table 7.2: Summary of Exploration Algorithms

Data-Flow Control-Dependent

Acyclic Cyclic Acyclic Cyclic

Forward Exploration LFP() LFP() LFP() LFP()

Backward Pruning LFP()

Closure with
Backward Pruning

GFP(LFP())

Backward Pruning with
Validation

LFP(GFP())

Closure with Backward
Pruning and Validation

GFP(LFP(GFP()))
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flow scheduling problems. Closure adds a greatest fixed-point computatio
cyclic data-flow exploration,GFP(LFP()). When written nested, each step of th
GFP() requires a completeLFP() computation. Validation adds anLFP()
computation for control-dependent exploration. Finally, exploration for cyc
control-dependent problems requires the greatest complexity with three n
fixed points. Complexity growth during exploration is clearly where ABS
encounters limits.

Still, ABSS exploration complexity is justified. Chapter 6 demonstrates t
ABSS is practicable for problems of useful scale. Furthermore, no other kn
techniques exist that produce exact results for cyclic control-dependent sched
problems.

7.3  Future ABSS Directions
ABSS lays a foundation for new approaches to scheduling and autom

design. As such, there are several directions to pursue. These include specific
encoding, re-encoding, partitioning, hierarchy, binding, heuristics as well as d
dynamic FSM and datapath synthesis.

7.3.1  Specification

Chapter 3 describes how low-levelMA are manually specified using a handfu
of states and transitions. Techniques and tools exist that simplify specificatio
sequential behavior. In particular, Synopsys Protocol Compiler [122] uses a
hierarchical specification of sequential behavior similar to regular expres
semantics that has proven useful and helpful for meaningful design. A techn
similar to this may facilitate specification of ABSS sequential behavior a
interaction for both low-levelMA  and compositeMA .

7.3.2  Encoding

ABSS uses a predominantly ‘one-hot’ encoding to represent operand exis
in a system. This encoding works fairly well. On the other hand, experiments
an alternative encoding[51], which models physical function units and bi
logarithmically encoded operands to these units, performed relatively poor. E
so, the ABSS ‘one-hot’ encoding perhaps errs on the side of sparsity. An impr
encoding might find a better balance between one-hot sparsity and
logarithmic state compactness when considering efficient ROBDD representa

ABSS uses a static allocation of state to represent operand existence. In
words, once a state bit is assigned to a particular task, it always models
particular task. A dynamic interpretation of state encoding, where
interpretation of some state depends on other state, may benefit ABSS. This
conceptual route to a more compact state encoding. Furthermore, the noti
dynamic state may enable increased freedom in an ABSS model withou
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expense of additional state. For example, task splitting (section 4.5.3), ite
(section 4.4.5) and operand buffers (section 4.5.4) are all ways to increase m
freedom by representing more operand instances at the expense of additiona
In fact, these correspond to transformation of the original behavior graph
composite task. As another example, algebraic transformations, where
associative, distributive and commutative laws are used to generate equiv
expressions, may also be expressed as graph transformations. A dynamic en
and use of nondeterminism may achieve some beneficial graph transform
without the expense of additional state.

7.3.3  Partitioning

As demonstrated with time-zone partitioning (section 6.2.3), partition
techniques can benefit ABSS. Time is not the only way to partition an AB
problem. A composition task may be partitioned according to spatial placeme
function units [129]. In this way, specific binding considerations a
accommodated while potentially reducing computational complexity. Ot
techniques, which partition ABSS problems in various ways, are almost certa
beneficial, especially when faced with extremely large problems.

7.3.4  Hierarchy of Refinement

ABSS was carefully formulated so that anMA and a CMA are
interchangeable. They both exhibit sequential behaviors of accepting
producing operands. This interchangeability provides the mechanism fo
hierarchy of refinement as shown in figure 7.1. NFA models are the vehicles
refinement between hierarchy levels. ABSS performs the refinement pro

Figure 7.1Hierarchy of Refinement
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within each hierarchy level. For example, suppose a behavior is descr
sequentially at the highest level. This description need not be precise but ma
relatively general. Even so, this top-level description is a collection of
executing tasks. Each of these tasks may also be described as a collection o
and so on until base behaviors are reached. Thus, a hierarchy is created. Dif
expected base sequential behaviors may be assigned to tasks within compos
Resulting composite tasks throughout the hierarchy may be scheduled
constraints from the bottom filter up to the top. Likewise, top sequential behav
such as protocols, may be imposed and propagated downward to influence
behavior and implementation. Consequently, several such refinements of
hierarchy produce specific and valid executions sequences and implementati
each level.

To be truly beneficial for extremely large designs, complexity from low
levels must be hidden from higher levels by abstraction. Suppose that aCMA from
a lower level encapsulates one million valid sequences representing all pos
implementations. It may be that only one hundred distinguishably differ
sequences exist when only consideringexternallyrequired and produced operan
events. At a higher level, there is often no need to know exactly how a lower-l
task internally processes information, but only a need to know how a lower-le
task may be interfaced to. Consequently, before being passed up in the hierar
CMA may be re-encoded to only represent the fewer externally distinguish
sequences. In this way, complexity may be abstracted through an approp
though as yet unknown,CMA re-encoding step.

7.3.5  Heuristic Exploration

As presented in chapter 5, ABSS performs exact exploration of aCMA . This is
the most computationally expensive step in ABSS. It may not be necessa
determine all exact solutions but rather some solutions of acceptable quality
such cases, ABSS may benefit from new heuristic exploration techniq
Symbolic traversal and reachability are well-studied problems[21][90] a
techniques exist for approximate solutions[95]. These techniques, devel
primarily for symbolic model checking, may be directly applicable to new, m
efficient, ABSS exploration.

7.3.6  Synthesis

As presented, ABSS may return a witness schedule that can be used for
synthesis. This approach is rudimentary as it does not exploit the fulldynamic
nature of aCMA’s path sets. Work is needed to directly synthesize a FSM fr
ABSS structures. Preferably, the synthesized FSM need not be minimum sta
best implementation quality (performance, area, etc.). It could potenti
encapsulate numerous execution sequences and implement a dynamic c
scheme. As shown in section 6.1.3, ABSS encapsulates schedules with
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averagelatencies. For example, loop iterations legs with latencies of 2-3-2-
yield an average latency of 2.5. Work to find such best average late
schedules[56] may lead to direct synthesis of FSMs from ABSS structures.

ABSS does not perform precise binding, although interconnect and bin
guide constraints may be formulated (section 6.2.3). Methods are neede
precisely constrain or interpretwhich function unit a task is physically
implemented on. This will most likely require additional state information a
single witness schedule currently represents numerous possible bindings.
attractive approach under investigation adds additional state by duplicating
and operands according to spatial bindings yet does so in an efficient partiti
manner[129]. With the ability to produce precise bindings, ABSS may be use
synthesize not only FSM controllers but datapaths.

7.4  Conclusions
A set of techniques for representing the high-level behavior of a dig

subsystem as a collection of nondeterministic finite automata, NFA, w
presented. Sequential behaviors for base units, such as ALUs, multipliers, reg
file ports, etc. are represented as small NFA called modeling automata,MA . Tasks
from a behavioral graph specification are each assigned anMA that models
appropriate sequential behaviors. All such baseMA are composed by a Cartesia
product step into a larger compositeMA or CMA . Behavior operand dependenc
control dependence and hardware resource requirements prune aCMA until it
only encapsulates all valid execution sequences of the digital subsystem. Im
symbolic ROBDD-based techniques find shortest paths in aCMA . These shortest
paths correspond to minimum latency schedules for the digital system.
provides a very general, systematic mechanism to perform exact high-
synthesis for cyclic, control-dominated behaviors constrained by arbit
sequential constraints. Viability and scalability of this technique is demonstr
by constructing and then performing exact scheduling on problems of prac
sizes and complexities drawn from both academic and industrial source
particular, a substantial RISC model that supports pipelining, data hazards, by
stall and cache hit/miss protocols was scheduled exactly.
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