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Automata-Based Symbolic Scheduling

by

Steve Haynal

Abstract

This dissertation presents a set of techniques for representing the high-level behav-
ior of a digital subsystem as a collection of nondeterministic finite automata, NFA.
Desired behavioral and implementation dynamics: dependencies, repetition,
bounded resources, sequential character, and control state, can also be similarly
modeled. All possible system execution sequences, obeying imposed constraints,
are encapsulated in a composed NFA. Technology similar to that used in symbolic
model checking enables implicit exploration and extraction of best-possible execu-
tion sequences. This provides a very general, systematic procedure to perform
exact high-level synthesis of cyclic, control-dominated behaviors constrained by
arbitrary sequential constraints. This dissertation further demonstrates that these
techniques are scalable to practical problem sizes and complexities. Exact schedul-
ing solutions are constructed for a variety of academic and industrial problems,
including a pipelined RISC processor. The ability to represent and schedule
sequential models with hundreds of tasks and one-half million control cases sub-

stantially raises the bar as to what is believed possible for exact scheduling models.

Keywords:  Scheduling; Binary Decision Diagrams; High-Level Synthesis;
Nondeterminism; Automata; Symbolic Model.
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Chapter 1

Introduction

Webster’'s dictionary defines the vedzheduleas “to appoint, assign, or
designate for a fixed time.” Scheduling is an integral step during the design of a
digital subsystem. Throughout the manual design process, an engineer decides
whenoperations, transactions and other events must take place. Such scheduling
decisions are constrained by hardware resource availability, operand dependencies
and control decisions. Also, interface protocols, either devised to simplify
scheduling or resulting from implementation constraints, must be observed during
scheduling. An engineer often usad hocmethods, such as timing diagrams and
simulation models, to reason through the scheduling process. The goal is to create
a correct implementation that meets design objectives such as minimum execution
latency, reduced silicon area and low power.

This dissertation presents automated scheduling techniques useful in digital
subsystem design. With these techniques, a designer need only specify desired
behavior. Automated scheduling then assigns behavioral events (computations,
memory access, operand communication, etc.) to specific time-steps. This relieves
a designer from manual scheduling and shortens the design cycle. Because of the
reduced work requirement, more emphasis may be placed on design exploration.
Ideally, automated scheduling leverages a designer’s insight in tandem with a
machine’s computational ability to synthesize superior schedules. The end result is
substantial automation of the design process.

1.1 The Scope of Scheduling

Characteristics from a RISC processor design are used to delineate the scope of
scheduling for this dissertation. Figure 1.1 shows a traditional view of a single-
issue four-stage pipelined RISC processor [55] and some low-level tasks required
to implement an instruction. The first stage fetches the instruction and increments
the program counter. The second stage decodes the instruction and accesses



register file data. Next, the third stage performs a particular ALU computation.
Finally, the fourth stage writes a result back to the register file. When engineering a
RISC processor, the designer must schelduldhen such low-level tasks

(instruction fetch, write back, etc.) occur so that any and every processor

instruction may correctly execute.

Instruction Instruction _ _
Fetch Decode ALU Register File
Register File | Computation | Write Back
PC Increment] Regds P
Instruction Instruction _ _
Fetch Decode ALU Register File
Register File | Computation | Write Back
PC Increment Regds p
Instruction Instruction _ _
Fetch Decode ALU Register File
Register File | Computation | Write Back
PC Increment] Regds P

Figure 1.1 Three common instructions in a pipelined RISC processor

The implementation in figure 1.1 observesperand dependencies A
particular task, such as the write back, may execute only if the correct data exists.
It would be incorrect to place the write back in a pipe stage before the ALU
computation as the write back requires the result of the ALU computation.
Scheduling must observe operand dependencies.

There is considerableontrol-dependent behaviorin this RISC example. For
instance, depending on the decoded instruction, an integer or a floating-point
computation may be required. In other cases, such as a jump instruction, no
computation and write back are necessary. In fact, for a RISC example scheduled
in chapter 6, there are over 500,000 distinguishable control-dependent execution
sequences! Scheduling must correctly consider every control case.

It is naive to assume that an instruction fetch always completes in a single
clock cycle. Real implementations must communicate to a memory hierarchy and
contend with a memory-fetch protocol. For instance, an instruction fetch may
complete in a single clock cycle if a cache hit occurs but require several clock
cycles if a cache miss occurs. All digital subsystems exhibit some sort of
sequential behavior. In fact, for large digital subsystems, this sequential behavior
may be complex and is often simplified and understood through use of protocols.

1. This isnotscheduling to find good orders of assembly instructions, as is done by a com-
piler, but rather scheduling of the many low-level tasks needed to implement any and
every processor instruction.



Scheduling must handle all expectwefjuential behavior constraintsn and for a
digital subsystem.

Every RISC processor implementation Hezrdware resource constraints
To illustrate, a register file may have only two ports and allow 2 reads or 1 read/1
write concurrently. Other bounded hardware resources may include local storage,
bus interconnect, function units, 10 ports, etc. Scheduling must produce solutions
which observe such hardware resource constraints. In fact, contention for hardware
resources makes scheduling intractable. Were it not for resource contention, all
events could execute as soon as operand dependencies were satisfied.

RISC processor execution repeats endlessly. Execution sequences for various
instructions may be linked end-to-end to create an infinite number of infinite
length execution sequences. Scheduling must correctly generateirdircte
repeating solutionsyet do so in a finite and bounded manner even for control
dependent and nondeterministic behaviors.

A RISC processor must beomplete It must observeall imposed design
constraints yet correctly implemeul behaviors, whether common or special
cases. For example, a processor often executes without interruption from data
hazards, but must sometimes stall until data hazards are resolved. Typically far
more design effort and complexity is required to address special cases than
streamlined common cases. To be practical, scheduling must solve all cases,
including special cases, while prioritizing the common cases.

A RISC processor must achieve a certain levejodlity. A throughput of 1
instruction per cycle is expected for common instructions in a single-issue
pipelined implementation. In fact, to achieve this performance in figure 1.1, the
register file fetches must be performspeculatively or before certain they are
needed. To illustrate, the decoded instruction may be a jump and hence discards
the unneeded register file values. On the other hand, the decoded instruction may
be an add and the register file values are available for immediate computation. To
be used widely in industry, automated scheduling must produce results with
similar quality to and preferably better than manual implementations.

1.2 Behavioral Representations

Automated scheduling requires a behavioral specification in which events are
not preassigned to time-steps. This may be expressed in a program-like textual
description and then converted into a program dependence graph [36] called a data
flow graph, DFG, or control/data flow graph, CDFG. A program dependence graph
clearly identifies operand dependencies and reveals inherent parallelism yet does
not assign events to time-steps. Figure 1.2 shows a program dependence graph for
one class of RISC processor instructions. Nodes represent operations or tasks while
edges represent operands. Scheduling takes this graph and assigns tasks and
operands to specific time-steps and in so doing creates an implementation.
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There is no formal language for program dependence graphs. Related work in
scheduling often use representations based on program dependence ideas but with
little specification compatibility among different work. As detailed in chapter 2,
this work, Automata-Based Symbolic Scheduling, ABSS, also uses an input
specification based on a program dependence graph. The ABSS specification goes
beyond the basic program dependence graph and allows for sophisticated control-
dependent behavior, cyclic behavior, sequential constraints as well as composition,
abstraction and hierarchy.

1.3 The ABSS Methodology

The ABSS methodology is illustrated in figure 1.3. To begin, three input are
required. The behavior input is based on a program dependence graph. It describes
behavior as a collection of tasks with operand and control dependencies. This
collection of tasks is itself a task, calledcamposite task and hence a natural
hierarchy is formed. For the second input, each of the tasks within a composite task
is assigned expected sequential behaviors from the sequential library. These are
nondeterministic finite automata, NFA, represented implicitly with Reduced
Ordered Binary Decision Diagrams, ROBDDs [16][48][90][93]. These NFA, called
modeling automaton MA, encapsulate anticipated sequential behaviors for
targeted low-level hardware units. Additional sequential constraints, such as
protocols, drawn from the sequential library, may also be included as input. The
final and third input is resource concurrency constraints. These bound concurrent
use of hardware resources such as function units, local storage, ports and
interconnect.

These three input are presented to the core of ABSS: NFA Composition. This
step creates a new NFA, calledcamposite modeling automaton CMA, that
representall valid sequences and hence implementations of the behavior input.
This CMA and its sequences encompass the scope of scheduling described in
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section 1.1: operand dependencies, control-dependent execution and speculation,
sequential constraints, hardware resources constraints as well as infinite repeating
solutions with bounded state. Furthermore, sialtevalid sequences are found, it

is possible to be complete and guarantee optimality. FinalBM& is also arVIA

and is therefore of the same format used in the sequential library. Hence,
scheduling hierarchy and abstraction are possible.

The final step in the ABSS methodology is NFA exploration. Although NFA
composition produces@MA that encapsulates all valid sequences, some of these
sequences are more desirable than others. For example, minimum latency
schedules are generally preferred over other schedules. NFA exploration employs
an implicit symbolic implementation of Dijkstra’s shortest path algorithm to
determine all minimum latency schedules. This provides implementation
performance metrics for the behavior input. Furthermore, NFA exploration may
extract deterministic minimum latency schedules suitable for finite state machine
controller, FSM, synthesis. Finally, as with NFA composition, results from NFA
exploration may be used to create new sequential library members.



1.4 Related Work

1.4.1 High-Level Synthesis

ABSS is most related to work in high-level synthesis
[35][39][40][66][88][137]. High-level synthesis is an automated process that
transforms an algorithmic specification of a digital system’s behavior into a
hardware structure that implements the behavior. High-level synthesis offers simple
and fast design specification, short and highly automated design cycles, and
hopefully competitive implementations. Although high-level synthesis has received
considerable research attention, it has yet to achieve wide-spread use in industry.
This may be attributed to two primary failings. First, high-level synthesis is often
unable to address the scale or complexities of modern designs. Design teams have
tens of millions of transistors at their disposal. Current high-level synthesis tools
are incapable of dealing with such large designs in an unpartitioned manner and
have only primitive means for problem partitioning and abstraction. Furthermore,
modern designs include complex control-dependent implementation and require
interface through sophisticated protocols. Such complexity issues are either
unaddressed or poorly addressed by existing high-level synthesis tools. Second,
high-level synthesis rarely produces competitive implementations. When
implementation value is measured in terms of performance and silicon area, current
high-level synthesis implementations compare unfavorably to manual
implementations.

ABSS directly addresses these two primary failings of current high-level
synthesis. First, ABSS utilizes an automata-based representation to address design
sequential and protocol complexities. Furthermore, although ABSS successfully
solves unpartitioned problems of meaningful scale, ABSS provides a route to
problem abstraction based on a hierarchy of sequential behaviors. Second, ABSS
determinesall valid sequences. Hence, ABSS is guaranteed to find the best
possible sequences. This, combined with the ability to handle considerable control
complexity, certain types of speculation, and endlessly repeating behavior, enables
ABSS to compare favorably with manual design.

The greatest high-level synthesis success stories are for digital filter synthesis
[24][25][42][60][104][110][120][134]. Such designs contain very simple control
structure, if any, and may be behaviorally specified with a relatively small set of
mathematical equations. The majority of papers in high-level synthesis report
results for digital filter benchmarks. Although ABSS produces exceptional results
for digital filters, it distinguishes itself from the bulk of high-level synthesis by
addressing the full scope of scheduling. Control-dependent behavior, sequential
and protocol constraints, hardware resource constraints and cyclic behavior are
addressed in concert yet exact and complete schedules are generated. This enables
ABSS to be successfully applied to a much wider range of high-level synthesis
applications.



High-level synthesis is traditionally broken into four general steps: Input
specification, Allocation, Scheduling and Binding. Although not set in stone,
variations of these four steps appear in all high-level synthesis flows. Input
specification is typically a textual description of the desired behavior. It is often
converted into a program dependence graph as described in section 1.2. Allocation
is “determination of the type and quantity of resources to implement a design for
given performance and area constraints” [40]. Scheduling is “the partitioning of
design behavior into control steps such that all operations in a control step execute
in one clock cycle” [40]. Binding is “assignment of operations, memory accesses,
and interconnections from the behavioral design description to hardware units for
optimal area and performance” [40].

ABSS is fundamentally a scheduling technique. It assumes that behavioral
input specification and allocation have been performed and produces all valid
control-step sequences such that every event in the behavior input is assigned to a
control step. ABSS performs resource-constrained scheduling and hence adheres
to a restricted set of subsequent bindings. In fact, ABSS may incorporate a large
number of prespecified constraints, both sequential and resource utility, so as to
simplify or eliminate the final binding step. A fundamental premise of this
dissertation is that a scheduling technique that generates all valid execution
sequences may be initially or subsequently constrained to also represent all
optimal bindings. Hence, attention is focused on comprehensive scheduling that
adheres to flexible and varied constraints.

1.4.2 Scheduling

Scheduling is a well-studied problem, with a rich literature of previous work.
For this reason, discussion of related scheduling work is organized around three
general approaches: Heuristic, Integer Linear Programming (ILP), and Symbolic.
Furthermore, success of these approaches is measured by how completely and
thoroughly they address the scope of scheduling introduced in section 1.1. In
summary, the scheduling scope includes: operand dependencies, control-
dependent behavior, sequential behavior and constraints, hardware resource
constraints, repeating behavior, completeness and quality.

Heuristic scheduling techniques are by far the most common
[22][25][44][45][58][68][71][104][109][110][121][132][133][134]. All heuristics,
and in fact all scheduling techniques, address operand dependencies. If a
scheduling technique only considers operand dependencies, then it only schedules
data-flow graphs, DFGs. Within the DFG paradigm, there is considerable work
regarding repeating or cyclic behavior. Pioneering work in DFG loop scheduling
and pipelining was done by Girczyc[44], Paulin[109] and Goosens[45]. Chao’s
rotation scheduling[25] uses a series of transformations to perform DFG loop
pipelining with function-unit utility constraints. Lee[71][72], Sanchez[120], and
Wang[134] all require an initial prespecified loop iteration latency and then adjust



for function-unit utility constraints. Lee employs as-soon-as-possible scheduling
and then resolves resource constraint violations. Sanchez computes the minimum
initiation interval of the loop and then iteratively retimes, schedules and adjusts
resources. Wang, who has perhaps the most complete heuristics for digital filters,
uses a novel cycle-finding and covering scheme. In general, heuristics that ignore
control-dependent behavior can perform well for repeating behavior. Solution
quality is equivalent or close to optimum. On the other hand, solution
completeness may suffer as only single solutions are found and protocols are not
accommodated.

Heuristics also exist for control-dependent scheduling. The most influential
early work is attributed to Wakabayshi[132][133]. Two recent state-of-the-art
heuristics are by Lakshminarayana[68] and Dos Santos[121]. Lakshminarayana’s
technique, which handles some repeating behaviors, uses an explicit breadth-first
elaboration of the available operations on each time-step that is similar to the
implicit NFA exploration used in ABSS. Dos Santos’ heuristic is guided by code-
motion pruning and includes some forms of speculation but does not handle
repeating behavior. In general, heuristics for CDFG scheduling perform poorly in
terms of quality and completeness. Quality suffers since early decisions related to
control often eliminate good solutions. Furthermore, if a substantial portion of the
solution space is explored to reveal good solutions, only small problems may be
solved. Finally, as before, solution completeness suffers as only single solutions
are found and protocols are not accommodated.

Some of the best known exact scheduling techniques are based on integer
linear programming, ILP [42][43][61]. Although shown to be relatively efficient,
ILP techniques do not readily generalize to control-dependent scheduling and have
formulation difficulties with sequential constraints other than pure or bounded
delays. Of the few ILP techniques that handle control, Coelho’s is perhaps the
most mature [30]. Even so, only a small number of control points are allowed and
code motion is substantially impacted by control formulation. In general, ILP
techniques do not handle the amount of control nor sequential protocols necessary
for practical design.

Symbolic scheduling techniques were first suggested by Kam[64]. A few
preliminary experiments for tightly constrained acyclic DFG scheduling problems
were formulated using multi-value decision diagrams. ROBDD-based exact
symbolic scheduling was pioneered by Radivajditil3][114]. His work
addressed acyclic control-dependent resource-constrained scheduling in a fairly
complete manner. As with ABS3Jl execution sequences, including those with
some types of speculation, are found. As such, his work is a significant foundation
and motivation for ABSS. The differences between Radiv@jsviechnique and
ABSS lie in fundamentally different problem formulations. Radivoj&vi
technique represents a complete schedule as a ROBDD-based implicit Boolean
logic function. On the other hand, ABSS represents a complete schedule as an



execution sequence of an implicit nondeterministic finite automaton. This allows
ABSS to naturally handle repeating behavior. Radivdjsvitechnique only
handled repeating behavior for DFG scheduling with prespecified latencies and not
at all for CDFG scheduling. Furthermore, since Radivajsvitechnique requires

that all schedule control steps are represented in a single Boolean logic function,
schedules with long latencies require lengthy logic functions. ABSS does not
record all past control steps in a single NFA state vector and hence has no such
difficulty with long latency schedules. Finally, Radivojésitechnique is based on

a simple non-sequential operator model and can not be generalized to an arbitrary
sequential model as can be done in ABSS. Thus, ABSS can represent abstractable
sequentially-constrained  control-dependent  repeating  schedules  while
Radivojevt’s technique does not.

Automata-based symbolic scheduling did not originate with ABSS but was
introduced by Yang[138]. His formulation did not address repeating behavior or
sequential constraints in a general way. Although control was incorporated,
necessary correctness issues related to validation and causal ensemble schedules
were ignored. Yang's formulation also did not use nondeterminism and hence
suffered significantly from ROBDD representation growth. Monahan[94][95] also
proposed an automata-based scheduler. His was for predefined datapaths subject to
limited memory constraints. His work did not address control-dependent or
repeating behavior. Finally, Yen[140][141] introduced the notion of Behavioral
FSM scheduling. Although this technique was symbolic and automata-based, it
was explicit rather than implicit. Hence, only a single solution is found.
Furthermore, substantial difficulty is encountered when constraining resources and
formulating control for general BFSM models.

1.4.3 Miscellaneous Related Work

A novel ability of ABSS is protocol and sequential constraint accommodation.
Related work regarding this has focused primarily on interface synthesis separated
from scheduling. Influential interface synthesis work is attributed to Borriello[12].

Some scheduling techniques expose more problem parallelism through graph
transformations [1][81][99][111]. Algebraic and retiming transformations
restructure the DFG or CDFG. Hence, a new number of problem graph vertices or
edges may result. Although ABSS may implicitly perform some algebraic and
retiming transformations through use of nondeterministic alternatives, this is not
the focus of this dissertation. Hence, unless otherwise stated, a scheduling problem
and solution correspond to a single static graph.

Scheduling is an essential step in code compilation[1]. Here, a heuristic is
usually employed to order processor instructions from thousands of lines of code.
Unlike the scheduling presented here, there is predefined processor hardware. This
typically constrains the problem and guides the heuristic scheduler. The focus is on



general improvement in thousands of lines of code rather than on determining a
“best” processor architecture.

As ABSS is an implicit symbolic technique, it is related to symbolic model
checking [89]. With ABSS, a model is constructed to represent only and all correct
execution sequences. This model is then used to evaluate or generate a correct
implementation. With symbolic model checking, a supposedly correct
implementation model is provided. This model is then evaluated to determine if the
implementation is indeed correct.

ABSS represents the execution sequences of atomic tasks in a scheduling
problem as NFA. These NFA closely resemble certain types of Petri Nets
[98][108]. This relation provides alternative conceptual models and leverage of a
wider range of existing research.

1.5 Dissertation Organization

This dissertation is organized around the ABSS methodology introduced in
section 1.3. Chapter 2 presents the ABSS problem formulation and behavioral
input specification. Both are information-centric and describe how tasks interact.
Care is taken to support hierarchy and abstraction. Chapter 3 describes how
sequential library member$jJA, are specifiedMA are specified to model low-
level hardware components with the simplest of sequential behaviors. Only a
handful of states and transitions are required for these specifications. Chapter 4
describes how a collection MA represent tasks in the behavior input. A e
is formed through composition. After a series of constraint applicationsCiii&
represents all valid sequences and hence implementations of the behavior input.
Chapter 5 presentSMA exploration. Exploration seeks to find shortest paths and
hence minimum latency schedules. Such schedules provide performance metrics
as well as deterministic synthesis candidates. Throughout chapters 2 through 5, the
RISC processor example from section 1.1 is used as a touchstone. It directs the
potentially tedious yet necessary details in these chapters to one common goal:
automated design of a RISC processor. Chapter 6 presents applications of ABSS.
Scheduling problems, drawn both from academia and industry, are formulated and
solved completely and precisely. Furthermore, these problems are of sufficient size
and scale to demonstrate the viability of ABSS for industrial design. A complexity
discussion is included here. As a capstone, RISC processor behavior for all MIPS
integer instructions, similar to and beyond the example in section 1.1, is scheduled.
These scheduling solutions are comparable to, and in some cases, better than what
is expected from high-quality manual design of a single-issue pipelined processor.
Finally, chapter 7 draws conclusions. ABSS novelties, complexities and limitations
are summarized and future ABSS research directions are outlined.
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Chapter 2

The Scheduling Problem a la ABSS

Automata-Based Symbolic Scheduling, ABSS, was conceived to answer the
practical high-level synthesis questions raised in chapter 1. At the heart of these
guestions is a scheduling problemhenshould operations occur to provide good
performance given hardware constraints? Unfortunately, traditional scheduling
problem definitions fail to capture enough real constraints to be representative of
practical designs. As such, when formally defining the scheduling problem ABSS
solves, a different and expanded problem viewpoint must be taken. ABSS
approaches the scheduling problem from an operand or information viewpoint. To
be precise, ABSS models all feasible, causally and sequentially correct sequences
of information consumption and production in a digital system where such
information is finite. This may be contrasted with traditional operation-centric
scheduling technigues. Rather than assigning operations to time-steps, ABSS
determines available information at each time-step and sequentially models how
new information may be produced from this available information. Once all
desired information has been produced, the behavior is complete. If this is done in
a minimum number of time-steps, a minimum latency schedule or execution
sequence results. Finally, by taking an information-centric approach, ABSS may
separate a behavioral task from an actual sequential implementation. An ABSS
scheduling problem specifies the desired behavior in terms of information creation
and consumption as well as anticipated sequential constraints of protocols and
hardware function units used to implement this behavior. Consequently, the same
behavior may be scheduled for various target hardware with differing sequential
constraints.

This chapter is organized as follows. Firshformation is defined and
described as used with ABSS. Next, the conceptasikand composite taslare
introduced and defined. These definitions provide a foundation to formulate a new
scheduling problem which is amenable to abstraction and hierarchy. Both

11



abstraction and hierarchy are essential for scheduling large digital systems as the
resource-constrained scheduling problem is intractable. Finally, an explicit
example provides an overview of the entire ABSS technique.

2.1 Information

Definition 2.1 Information is any bit, signal or piece of data (besides a clock)
communicated in to or out of a digital subsystem. An atomic portion of informa-
tion is referred to as ayperand.

This is a very general definition as it makes no distinction concertyipgs
(control, data, bit width, etc.) owalues of information. When symbolically
modeling system behavior for scheduling, the emphasis is not ocotiectness
of a behavior's computations but rather on the behaviegsibility, performance
and cost. Hence, the information’s type or value may often be ignored. For this
reason, determining only whether or not a particular opeextgtsis critical. This
existence or nonexistence of information is represented as a Boolean variable. For
example, supposefo refers to some operand necessary in the behavior. In ABSS,
info is true if this operand exists and is available in the system, fatge if not.
Althoughinfo corresponds to a particular operamdo does notcontain the actual
value of this particular operand. If it is necessary to distinguish between various
values of one operand, it is always possible to treat each necessarily
distinguishable value as a separate operand and hence reduce the problem to the
original simplicity. For instance, the operanig0'®=> and info"2~" are two
operand names, not values, and refer to the Booteastenceof two separate
operands. Although there are additional system modeling considerations, this
minimalist operand existence/nonexistence view is a key element of ABSS.

As described, information is encoded in “one-hot” fashion. A single Boolean
variable identifies existence or nonexistence of a single operand in the digital
subsystem. Although pure logarithmic encodings were experimented with [51],
this sparse “one-hot” encoding generally provides more efficient ROBDD
representation and manipulation. Still, when necessary to represent several
mutually exclusive values of an operand, a logarithmic encoding is beneficially
employed.

The example RISC processor requires and produces numerous operands during
execution. If considered at the level of an executing instruction, a register file read
produces an operand that is required by the ALU. Likewise, the ALU produces an
operand that is required by the register file write back. For scheduling purposes,
the operand’s value is often irrelevant, yet a correct dependency-ordered sequence
of operand production and consumption is required.
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2.2 Tasks

When viewed as a black box, a digital subsystaotepts(input) and/or
produceqoutput) various operands in various time sequences. A digital subsystem
may be as simple as an ALU, which requires two input operands and produces one
output operand a short time later, to something as complex as a RISC processor
core, which requires input instructions and memory data and produces memory
addresses and memory data while observing a complex dynamic sequential
protocol. Furthermore, large digital systems are typically composed of smaller and
simpler digital subsystems. At any level of this natural hierarchy, this view of
sequential information consumption and production holds.

All digital systems or subsystems implement a desit@sk or portion of
behavior. For instance, an ALU may implement an add or a subtract as well as
other tasks. In traditional high-level synthesis, these tasks are called operations and
are scheduled and bound to available hardware. Since ABSS takes a more
information-centric sequential view, operations are not necessarily trivial but can
range from simple combinatorial ALU functions to the transaction tasks performed
on large digital systems with sophisticated protocols. Hence, thetteskis used
to describe a particular portion of behavior.

Definition 2.2 A task is a four-tupletaskA, P, R, Q). Each operand [J A may2

be accepted to complete the task. Each opemnd® may be produced during
implementation of the taskA andP are thought of as sets of Boolean variables
where truth value represents existence or nonexistence of the particular operand.
EachresJ R is a named type of hardware resource (function units, buses, local
registers, etc.) which may be required to complete the t@skncapsulates all
allowed sequential executions of the task either imposed by hardware constraints
or desired by the designer.

As an example, a simple add task may be specified as
ADD( (a, b), (c), (ALU), (Single time-step) ). Here,a and b are the input
operandsg is the result operand, an ALU hardware resource is required, and the
result operand is computed in one time-step. It is rather imprecise to specify
‘Single time-step’ ax). Chapter 3 describes in detail how potential sequential
behaviors for a task are described with a nondeterministic finite automaton.

The setsA and P include all operands the task potentially accepts and
produces. This should not be confused with a hardware data port. It is possible that
some ALU must communicate all operands through one port, yet there are still

1. The term task is used commonly in hardware/software codesign. In that context, it typi-
cally describes fairly complex behavior. In the context of ABSS, tasks describe behaviors
ranging from very simple to complex.

2. Operand events are potential rather than necessary as control decisions may make some
operand events unnecessary.
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typically three operands: 2 input and 1 result. Any single information
communication event that provides unique information to or produces unique
information from a task is considered a distinct operand and must be included in
either A or P. Hence, although some data may be packetized, each discrete
distinguishable piece of a packet is considered a unique operand. On the other
hand, tasks often repetitively execute within loops. In this case, theAsatsl P

may grow infinitely large given infinite repeated execution of a task. When a
repeating task is encountered, exactly two instances of a particular operand, which
distinguish between past and present values, are includedmiP and hence the
representation is boundeflection 3.2 addresses issues related to modeling cyclic
tasks.

When graphically representing a task, eleméhgdQ may be suppressed as
shown in figure 2.1. Only element& and P are drawn explicitly. With this

opa opb
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Figure 2.1 A graphical representation of an add task

representation, a task may be thought of as a vertex (although with possibly
numerous input and output operands) in a traditional data-flow graph. This is
primarily a behavioral representation. Resource requiremé&atand sequential
constraintsQ, are separate artifacts of implementation and hence may vary for the
same behavioral task.

In the definition of a task, definition 2.2, a substantive set hierarchy was
introduced. For examplg3 [0 PO taskidentifies an operand3 which is one of
the produced operands tafsk This type of set hierarchy is common to ABSS. To
ease notation of this concept, dot notation from object oriented programming is
borrowed. HencetaskP.p3 is shorthand forp3 [ PO task. This notation, as
formally defined in definition 2.3, is used throughout this dissertation.

Definition 2.3 Dot notation represents SET10 SETZ]...0SETn as
SETn. ... .SET2.SETDr representselementl] SET10 SETZ]...00 SETn as
SETn. ... .SET2.SET1.element

2.3 A Composite Task

A collection of tasks may interact to represent a larger behavior. For example,
in a RISC processor, small tasks, such as register file reads and writes, ALU
computations, etc., represent behaviors required to execute a complete instruction.
When these tasks are collected and organized appropriately, their collective
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behavior may be viewed as a larger task representing behavior of a single RISC
instruction.

A collection of interacting tasks, calledc@mposite task is also a task albeit
at a higher level of abstraction. It falls within definition 2.2 for a task as it accepts
and produces operands, requires resources, and exhibits sequential behavior.
Furthermore, a composition specifies a particular organization of tasks and task
interaction. This particular organization defines a behavior in much the same was
as a control/data-flow graph does for traditional scheduling. Loosely, a composite
task is a set of tasks and a set of task interactions. Before formally defining a
composite task, it is helpful to define and describe how tasks may interact with
each other.

2.3.1 Operand Dependence

Fundamentally, tasks accept and produce information. Task interaction is when
one task accepts information produced by another task. This is an operand
dependence as the acceputepend®n the producer’s information.

Definition 2.4 An operand dependencds defined as = (f, a). The Boolean
expressiorf is written in terms of produced operangs] P, from tasks in the
composite task. The variabéeis a single accepted operarad] A, for some task
in the composite task. Whdis true, the required operaralis available. Whefhis
false,the required operaralis not available.

A novel aspect of this operand dependence definition is the Boolean expression
f. If f consists of just a single operapgdthen this operand dependence reduces to a
simple data-flow graph data dependency edge. Sinwey be an arbitrary Boolean
expression of operand existence variables, considerable flexibility is added. For
instance, the operand selection that occurs typically at a CDFG join may be
expressed. A task might depend on operarfd*”¢Cin some cases but operand
info"°SPeCin other cases. The Boolean expression for this might look like
info*P*°tinfo"® = 1 + info"°SP*Ttinfo"® = % whererinfo'@=1 andrinfo"32 are
two separate operands whose existence indicates different control cases. Operands
rinfo¥@1 and rinfo¥@2 are said toguard operandsinfoSP€C and info"SPEC
respectively. As another example, there may be two legitimate sources of some
operand and the accepting task should use whichever one is available and
convenient. This nondeterministic alternative might be expressed as
inf 0°°""°® 4 inf 0°°""°® whereinfos°U® andinfos°U€ are two equivalent yet
alternative instances of the required operand.

2.3.2 Control-Dependent Task Interaction

Most high-level behavioral descriptions require control-dependent execution
and/or interaction of tasks within a composition. A decision as to what tasks to
execute or what information to use is made based on the value of some operand.
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For instance, depending on the decoded instruction in a RISC processor, the final
write back task may or may not be required. Hence, this write back task execution
is control dependent. Control-dependent execution of a task requieesk auple

while control-dependent selection of an operand requires a guarded operand
dependence expression.

Definition 2.5 A task tuple is defined ast( cb). The variabld is a task as in def-
inition 2.2. Boolean expressiab is written in terms of produced operangd,] P,
from tasks in the composite task. Wheis true, the task is required for success-
ful completion of the composite task. Whehis false the task is not required for
successful completion of the composite task.

Consider the composite fragment shown in figure 2.2. The tasks on the left
belong to the control block@=0 while those on the right belong to the control
block d"@~1, The tasks on the bottom and top belong to the control block
dva=0+qval 55 they accept or produce operands in either control case.
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Figure 2.2 A scheduling problem fragment with control blocks

An operand within a control block expression is still viewed as information and
hence is included in definition 2.1. However, it is sometimes necessary to
distinguish between several values of a control operand and not just its existence or
nonexistence. As described in section 2.1, all necessarily distinct values may be
represented as unique operands. Consequently, each value of a control operand
may thus be represented by a unique operand.

With these preliminary definitions completed, it is possible to formally define a
composite task.
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Definition 2.6 A composite taskis atask as defined in definition 2.2. Aom-
posite taskis also acompositiondefined byC = (T, E). Each {, cb) (I T is a task
tuple as in definition 2.5. Eaahl] E is an operand dependence as in definition 2.4.
An operand dependence exists for every accepted input opexand, of every
taskt 0 T in a composition.

Definition 2.7 A control-dependent composite taskis a composite task in
which the dynamiwalueof some operand alters behavior.

2.4 The Scheduling Problem

A scheduling problem is not a composite task, but rather the question of what
is a correct and desirable sequential behav@y,for a composite task. A
scheduling problem asks the important question, “What finite state machine
controllers exist which will execute this collection of tasks in acceptable time yet
require reasonable hardware and datapath?” Although answering this question is
potentially intractable, ABSS provides techniques to solve problems of reasonable
size exactly while also providing a route to higher abstraction for very large
problems.

A scheduling problem asks what are correct and desirable sequential behaviors
for a composite task given internal tasks that interact through operand
dependencies, exhibit their own sequential behavior and contend for resources.
Furthermore, other arbitrary sequential constraints may be imposed to constrain
how internal tasks interact or how a composite task interfaces externally.

Definition 2.8 A scheduling problem is defined by the three-tuple
SP=(C,R,Q. The setC is a composition as in definition 2.6. Each
(bound T,) O R is an ordered pair where natural numib@undis the maximum
permitted concurrent uses of classesources and, U C.T s the set of all tasks
requiring a class resource at some tim& represents a set of additional sequen-
tial constraints which may represent external protocols or constrain how several
tasks within the composition must interact. A solution to the scheduling problem is
a correct and desirable set of sequential behaviors suitab{@ fbcomposite task

that observe all constraints of a scheduling problem.

As stated, solutions to the scheduling problem are sequential behaviors suitable
for Q [0 composite taskin ABSS, solutions, as well as all other sequential
behaviorsQ, are represented as nondeterministic finite automaton. For modeling
purposes, this entire nondeterministic finite automaton may be used. For synthesis
purposes, a deterministic finite automaton contained within the nondeterministic
solution must be extracted. Solutions observe all internal task sequential behavior,
operand dependencies, hardware concurrency limits and additional sequential
constraints. A desirable solution strives to satisfy other objectives such as
minimum execution latency for the composite task. For the RISC example, the
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scheduling process determines correct minimume-latency sequential behaviors for
several concurrently executing RISC instructions.

A scheduling problem has a potentially infinite number of solutions. Suppose
that a scheduling solution takedime-steps. It is often possible to add a delay at
some point in the schedule and thus requié& time-steps. In this way, an infinite
number of solutions may exist which are encapsulated via nondeterminism of the
ABSS formulation. Alternatively, suppose that a scheduling solution for repeating
behavior produces an intermediate operandt some point in the schedule. If
dependency constraints permit, this schedule may produce the next iteration
instance ofo, called 0%, while o! is still in use. Indeed, it may be possible that
schedules exist whem (possibly infinite) iteration instances of operam@re in
use. In another case, a valid yet impractical scheduling solution might recompute
the sameiteration instance of intermediate operamdd infinitum ABSS models
schedules as instances of finite state automata and hence must bound these
potential infinite state situations.

Once scheduling solutions meeting certain objectives are found, a composite
task is completely defined --i® is specified. This composite task itself may be
composed with other tasks and scheduled at a now higher level of abstraction. In
this fashion, very large tasks, represented as a hierarchy of refinement, may be
described. A task’s sequential behaviQ, at any level of this hierarchy, is the
vehicle of refinement. The scheduling process communicates refinements across
hierarchy levels.

2.5 An Overview of ABSS by Explicit Example

To provide an example of how ABSS works, an ABSS automaton model is
presented explicitly. This example is not representative of all ABSS capabilities.
Its purpose is to highlight what is at the core of ABSS models while ignoring, for
now, other important considerations such as protocols and control-dependent
behavior. In practice, all ABSS models are implicitly and efficiently represented
with Reduced Ordered Binary Decision Diagrams, ROBDDs [16][48][90][93].

rv2 =0;
while (TRUE) {
i0 = read();
i1 = read();
i2 = read();
rvO=1i0 +il;  // Task vO

rvl =rv0 + rv2; /| Task vl
Figure 2.3Example looping behavioral description
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Figure 2.3 is a looping pseudocode behavioral description which may be cast
as a scheduling problem. For each iteration of the loop, the subsystem
implementing this behavior reads three input values and writes one result.
Furthermore, the result of the multiplicationv2 , is required by an earlier
addition and hence a operand dependence between different iterations of the loop,
aninter-iteration dependency, exists. Consequent2 must be initialized upon
entering the loop.

i0 11
/
\Y \Y - i0 i
add V0 add_vO=( (i0, i1), (rv0),
\/ (ALU, 10 Port, 10 Port),
O (Single time-step) )
\4 \4
add vi1
g add_ vi=( (rvO, rv2), (rvl),
rvi
VY (Single time-step) )
mult_v2

\

mult_v2 =( (i2, rvl), (rv2),
(Multiplier, 10 Port),
(Single time-step) )

SP=( ((add_v0, add_v1, mult_v2),
Figure 2.4An ABSS specification of figure 2.3’s behavior

Figure 2.4 shows both graphically and textually how figure 2.3's behavior is
specified as an ABSS problem. Read and write events and associated data
dependencies are not represented as separate tasks but rather as resource
requirements in this particular specification. Input and output operands are
assumed to be unbuffered. Hence, external read and write events occur when input
and output operands are required or produced by tasks. Finally, for brevity, the
control blocks for each task tuple are suppresseétHas they are all don’t care for
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this control-less example. Also, the sets of tasks requiring a resotycease
suppressed as they may be inferred from the individual task specifications.

Correctly scheduling this DFG requires assigning each operand, and hence task
in this case, to a time-step while observing several criteria. First, all operand
dependencies must be observed. Second, resource bounds, such as one available
adder or maximum four simultaneous external data transfers, must be adhered to.
Finally, a scheduling objective, such as latency minimization typically guides
schedule selection.

If one single time-step adder, one single time-step multiplier and three
simultaneous external 10 transfers are allowed, then the example’s only minimum
iteration latency schedule is shown in figure 2.5. Althoughdbakay or required
time-steps for a single loop iteration, is three, ttegation latency or time-steps
between successive loop iterations, is only two time-stepisis loop windingis
possible because operands and tasks from successive iterations are allowed to
overlap as seen with task® andvO and hence with operands®2 andrvO .

vO vl v2
vO vl v2

vO vl v2
1 2 3 4 5 6 7
Figure 2.5Minimum iteration latency schedule

ABSS constructs a composite modeling automatd@V& , that encapsulates
all solutions for a given scheduling proble®P, subject to problem and model-
imposed constraints. For this example, the desCddiA is explicitly shown in
figure 2.6. Eachiransitionin this nondeterministic state graph represents a time-
steff. Task activities are assigned to time-steps and are identified through
transition labeling. The distinction between successive loop iteratioiteration
sensdas made with the symbol *~'. If a task activity is labeled with no ‘~’, such as
add_vQ thenadd_vO-~represents the same task activity in the successive iteration
and vice versa. For instance, the transition from state 100 to state 001 is labeled
add_vOand mult_v2~as these two tasks from successive loop iterations occur
during this transition time-step.

While transitions denote task activities, states encode in which sense operands
currently exist in the system. The existence/nonexistence truth value of any single
operand is evident from a state’s encoding. In the example, state vector bits are
orderedrv2, rv1, rvQ To illustrate, consider the transition from state 100. The one
indicates that operand/2 is known (present) in the regular iteration sense but
unknown(not present) in the ‘~' iteration sense. Likewise, the two zeros indicate

3. Minimizing iteration latency in this case is equivalent to maximizing throughput.
4. A time-step typically corresponds to a synchronous clock period but may be interpreted
as any integral time unit.
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Figure 2.6 The example’s explicit CMA
that operandsvl, rvO areknown(present) in the ‘~' iteration sense bumknown
(not present) in the regular iteration sense.

Any path in thisCMA represents a valid execution sequence of the behavior.
Every transition belongs to some path and is hence a step in some valid execution
sequence. Consider the transition from state 100 to state 001. Since op&résnd
knownin the ‘~’ iteration sense, and an 10 port is free to réae the taskmult_v2
may execute and does so during this transition time-step. This task produces the
next iteration result of operanma2 which is indicated by the ‘0’ in thev2 position
of the state transited to. Likewise, since the limit of three 10 ports has not been
reached, operand8 andil may be read and the tagkid_vOis allowed to execute
and produce a newO result operand.

All valid execution sequences of a scheduling problem, including sequences
which arbitrarily stall, are modeled by @MA. These sequences observe all
constraints, such as resource utility limits, included as part of the scheduling
problem. Given such a structure, it is possible to find subsets of paths with specific
properties. As an example, minimum iteration latency repeated executions of the
loop are represented by shortest cycles. In figure 2.6, the minimum iteration
latency schedule is highlighted with dashed edges. Two iterations (for both
iteration senses) are scheduled in one complete traversal of this cycle. A loop
initialization sequence is a shortest path from state 000, where no information is
known to entry of the solution cycle at state 001. Symbolic exploration, described
in chapter 5, finds such paths meeting a scheduling objective, if they exist. These
paths may then be synthesized into a finite state machine controller.

A CMA s built through symbolic composition as described in chapter 4. The
composition process insures that all scheduling problem tasks interact in a causal
and concurrency-bounded manner. The pieces of this composition are also
nondeterministic finite automata and are calleadeling NFAMA . They typically
model the sequential behavior of one task in the scheduling problem. Chapter 3
describes howlA are specified.
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2.6 Summary

This chapter first defined terms important to the ABSS problem definition.
Information was defined as typeless and often valueless operands. Information is
represented by Boolean variables indicating the information’s existence or
nonexistence at some time-step. Tasks were defined as digital subsystems that
implement some desired piece of behavior. Tasks accept, process and produce
information. Furthermore, tasks require specific hardware resources, which exhibit
constrained sequential behavior, for implementation. Next, a composite task was
defined as a collection of interacting tasks. With a composite task, a natural
hierarchy of refinement and route to abstraction is provided. After the concepts of
information and tasks were defined, the ABSS problem was formulated as
determining correct and desirable sequential behavior for a composite task.
Hardware utility limits as well as additional sequential constraints were included
in the problem definition. Control-dependent scheduling was shown to fall within
the definitions given so far provided that actual values of ‘control’ operands are
distinguished. Finally, ABSS solutions were introduced by way of example. An
implicit nondeterministic automaton model calle@€MA efficiently encapsulates
all valid execution sequences (schedule solutions) of the ABSS problem.
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Chapter 3

Specifying Task Behaviors: MA

The fundamental building blocks in ABSS are nondeterministic finite automata
called modeling NFAor MA. An MA’s sequential behavior captures the local
sequential behaviors possible or allowed when implementing oné, taSkC.T,
from a scheduling problengP In this way, a task’#ocal timing constraintsQ, are
specified via itsMA. Furthermore, a task’s operands, satsnd P, as well as
resource requirements, sBf are mapped to states and transitions of NdA
through a labeling system. Every task in the scheduling problem is modeled by its
own instance of amMA. In other words, to represent the entire behavior of the
scheduling problem, aewMA s instantiated for each task. This is a fundamental
departure from other symbolic modeling techniques as primbghavior(use of
abstract resources) rather thanplementation(actual hardware resources) is
modeled. Finally, as related to the RISC example, specifildgmay be thought
of as specifying the sequential behaviors of atomic hardware resosessuch as
register file reads and writes, ALU computations, memory accesses, etc.

Once every task from a scheduling problem is modeled bylAn all taskMA
are composed into a larger compogvé called aCMA . ThisCMA is refined to
encapsulate preciselgll valid execution sequences of the scheduling problem.
Hence, aCMA represents all correct sequential behaviors of a composite task.
Finally, aCMA may be implicitly explored or further pruned to determine system
execution sequences or schedules with desired qualities.

This chapter focuses on specifying variddé . As all MA are fundamentally
nondeterministic finite automata, they inherit the infinite language and
correspondence to regular expression’s of all NFA. For example, figure 3.1 shows
one possible NFA construction which encapsulates the regular expression (a*b*)*.
Although this represents an infinite number of infinite sequences, it is still

1. When tasks become too complicated, sewdfalmay be composed to model one task.
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compactly represented with two states and four transitions. It is impractical to
define entirely the descriptive power and general applications of a NFA
representation. Instead, the intent of this chapter is to demonstrate how a NFA
representation may be used to model sequential behaviors of system tasks that are
important to a digital system designer. Typically, designers strive to simplify
subsystem tasks, interfaces and protocols in practical design. Because of this, only
a handful of explicit states and transitions are usually needed to specifylany

Once anMA is specified, it is kept in a library so that it can be reused easily.
Although smallMA are often specified manually, a key power of ABSS is the
ability to compose maniWA and correctly represent all valid sequential behaviors

of truly complicated and large composite tasks.

o
Figure 3.1A possible NFA construction for regular expression key*

This chapter is organized as follows. First, a basigclic MA is introduced
and a formal definition of aMA is provided. Examples and techniques for several
more complicated and descriptii®A are presented within an acyclic framework.
Second, these acycIMA concepts are generalized and extended ¢gcic MA
representation. Finally, specific considerations for modeling control are covered.

3.1 Acyclic MA

A basic MA might specify the sequential behavior of onmse of a
combinatorial ALU. Implementing this task requires two input operands,
opa opb A, at the beginning of a clock cycle and produces a result operand,
opcU P, by the end of the clock cycle. Furthermore, one ALU hardware resource
is requiredalu O R. Figure 3.2 shows the graphical representation of this task and
its expected sequential behavior. Figure 3.3 shows a sparsely labded
representing this sequential behavior. Execution begins in state(s) labeled
opc unknownlf opais presentppbis present, and an ALU resource is available,
this machine may nondeterministically choose to transit to state(s) labeled
opc knownIn general, nondeterminism allows BfA to delay execution in favor
of anotherMA when in a composition. This enables full context-independent
exploration of the solution space and hence exact results.

alu busy
opa required
opb required
opc produced

opC
unknown
S0

Figure 3.3An MA representing an add task
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opa opb

\ [ \ L
\Y% \'

Add
opa, opb y A R_opc
o\f)c registered registered

Figure 3.2An add task and expected sequential behavior

clock

Several properties of figure 3.3'MA are important to note. First, a
synchronous system is assumed with clock-period activity and duration
corresponding to alMA transitions (not states). The transition labe&dd busy
requires and occupies an ALU resource for #ire clock period. Also, the
transition labelopa required opb required andopc producedndicate that these
communications occur sometime during the clock period. For this example,
opa requiredand opb requiredoccur at the beginning of the clock period while
opc producedccurs towards the end of the clock period. On the other hand, states
correspond to system knowledge present at a clock edge. The state labeled
opc knownindicates that operanopcis registered and available for use. Second,
this particular model represents an acyclic computatiompf In this acyclic
model, operan@dpcmay be computed only once and in fact persists forever in the
system.

Real systems contain tasks with more complex sequential behavior than this
example. FortunatelyylA are generalized easily to represent complex tasks. Since
designers strive to simplify subsystem interfaces and protocols in practical design,
only a handful of explicit states and transitions are typically needed to specify
subsystenMA . When behavior becomes too complex to specify with a handful of
states and transitions, the behavior can often be decomposed into interacting
simpler tasks represented by sevavBh and then composed into a larger more
complicatedCMA as described in chapter 4.

3.1.1 Labels, Notation and Definitions

A task’s operands, sefsandP, and resources, sBf as well as other externally
important information are mapped to KA with a labeling system. In section 3.1,
the labelsalu busy opc unknownopc knownopa requiredandopb requiredwere
introduced. Table 3.1 lists and describes a subset of the most commonly used
labels. Labels consist of two grammatical parts:saBJECT followed by a
PREDICATE A valid SUBJECTIs an operandA andP), a resourceR) or the word
task which is a generic reference to the behavioral task modeled bAann the
table, operands are represented by the generic nafoebut are eventually
replaced with unique operand names as specified in taskAsats P. Likewise,
resources are represented by the generic rrastaut are eventually replaced with
appropriate resource names as specified in tasR.sEkamples of resources are
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ALU, multiplier, busl, etc. Currently supportePREDICATES are defined in
table 3.1. APREDICATES purpose is to describsuBJECT properties. With this
background, it should be clear that the lab& knownidentifies operandvO has
been produced in the system and ladlel busyindicates that an ALU is currently
occupied.

Table 3.1: Label definitions

Label Description Applied To
info known The operandnhfo has been produced in the system. State(s)
info unknown The operandhfo has not been produced in the system.  State(s)
info accepted The operandhfo has been accepted. State(s)
info stored The operandhfo is occupying storage. State(s)
info resolve The operandhfo is resolving to multiple values. State(s)
task start The task has yet to begin execution. State(s)
task final The task has completed execution. State(s)
info required The operandhfo is required. Transition(s)
info produced The operandhfo if produced Transition(s)
info forget The operandhfo is forgotten. Transition(s)
res busy A resourceaesis busy. Transition(s)
task bypass The task is bypassed to its final state(s). Transition(s)

Although table 3.1 describes commonly used labels, a designer is free to create
additional labels. ConsequentMA states and transitions may be interpreted in
any way a designer chooses. In genefdlA states correspond to system
knowledge present at a clock e&wd should receive labels which reflect this.
State labels such asfo unknown info knownand info acceptedare historical
labelsas they provide a record of past events. State labels suficestoredand
info resolvearecurrent labels as they identify current information availability. On
the other handMA transitions correspond to system activity during a clock
periof and should receive labels which reflect this. As examples, the label
info requiredimplies thatinfo was communicated to hardware implementing the
task, and the labeks busyindicates a particular hardware resouresis required
and occupied during this clock period. FinalMA state encoding and labels are
distinct. In fact, one state or transition may be referenced by multiple labels and
one label may reference multiple states or transitions.

Specific notation, based on this labeling system, may be used to describe
transitions and states of &dA . The notationSis reserved to represent a set of
states. The notatiof,,e represents a set of all states referencethbgl. A single
state is denoted as A single state referenced ligbel is denoteds,pe. Likewise,
the notationA is reserved to represent a set of transitions. The notajgp,
represents a set of all transitions referencedagl. A single transition may be

2. This may be a time-step edge if finer synchronous granularity is used.
3. This may be a time-step period if finer synchronous granularity is used.
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denoted asd. A single transition referenced byabel is denoted d5pe;
Alternatively, a transition may be denoted asd() wheres is thepresent stateor
predecessor argl is thenext stateor successor. When referring to all transitions
to or from a set of stateS e, the notations (—Spe) and Gapep —) are used
respectively.

Definition 3.1 A modeling NFA is defined by the seven-tupl&IA = (S A, |, R,

L, LS LT). Sis a set of statef\:S— Sis the next state function or transition rela-
tion. In some casegy may be patrtitioned into two phasesiand ANl | js

the set of operandsfo [ I, produced, accepted or constrained external or internal
to anMA. When a precise value of an operaimdo must be distinguished, the
notationinfo"® is used, where the meaningioill be made clear from the prob-
lem contextR s the set of all resource types (function units, buses, local registers,
etc.),resd R, which may be required in production of &A’s operandsL is the

set of all labels|abel J L, used in arMA . LSis a family of labeled sets of states.
Sabel I LS where S, S and is the set of states referencedlalgel. LT is a
family of labeled sets of transitionAj e U LT WhereA 5 O A and is the set of
transitions referenced bgbel.

Definition 3.2 A path in an MA is a potentially infinite sequence of states,
(s, S S, -..), such that for each successive pair of staes. j [ A.

3.1.2 Non-Pipelined and Pipelined MA

Figure 3.4 shows a labele®A representing the sequential behavior of a
2 operand in/1 operand out 2 time-step non-pipelined task. Concretely, this might

opa required
opb required
alu busy

0opC
unknown
S00

0opC
unknown
So1

Figure 3.4An MA representing a 2 time-step add task

model an addition task implemented on an ALU hardware resource requiring two
clock periods. Once the required input operands are present, this machine may
nondeterministically choose to begin a sequence that eventually leads to the output
operand being known after two transitions. Also, this sequenc&enown
requires that an ALU resources is occupied for two consecutive transitions.
Although not shown in figure 3.4, states SO01 and S11 are also labeled
opa acceptedand opb accepted.In general, St accepted iNCludes all states
sequentially following Ajnto required  Sinfo known INCludes all state sequentially
following Ajnfo produced@Nd Snfo unknownincludes all state sequentially proceeding

Ainfo produced

Figure 3.4 may be modified easily to represent the sequential behavior of a
2 operand in/1 operand out 2 time-stpjpelined task. Instead of twaalu busy
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labels, a singlalu entry busyabel, as shown in figure 3.5, throttles the number of
alu tasks initiated during any time-step. Allu entry busylabels are implicitly
limited to a maximum concurrent bound during composition. In this way, non-
stallable pipelined behavior is simulated. Through the use of additMAaktate
and appropriatdMA transition labeling, non-pipelined and pipelined behavior of
various depths may be represented.

opa required

phreses TN o proices £

S01

0pC
unknown
S00

Figure 3.5An MA representing a 2 time-step pipelined add task

Given these more descriptiA examples, several general properties of an
MA may be highlighted. First, although not explicitly labeled in the figures, there
are well defined start state(s) and final state(s) in an aclthc A start state has
no knowledge of any information produced by the modeled task. A task begins
when transiting out of a start state. For & in figure 3.5, the start state is S00.

In general, the set of start states are referred t8.88 <ot A task completes at a
final state. For a task to complete, all desired information must have been
successfully produced. For théA in figure 3.5, the final state is S11. In general,
the set of final states are referred to §gsk finat FUrthermore, there are
nondeterministic paths which allow states Sy start OF Sask final 10 idle
indefinitely. The nondeterminism &, start@llows anMA to delay its task in
favor of another MA’'s more critical task when in a composition. The
nondeterminism ofS,¢k fina S€Quentially records that this task has completed.
Finally, paths fromS,sk startt0 Sask finaliN @n MA represent a task’s allowed or
imposed local sequential behaviors.

3.1.3 MA with Alternatives

Because arMA is nondeterministic, it easily encapsulates alternatives. For
example, some scheduling problem task may be implemented by a three time-step
multiplier or by two executions of a single time-step ALU. This freedom may be
directly specified in aiMA as shown in figure 3.6. Nondeterminism is exploited to
provide two (or more) paths frof sk startt0 Sask final EACh alternative path may
have a different sequential behavior and typically requires a different set of
hardware resources. The better choice, if one is better, is discovered during
exploration of the compositich.

4. Alternative paths should not be confused with control cases (section 3.4). Alternative
paths offer multiple possible implementations wharly oneneeds to appear in a final
solution. On the other hand, control cases offer multiple possible choicesallhere
choices must appear in a final solution.

28



opa required
opb required
mult busy

0pC
unknown
S010

opC
unknown
S011

mult busy

mult busy
opc produced

0opC
unknown
S000

alu busy
opc produced

opa required
opb required
alu busy

0pC
unknown
S001

Figure 3.6 An MA representing alternative task implementations

3.1.4 Aggregate MA

It is possible to specify atMA which may require several fundamental
hardware units and implement a more constrained sequential behavior. For
instance, a multiply and accumulate (MAC)=axb+cxd, is a commonly
implemented task which requires two multiplier uses, one adder use and involves
multiple operands. A possibgIA representing this task is shown in figure 3.7.
This MA requires operand pairs a,b and c,d to be presented at successive clock
edges yet allows either ordering. A three time-step pipelined multiplier and a two
time-step pipelined adder are assumed. After six time-steps, the result operand,
opr, is produced. ThisMA trades scheduling freedom for less state as well as
datapath guidance. By imposing successive ordering on the input operands and
forcing the add to begin immediately when its input operands are available, several
constrained MAC datapath elements may be inferred.

opc required
opd required
mult entry busy

opa required
opb required

opr produced

opr
unknown
SO

opa required
opb required
mult entry busy,

opc required
opd required
mult entry busy

unknown
S4

unknown
S6

Figure 3.7An MA representing an aggregate MAC

Another MAC datapath element might consist of a non-pipelined two time-step
multiplier and a single time-step adder. Furthermore, the timing of the last multiply
stage may be such that it may tieained with the add. Figure 3.8 shows what an
MA representing this sequential scenario might look like. Notice that the transition

5. Both the multiply and add occursequencavithin the same time-step.
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(S5,S6) is labeled with botalu busyandmult busy This simply indicates that for

this transition to occur, both an aknd a multiplier are required at some time
within that time-step. This may be interpreted as chaining or as two independent
but necessarily concurrent resource uses. Hence a designer is allowed to decide the
exact physical meaning afs busylabels and the correct interpretation.

. opc required
opa required

_ opd required opr
opb required mult busy mult busy known
mult busy bus busy
mabus busy
bus busy bus busy mult busy
bus busy alu busy

mabus busy
mabus busy

opT opa required

unknown opc required opb required bus busy
; mult busy 'opr produced
SO opd required bus busy
mult busy mult busy bus busy
bus busy opr

mabus busy

bus busy unknown

S4
Figure 3.8 An aggregate MAC task with chaining and busses

Figure 3.8 highlights some additional usesre$ busylabels. The transition
(S5,S6) is also labelethus busy This assumes that the add result must be
communicated over one of possibly several busses to a register. Hence, one use of
this bus resource must be counted. Also, the transition (S0,S1) is labeled with two
bus busyabels. This assumes that a multiplication requivesinput operands and
hence must occuptyvo busses to begifi Al res busylabels have weight one and
multiple res busylabels are attached to the same transition to create larger weights.
The flexibility and potential ofres busy labels enables specification of
sophisticated concurrency constraints. For example, complex resource hierarchies
and partitions may be specified. These are meaningful in the context of a
composition and therefore are addressed in chapter 4.

3.1.5 Multiple Output MA

So far, all MA have modeled the production of just one output operand,
Pl = 1. An MA with multiple output operands may be specified. As an example,
figure 3.9 shows aMA for a three time-step divide task which produces quotient
and remainder output operands. Although it is possible to specify multiple output
operands, it often becomes state costly to represent all desired permutations of
when and how long various output operands lanewn For this reason, it is
typically easiest to partition tasks witR| >1 into sevelvih , each modeling the
production of just one output operand. When composed, thesecan still be

6. MAC internal transfers are via the multiplier-to-adder bus netwaakus
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opa requ::red opq known opr unknown
opb required opq produced
divide busy divide busy

opgq, opr
unknown
S1

opgq, opr
unknown
SO0

Figure 3.9An MA representing a divide task with two output operands

sequentially related through use of a sequential constraint or protocol as described
in section 3.3.

3.1.6 Recomputation and Memory

TheMA described thus far have had persistent memory. Once a task computes
an output operand, it is never forgotten. It may be that register storage is limited
and it is preferred not to store a result but rather recompute it when needed.
Figure 3.10 shows aMA with the option tdforgeta result operand. This transition
forces theMA to S;sk start@nd the task must be reimplemented to recreate the
result operand. If allMA in a composition havedi, forget transitions, then
considerable freedom is added and hence solution space expansion occurs. This is
especially true if alMA is allowed toforgetunder any circumstance --even when
the result operand was never used! Hence, ta\y§g rorgettransitions effectively,

a designer should only specify them when and where potentially helpful.

Furthermore, when constructing the compositi@s, forget transitions should
only be enabled after at least one child task has accepted the result operand.

opa required
opb required

alu entry bus OpC ™\ opc produced @
opc forget

unknown
Figure 3.10An MA representig a 2 time-step pipelined add task with forget

opC
unknown
S00

SO01

Register usage is another important resource constraint. This may be modeled
either in anMA or through interpretation of a composition. Figure 3.11 shows an
MA (with label suBJECTS suppressed) which explicitly differentiates between
scheduling historyjnfo known and physical storagenfo stored” Modeling
physical storage in arMA requires additional state and hence leads to
compositions with additional state. This expense can be avoided by enforcing
physical storage constraints at the composition level. In a compositiomf@an
known label may be inferred to imply physical storageinffo has yet to be

7. Only one execution of the task is allowed here. Wit forgettransitions §xt known
states may be directly interpreted as implying physical storage and another means of
determining scheduling history must be utilized.
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accepted by children tasks. Operand acceptance is indicatednfotlaccepted
labels. The details of this preferred technique are presented in section 4.1.5.

produced
required
required
busy

stored
S1

Figure 3.11An MA with explicit physical storage

3.2 Cyclic MA

With looping behavior, a task is scheduled multiple times and iteratively
produces result operands. For instance, a RISC processor executing an instruction
stream must repeatedly perform a memory read task to access every instruction.
Unfortunately, keeping track of multiple coexisting result operands for one
particular task can quickly become complex and costly. In fact, it may be that
unbounded state is required for full loop exploration. Consider a loop which is
unrolled to obtain as much parallelism as possible. Some tasks may produce an
infinite number of result operands concurrently if this parallelism is taken to its
limit. Specifically, for the RISC example, it is possible ttak instructions are
prefetched from memory and stored locally before any one instruction is executed.
This requires tremendous local state and offers little practical benefit.

ABSS bounds this complexity and cost in the formulation of a cydii. At a
minimum, two successively produced result operandsa@ah operand labeled
with ‘~" or an evenoperand requiring no additional label) must be distinguished.
This can be done with two separate acydé but will require additional state
and will not have a simple natural repeating behavior. Instead, two adyéliare
overlaid on one set of state encodings as shown in figure 3.12. By doing this, a
single state bit can distinguish betwekmown/unknowroperands in the odd or
even iteration sense for a one time-step task behavior. Furthermore, a naturally
repeating automaton structure results. Complexity and cost are bounded because
an operand may only exist in one iteration sense at any given time-step.Sgigce
known@NAdSnio~ knowrstates are mutually exclusive by construction, it is impossible
to have simultaneously knowledge of an operand in both iteration senses. The
“pigeon hole” analogy provides another way to think of this. A cybli& reserves
one pigeon hole per operand and each pigeon hole has room for one operand.
Finally, consider a RISC processor composition wireregister file read tasks are
modeled byn cyclic MA . Hence, only at most register file read results are ever
concurrently available. The sense, odd or even, of a particular register file read
result distinguishes whether it belongs to the current or previous instruction.

Two senses of information is the minimum needed to distinguish between
successive iterative results. It is possible to generalize to a larger number of
information senses but is not practical from the lobvB\ perspective. Suppose
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duced
Y omk” produce
unknown
S0 ~ required

~ produced

Figure 3.12Acyclic to cyclic MA transformation

three iteration senses were used. WA could be constructed which sequences
through three result operand instanceknown r~ knownand r# known As all
operand instances in aA are mutually exclusive by construction, this is no
better than the two iteration sense model which represents the same sequence as
r known r~ known r known More importantly, the two iteration sense model
requires less state.

What might be advantageous for some scheduling problems is if a éyélic
allowed multiple concurrent (not mutually exclusive) result operand iteration
instances. This could be achieved through direct specification ofMan
Unfortunately, as pointed out in section 3.1.5, multiple output opersiAd
specification quickly becomes complex. Instead, several (rather than one) single
result-operand cyclidVA are used to model each task when in a composition.
Consequently, additional modeling state is naturally included to represent result
operands from multiple concurrent instances of a faghis is analogous to
“unrolling the loop” in conventional methods. To give a specific example, a RISC
processor composition may represent execution of just one instruction. A pipelined
RISC processor executes several instructions concurrently although at different
stages. To model multiple concurrently executing instructions, a RISC processor
composition is duplicated so as to contain additional modeling state. The
duplication process is described in chapter 4. Finally, duplication is demonstrated
in chapter 6 to potentially improve solution quality at the possible expense of
greater scheduling complexity.

8. When additional modeling state is included in a composition, solutions belonging to
minimum state models are still implicitly covered.
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3.2.1 Duals in Cyclic MA

As with acyclic MA, cyclic MA are capable of representing complex
sequential behavior and requirements of tasks. The main difference is that a cyclic
MA contains two symmetric sequences, even and odd, of a task’s sequential
behavior. Figure 3.13 illustrates this for a two time-step non-pipelined function
unit. The top path (S00, SO1, S11) represents the sequential behavior for
production of an odd result operand. Input operands aeg|tiredin the odd sense
and then two time-steps later the result operandkaoewn Likewise, the bottom
path (S11, S10, S00) represents the sequential behavior for production of an even
result operand. These two paths, as well as the states and transitions along these
two paths, are symmetric by construction and are referred toluads. For
example, states SO0 and S11 are duals, states S10 and S01 are duals, transitions
(S00, S01) and (S11, S10) are duals, and finally paths (S00, SO1, S11) and
(S11, S10, S00) are duals. Although not shown in figure 3.13, states SO1 and S11
are labelednfo~ acceptecand states S10 and SO0 are label&d acceptedin
general,Sno acceptedincludes all states sequentially followinynsg required 2Nd
Shfo~ acceptedncludes all states sequentially followidghf,- required Finally, both

S'task~ start and Stask final include S00. Likewise, bOtrStask start and Scask~ final
include S11.

Figure 3.13A labeled cyclic two time-step MA

An acyclicMA may be transformed into a cyclMA by mirroring states and
transitions to form dual tasksaskandtask~ FurthermoreS sk~ starf@NdSask final
are overlaid on one set of states. Likewise 3Ly start@NdSask~ finai TheSE states
demark where one iteration of the tasks ends and another begins. Also, when one
task iteration ends, the next is ready to begin. Paths in a dyAicstill represent
allowed or imposed task sequential behaviors but now may regkatfinitum
More specifically, a cyclidA may be described as a connected nondeterministic
Blchi automaton (accepting infinite sequences) with two symmetric mutually
exclusive halves (duals). Finally, to clearly identify duals and simplify upcoming
composition exploration algorithms, encodings for dual states are assigned such
that a dual encoding may be found by simple bitwise complementation. For
example, the dual of a state encoded ‘1011’ would be ‘0100'.

Section 3.1.6 described how an acydWA is specified to model physical
storage and task result operand recomputation. This flexibility is not lost when
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specifying cyclicMA . Figure 3.14 shows a cycliglA which models a two time-
step task that allows result operand recomputation. A dashed line dividdgAhis
into symmetric halves. Task start/final states are SO and S7. A dyldicthat
models physical information storage may be specified in a similar fashion.

required
required
busy

required
N required
busy

bus
produced

~ required
~ required
busy

~ required
~ required

Figure 3.14An MA for a cyclic 2 time-step task with recomputation

3.3 Protocol MA

All MA discussed up to this point are specifications of task sequential
behavior, QU t O C.TO SR They model anticipated sequential behaviors of
hardware units implementing tasks. AMA may also specify sequential or
protocol constraints desired by the designer or required for external interface. Such
MA are elements of scheduling problem sequential beha@iar,SP TheseMA
constrain how several othdvlA sequentially interact. This can range from
governing how a few tasklA interact to how an entire composition must interface
to the external world.

A scheduling problem may represent a portion of a larger design that must
interface to the remainder of the design via specific 10 protocols. In this case, the
IO protocol constraints may be represented as seWfaland are elements of
QU SP. For example, suppose a designer knows that a subsystem must
communicate through one 10 port and alternate between input and output
transactions. Furthermore, an arbitrary delay is permitted between input and output
transactions. Figure 3.15 represents this sequential constraint\d& awhen 1O
protocol MA are composed and co-executed with other traditioh& ,
composition constraints ensure that appropriate lobE\ transitions are
synchronized across the composition. In this example, all K8k transitions
requiring an input operand via the 10 port must be synchronized injtht or
input~ requiredtransitions in this protocdA . Likewise for 10 port output.
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input~ reqwred output~ requ:red

10 port busy

input required
10 port busy

output required
10 port busy

Figure 3.15A protocol constrainkA

In other situations, the scheduling problem may contain a complicated internal
task which is not easily described with a sinlé\. Instead, several simpMA ,
each describing only the existence or non-existence of one of the task’s result
operands and callegperand MA?®, are co-executed with a sequentidh in the
composition. In this way, the sequentMA imposes the task’s correct sequential
behavior while the several operafdA keep track of information existence.
Although decomposing complex tasks into multipf\ may require more state
than a singleMA representation, it is not necessarily more expensive to represent
as a ROBDD. Furthermore, complex tasks may now be easily specified in
understandable small pieces yet be represented completely and in full complexity
when composed.

Sequential and protocol constraitA belong toQ [0 SPand constrain how
severalMA may sequentially interact. The cardinality QL] SPmay be greater
than 1. Thes®&lA do not represent tasks which consume and produce information
but instead regulate how information interacts sequentially in a composition.
Sequential and protocol constrailtA may be applied at varying scopes. The
simplest sequentidlA might constrain how two internal task or operavid are
sequentially ordered. A complex sequentdA might dictate how an entire
scheduling problem composition must sequentially interface to the outside world.
As an example, the RISC processor may require that a sequential reconfiguration
penalty is paid to switch from successive memory reads to memory writes and vice
versa. Finally, sequential and protocol constrai#t have labeled transitions and
states, drawn from table 3.1, that are synchronized with transitions and states in
otherMA during the composition process described in chapter 4.

3.4 Control and Multivalue MA

The MA discussed thus far have assumed that actual operahgs are
independent from system behavior. Hence, only the existence or non-existence of a
result operand, not its type or value, are modeled. Furthermore, no predefined
mutual exclusiveness of operands has been made.MAcimdependently models

9. OperandMA are single time-step acyclic or cycMA as shown in figure 3.12.
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sequential production of typically one or a small set of result operands. When
several MA are composed to represent system behavior, this operand
independence is still retained. Consequently, in a composition, potential for all
possible concurrent combinations of operand existence are modeled. Although this
does encapsulate all potential system behavior executions, it is an overestimation.

With control-dependent behavior, the assumption that actual operand values
are independent from behavior is not valid. The very name ‘control-dependent
behavior’ implies that control operand values do alter behavior. Hence, some new
MA , which does distinguish between some possible operand values, is needed. In
general, maintaining complete possible concurrency for all operahges is
potentially costly and not necessarily required. For example, the value of a
decoded RISC processor is necessary to select appropriate executions. On the
other hand, once an instruction is decoded, it refers to exactly one instruction and
need not represent multiple concurrent instructions. In this section, multivalue
MA, meeting these needs, are introduced.

3.4.1 Intuitive Multivalue MA.

A generic control structure may require a control operand with potential values
in the range (0,1,.n) which identify O ton possible cases of behavior. Figure 3.16
shows an intuitive acyclic multivalu®lA that models single time-step production
of a result operand required for this case statement. Rather thanflusnknown
andinfo knownlabels, labels identifying thenownoperand value are used. Since
the desired final system execution sequences must be deternthitie model
need not support multipleoncurrentvalues of this result operand. Mutually
exclusive states, each uniquely and typically logarithmically encoded, differentiate
betweenvalues of this result operand. Figure 3.17, is figure 3.16 transformed

info=0
known
S100

info=1
known

info
unknown

Figure 3.16An intuitive acyclic multivalue single-time st&pA
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through standard steps of mirroring and overlaying task start/final state(s) to create
a cyclic multivalueMA . Finally, as with regulaMA , multivalue MA only allow

one known operand instance at a time and are subject to the same ‘pigeon hole’
state bounds as discussed in section 3.2.

I unknown i=0 known
i~=0 known _ i~ unknown
S011 S100

D
m‘ fa
S010 {’ S101

Z

I unknown i=n known
i~=n know _ i~ unknown
S000 S111

Figure 3.17An intuitive cyclic multivalue single-time stéydA

As with a regulaMA , a multivalueMA may encapsulate complex sequential
behaviors and nondeterministic alternatives. This tends to be tedious and complex
as both sequential behaviors and all possible values of result operands must be
considered in tandem. To avoid this, a multivalMA is expressed as a
composition of twoMA. One MA specifies sequential behaviors and result
operand existence/non-existence but ignores result operand valuesAhgin
fact a regular cyclic or acycliMA as previously discussed in detail. The second
MA specifies result operand existence/nonexistence as well as result operand
values but no complex sequential behavior. TM#& is a single-time step
multivalue MA similar to what is shown in figures 3.16 or 3.17. During
composition, result operand existence/nonexistence for these Mo are
synchronized. This more understandable partitioned approach achieves the desired
sequentially complex yet multivalu®A. Consequently, only single time-step
acyclic and cyclic multivaluMA need be discussed.

10. The modeling technique uses nondeterminism. The modeled system is deterministic.
In a real systemafter an operand is computed, its precise value is known. Hence, there is
no need for multiple operand values to exist concurreattlgr computation. This does not
exclude speculation which presunadisor someoperand valuelseforeactual computa-

tion.
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3.4.2 Validation Issues and Local MA Solutions

When a multivalueMA is used, execution faeveryresult operandaluemust
be guaranteed. Consider if a particular control case is known to never occur, then it
need not be modeled as a distinct control operand value. Hence, by problem
construction, execution completion for every result operand value of a multivalue
MA is necessary. Also, if a particular result operand value does not differentiate
behavior, then it need not be distinguished as a unique case in a multMalue
Consequently, all multivalue operand cases are distinct, impact behavior in some
way and must be covered by some correct execution sequence of the system.
Finally, a collection of execution sequences covering all cases, calledsmmble
schedule must be causally compatible or valid. Validation is the process of
determining causally compatible ensemble schedules. It becomes important during
the exploration of a compositioBMA , and is discussed in detail in chapter 5.

To simplify validation, a local change, discussed here, is made to every
multivalue MA . Consider the behavior described in figure 3.18. There are three

if (c > 100)
res=a+b;
else

Figure 3.18Behavior to highlight validation issues

tasks to executeompare addandsubtract If only two single time-step ALUs are
available to implement these three tasks, a possible minimum latency execution
sequence iadd andcomparein one time-step. This covers tltempare truecase

and speculatés on theadd Thecompare falsease must be covered also and may
be done withsubtractand comparein one time-step. This execution sequence
speculates on thsubtract Although these two execution sequences form an
ensemble schedule (they cover etfimpareresult operand cases), the ensemble
schedule is not valid. The proposed ensemble schedule requires speculation of
both theadd and thesubtractas well as performing theompareall in one time-

step. This requires three ALUs and is hence infeasible. In chapter 5, validation
avoids invalid ensemble schedules by insisting that the following proposition is
always true: “At anysinglestate in any ensemble schedule occurbefprea case
operand isknown every possible case operand still eventually completes
execution.” Although the details of validation are left to chapter 5, validation is
facilitated by addingesolvelabeled states to all multivali@A .

Figure 3.19 shows figure 3.16 modified to includeresolvelabeled state,
Sinfo resolve T NIS New state is inserted betweBk, unknowr@NdSnfo knownsStates. It

11. To speculate on a task is to begin execution of a task before it is absolutely certain that
the result operand(s) will be required.
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Synced withinfo info=0
known

production transitions 3100

info
resolve
S010

info
unknown
S000

Control phaseJ
transitions

Figure 3.19A two-phase acyclic multlvalue single-time stdp

is a deterministic state and provides a checkpoint for validation to ensure that
execution sequences feverypossible operand value exist. Validation checks that
all st resolva€Xiting transitions still exist in a valid ensemble. When in a
composition, a constraint insures that the multivald&’s Siy¢g resolve OCCUTS N

sync withinfo production in the mated reguldiA. Figure 3.20 shows a cyclic
multivalueMA with stateSintg resolve@NdSinfo~ resolve

Synced withinfo~ Control phase
production transitions transitions

T unknown I unknown flda il
i i~=0 known i~=1 known =
i~ unknown Soul 2010 S000

- f iresolve

------- s101
Control phase Synced withinfo
transitions production transitions

Figure 3.20A two-phase cyclic multivalue single-time st

TheMA in figures 3.19 and 3.20 are also the first examplesatiple phase
MA . So far, a transition in aMA represents activity during a complete time-step,
typically a clock period. In a multiple phaddA, a transition still represents
activity during a complete time-step, but there maydiféerent setof transitions

40



for differenttime-steps. Imagine a clock period divided into two phases, data and
control. During the data phase, all activity associated with data production and
communication is handled. During the control phase, all activity associated with
actual operand values and control decisions is handled. Transitions belonging to
the data phase are shown solid while those belonging to the control phase are
dotted. A two-phase approach permits additionsgf, resoive States while still
maintaining a consistent synchronous view in all models. Finally, a two-phase
approach simplifies other control related issues such as task bypassing.

3.4.3 Control-Obviated Task Bypassing

With control-dependent behavior, some portions of the behavior are never
required. For example, if theomparein figure 3.18’s resolves true, then it is not
necessary to execute thgubtract. For acyclic MA compositions, a control-
obviated task may remain unexecuted. On the other hand, for cithc
compositions, control-obviated tasks must be force bypassed to the next iteration’s
task start state(SRask startO" Sask~ start If this were not done, confusion would
occur in a composition as to what particular iteration various control blocks were
executing. Furthermore, by bypassing control-obviated tasks, they are correctly
primed and may immediately begin speculative or nonspeculative execution of the
next iteration. Although task bypassing is a necessity for constructing a correct
composition, additional bypass transitions must be added aflfhespecification
level to facilitate this. Finally, although acycIMA compositions do not require
task bypassing, it does simplify composition behavior termination detection.
Hence, task bypassing is included for both acyclic and cydific which model
control-dependent behavior.

Figure 3.21 shows a two time-step pipelined task with task bypassing. A
Stask bypasdransition is added from any state whichnistin S,k finato Sask finat
More formally, Atask bypass™ (Stask finat Stask final) - All Agasi bypas®CCur during
the control-phase anolO are hence shown as dotted arcs. Furthermore, figure 3.21
also shows what other transitions exist during the control-phase for regular acyclic
MA . These transitions simply hold the current state during the control-phase so
that no change (other than an enabled bypass) may occur. Figure 3.22 shows a
cyclic MA  with task bypassing. Symmetric transition sef§gsk bypass@nd

opa required
opb required

Figure 3.21An MA representing a 2 time-step pipelined task with bypass

41



PR bypas\s‘m .

N "__Qy_pgs:s~

required~
busy

busy
produced~

required
busy

produced

' b)}pass~

R bypass~

Figure 3.22A labeled cyclic two time-step MA with task bypass

Atask~ bypassare added. These take any state ¢askor task~execution sequence
t0 Sask finalOF Stask-~ finalr€spectively.

3.5 Summary

This chapter described modeling NA®A , specification. Modeling NFA are
the base building blocks used to describe sequential production of a task’s result
operands. They are the atomic pieces necessary for a first composition. For
instance, sequential behavior for atomic tasks in a RISC processor such as register
file reads and writes, ALU computations, memory access, etc., are specified via
MA . As described, a designer manually and explicitly specifiedvi#@n as a
labeled nondeterministic state graph. This is kept relatively simple as only a
handful of states and transitions are used in any sifle specification. When
complexity becomes too great, a designer relies on and leverages the power of
composing severaMA. State and transition labels assign meaning to local
sequential behavior as wells as provide “hooks” for creating correct compositions.
Various useful types of acyclic, cyclic and multivalue (contrdffA were
illustrated and described.
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Chapter 4

Composing Modeling Automaton: CMA

Chapter 3 describes how the sequential behavior of one task in a composite
task, Q [0 composite task,is constrained and represented by a modeling
automatonMA.. In this chapter, sequential behavior is assumed to be assigned for
each task in a composition via itdA. All such MA are composed through a
Cartesian product step to create a new, larger composite modeling automaton,
CMA, which represents the as yet unknown sequential behaviors of the composite
task. The Cartesian product step is not sufficient to create a c@@iét. This
chapter describes how@MA is pruned through a series of dependency, capacity
and viability refinements. Furthermore, concurrency constraints are applied to a
CMA to limit available system hardware resources such as function units, busses
and local memory. After &CMA is correctly pruned, it representl valid
execution sequences of a composite task. It is possible to systematically explore
this composite model and determitestpossible execution sequences. FSM
controllers and datapath portions may be synthesized fro@M& path or
ensemble subset @MA paths. Finally, a prune@MA is itself anMA and may
be used in further compositions in a hierarchical fashion.

With regard to the RISC example, the end goal of composition is to create a
NFA that represents all valid executions of all instructions. This requires modeling
control-dependent execution as well as cyclic behavior. To reach this level of
sophistication, it is helpful to first discuss the composition process for simpler
scheduling problems. This chapter first presents the composition process for
acyclic data-flow scheduling problems. After this introduction, composition
differences for cyclic data-flow, acyclic control-dependent and cyclic control-
dependent scheduling problems are presented and discussed in that order.
Common constraint formulations for all types of compositions are generalized.
Finally, particularly efficientCMA construction and implementation techniques
derived both from experience and problem insight are described.
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4.1 Acyclic Data-Flow Composition
Consider the simple acyclic data-flow example shown in figure 4.1. This

i0 il
\ / \ /
A add_v0=( (i0, i1), (r0),
add_v0 (ALU, In Port, In Port),
\ (Single time-step) )
ro
i2
VY add vli=( (r0,i2), (r1),
add vi1 (ALU, Out Port, In Port),
A (Single time-step) )
rl
i3
v sub_v2=( (r0, i3), (r2),
sub_v2 (ALU, Out Port, In Port),
\/ (Single time-step) )
r2

Figure 4.1A simple acyclic data-flow example

composite task represents a behavior that requires four input operands and
produces two output operands. This problem is small enough that the minimum
latency scheduleadd_vO in time-step 1 followed byadd vl andsub_v2 in
time-step 2, is obvious. Note thatld_ vl andsub_v2 must followadd vO as

they depend on the result) , produced byadd vO. Each of the tasks in
figure 4.1 is represented by its oA in the composition as shown in figure 4.2.
TheseMA have labebUuBJECT that reflect operands and hardware resources in the
composite task. For example, there is a speddit for task add _vO which
requires input operand® andil , occupies an ALU resouréeand produces
result operandvO all in a single time-step. AAMA is created by first composing
theseMA and then applying pruning steps. The remainder of section 4.1 discusses
the composition and pruning steps with respect to this example.

4.1.1 The Cartesian Product Composition Step

A Cartesian product of figure 4.2's thr&A is shown in figure 4.3. There are
two important traits to note aboutGMA that are evident from this figure. First, to
form a true Cartesian product, state variables for eachNslare encoded with a
uniqueset of ROBDD variables in @MA . This is seen in figure 4.3's composition
state vectors. The composition state vectors require three Boolean state variables,

1. Bus busyabels are left out to simplify the figures.
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i0 i1 required
alu busy

r0 i2 required
alu busy

r0 i3 required
alu busy

Figure 4.2 AssignedVA for each task in the example
as each tasklA’s state encoding contributes exactly one Boolean state variable. In
fact, the composition state vectors are ordersdb{ v2 ,add v1,add vO }.
Second, because a true Cartesian product machine is created, MAtdakels or
associated properties are lost. Figure 4.3 shows transition and states with multiple
labels that identify specific tas¥A properties. These labels provide the necessary
references to subsets of states and transitions with specific properties required
during the composition pruning steps. Finally, although figure 4.3 is shown
explicitly, all CMA of meaningful scale are implicitly represented as ROBDDs.

Definition 4.1 CMA denotes the Cartesian product automaton of sewdral
and is itself arMA . Let M denote the set of aMA, m [ M, composing &MA..
Then a CMA =(SA,I,R L, LSLT) is composed asS=[]yymS and
A =[1mom MA where[] represents a Cartesian product. As witi\a# , A may be
partitioned into at least two phas@s@@andAc"l and is not necessarily single
valued.l = O,;ym.I wherel represents set union. Likewise = [, m.Rand
L=0Oy,uvm.L A labeled setS,pe LS for a CMA is constructed as
Sabel = Umom M- SapeiWhenm. S, ¢ €Xists. A labeled state s8¢ is created for
eachlabel U L foraCMA . The set union of alfy e forms the composition family
of setsLS Likewise, a labeled sef\4,o [ LT for a CMA is constructed as
Dapel= Umom MA apeWhenmA gpe) €Xists. A labeled transition sé,,e IS Cre-
ated for eacliabel O L for aCMA . The set union of all\ ;¢ Sets forms the family
of setsLT.

4.1.2 Basic Operand Dependencies

For a single operanihfo, each possible use offo must follow its creation. In
the RISC example, a result operand must be produced by an ALU computation

2. Dot notation was introduced in chapter 2, definition 2.3.
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r1 unknown
r0 unknown
S000

i0 i1 required
r0 i2 required
r0 i3 required
alu busy alu busy alu busy

i0 i1 required
r0 i2 required
alu busy alu busy

r0 i2 required
r0 i3 required
alu busy alu busy

2 unknowi
rl unknown
r0 known

S001

r0 i2 required
alu busy

r0 i3 required
alu busy

i0 i1 required
alu busy

r1 known
ro known
S011

r0 i3 required
alu busy

i0 i1 required
alu busy

i0 i1 required
r0 i3 required
alu busy alu busy

r0 i2 required
alu busy

r2 known
r1 known
r0 known
S111

r1 known
r0 unknown
S010

r0 i3 required

i0 i1 required
alu busy

alu busy

r0 i2 required
r0 i3 required
alu busy alu busy

r2 known
{ r1 known

| r0 unknown

K )

r2 known

r1 unknown
ro known
S101

r0 i2 required
alu busy
i0 i1 required
r0 i3 required

r0 i2 required
alu busy alu busy

alu busy

r0 i3 required
alu busy

i0 i1 required
alu busy

i0 i1 required
r0 i2 required
alu busy alu busy

r2 known
rl unknown
r0 unknown
S100

Figure 4.3 Cartesian product composition step for the example

before it may be written back to the register file. The Cartesian product shown in
figure 4.3 has transitions labeled required leaving states labele unknown

This violates the core of scheduling: operand dependence, which require@ that
may be used only if it exists in the system. These dependency violating transitions
and any subsequently isolated states are removed through dependency constraints.

As presented in definition 2.8 of the scheduling problem, an operand
dependencee [ C.E, pairs produced operand(s) with a consumption point. An

46



operand dependence is specified for every required input opexand, of every
task,t O C.T, in the scheduling problem. Operand dependency constraints apply
this information, operand dependence, toCMA model of the scheduling
problem.

A basic operand dependence is of the fotaskl.P.infotask2.A.infd. In the
basic case, the operand dependency’s Boolean exprdssiosists of just a single
operand.Task1s locally produced operaniahfo is solely required atask2’slocal
input operandnfo. This is equivalent to a data dependency edge in a traditional
DFG.

A single basic operand dependencé (taskp.P.infotaska.A.inf), is modeled
by the implication,

4
maAinfo requiredD (mp'$nfo known _) . (4-1)

In this implication,mais the accepting taskBIA while mpis the producing task’s

MA . This construct insures that any transition labeilefd required may only
occur if the required information is present in the system. The labeled state set
Snfo knownin the present state indicates that the required information exists in the
system. Another way to view this is that a present state lal®|gdnownenables

(yet does not demand) an information accepdpg, requireglabeled transition. Let

(e represent expression 4.1 for one operand dependeritiee refinement ofdata
foraCMA is,

n+1

AT = A" Lo (4.2)

el - Hhasic

Equation 4.2 only shows refinement&?20 CMA . All refinements are defined
on A%tand/orac" 0 while refinements of other sets of aBWA are implicit. In
practice, S0 CMA is never explicitly stored but always determined fitdm

Figure 4.4 shows figure 4.3 after all dependency violating transitions and states
are pruned. Now if a transition is label@dfo required it will only exit a state
labeledinfo known Hence, only execution sequences which satisfy dependency
conditions remain. In factall such valid execution sequences, even of infinite
latency, remain.

4.1.3 Alternative Operand Dependencies

It is possible that two sources for one operand exist in a scheduling problem.
For instance, some operandfo may be computed through multiplication or
repeated addition. In section 3.1.3 this same alternative was represented directly in

3. Other dependency constructions (Alternative, Resolved and Undetermined) will be
introduced.
4. In a ROBDD, implications may be built as1 g = pqg
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r2 known
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r1 unknown
rO unknown
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r0 known
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r0 i3 required
alu busy alu busy

Figure 4.4Dependency-constrained expli€iMA for the example

anMA. It is also possible to represent this alternative at the composite task level
by using severaMA. SomeMA represent the repeated addition behavior while
anotherMA represents the multiplication behavior. Two equivalef instances

are producedinfo?y ddSandinfoPy multilication pring the exploration process, a
winning alternative, if one exists, becomes evident. This type of nondeterministic
scheduling problem behavior has no equivalent in traditional DFG/CDFG
representations, but is somewhat similar to optimizing compiler strength-
reduction. In general, alternative operand dependencies are useful to represent a
single operand produced in several different ways. The precise difference between
alternatives is left to the designer. Some useful differences are behavioral (i.e.
algebraic transformation, etc.) and spatial (i.e. equivalent operand instances are
computed in physical design partition a or partition b [129]).

A singlealternative operand dependence
(taskpl.P.info+taskp2.P.info+...+taskpn.P.infaska.A.infy is modeled by the
implication,

1
madisto requiredD ((mp".Sinfo known —) + . (4.3)
(m pz-Snfo known —) + ... +
(m pn-Snfo known —))
In this implication,mais the accepting task§IA while mp' throughmp” are indi-
vidual MA each producing an equivalent yet alternate instanaefaf This conse-
guent directly corresponds to an alternative operand dependency’s expffession
long as at least one source has produicéo, then theinfo requiredcondition is

satisfied. Implications for all scheduling problem alternative operand dependencies
are built and prune @MA’s A%38jn similar fashion to equation 4.2.
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4.1.4 Undetermined Operand Dependencies

An MA in a composition may produce operands yet require no input operands.
A random number generator is an instance of this. OfVi&n may require input
operands but these input operands are always available or will be supplied later
from an external source with no timing constraints. Unconnected or unnecessary
input operand consumption points such as these require an undetermined operand
dependence of the form (—a.info). Since the Boolean operand production
expression is don't care, —, no pruning&ffatafor a scheduling problem€MA
IS necessary.

4.1.5 Resource Concurrency Bounds

If only a single ALU is available for the example in figure 4.1, then the two
time-step minimum latency schedule is impossible as it requires two concurrent
uses of an ALU during the second time-step. Prohibiting these resource violating
executions corresponds to removing transitions fromGN&A where the number
of res busylabels exceeds the number of concurress uses allowed in the
scheduling problem, bpund T,) D RO SP This constraint may be built by
enumerating all combinations of 0 up tmund busy-labeled transitions for a
particular resource class. At first glance, this constraint appears to be exponential,
but its ROBDD representation requires only time and nodes of order
O(boundx |A s ,s)) (see section 4.5.2). LeRes pysy be the set of all
combinations of at mo&toundtransitionsd [J Ayes pysy Then,

ADZ Al 8 (4.4)

res busy oA

represents all possible transitions which observe resource bounds. Expression 4.4
is built for all resource types and intersected wifitato prune resource violating
transitions. Let g represent expression 4.4 applied to a resource tgpel R.

The refinement ap%3@js,
n+1 n

AT = A" € os (4.5)

resl] R

This construct may be generalized to bound any type of transition-lzasemxlir-
rencyin a CMA. As transitions in ABSS represent activity during a time period,
any such concurrent activities may be bounded.

It is also desirable to bound the number of operands which are concurrently
kept in local storage. This local storage concurrency constraint must be formulated
on states as they represent what is stored or available in the system at time-step
boundaries. One way to do this is to explicitly add addition&A state that
differentiates betweeimfo knownandinfo storedas described in section 3.1.6. An
alternative preferred method is to identify memory care conditions at the
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composition level without adding state. memory care condition for some
operandnfo is expressed as,

MCGpio = mp'snfo known® (4-6)
1 2 n
(ma”.Snfo acceptedt Ma .Snfo acceptedt ... + Ma .Snfo accepteq

In this equationmpis theMA producinginfo while ma' throughmd” are all com-
positionMA which requireinfo. This equation says thatirfifo is knownyet some
task requiringinfo has not acceptethfo, then info must occupy storage. Let
Amemory card?€ the set of all combinations of at mdstundmemory care condi-
tions,mcg for all operand#foll | in a composition. Then,

U
ADAz Dmc[& AmC% @)

memory care

represents all possibIEMA states which observe memory concurrency bounds.
Expression 4.7 is intersected with the present state portidﬁ%‘?to prune mem-
ory concurrency violating states.

4.1.6 A Completely Pruned CMA

If a single ALU resource constraint is imposed on the example in figure 4.1,
then the completely pruned explicBMA is shown in figure 4.5. This, like any

2 unknowi
r1 known
r0 known
S011

r0 i3 required
alu busy

r0 i2 required
alu busy

r2 known
r1 known
r0 known

S111

i0 i1 required
alu busy

r1 unknown
r0 known
S001

r1 unknown
r0 unknown
S000

r0 i2 required
alu busy

r0 i3 required
alu busy

r2 known
r1 unknown
r0 known
S101

Figure 4.5Final explicitCMA for the example

other MA, represents all possible constrained sequential behaviors for a task.
Execution begins at the task start state where all produced informatimkimown

and proceeds until all produced informatiorki®own There are infinite number of
execution sequences represented as execution may stall indefinitely at various
points. A minimum latency execution sequence is the shortest path from task start
to final state. For this example, there are two such minimum latency schedules

requiring three time-steps.
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4.2 Cyclic Data-Flow Composition

Cyclic data-flow composition requires two extensions of the acyclic data-flow
composition in section 4.1. First, there are two senses, odd and even, of every
operand in a cyclic model. Dependency constraints must be built for both cases.
Second, with the notion of two operand senses comes the possibility of iteration-
sense confusion.A cyclic data-flow composition must guarantee that only
operands from correct iteration instances are produced and accepted. This requires
the formulation and application of a capacity constraint as well as a viability
pruning step.

To provide an intuitive introduction to cyclic data-flow composition, the
explicit CMA introduced in section 2%s duplicated in figure 4.6. An abbreviated

Figure 4.6 An explicit CMA for a cyclic data-flow composite task

label system is used here which identifies actual task execution on a transition.
State label information must be derived from a state vector ordered,
{mult_v2 ,add vl ,add _vO }, where ‘1’ represents the single output operand
knownin the even sense and ‘0’ represents the opekarmivnin the odd or ‘~’
sense. Thi€MA has been completely pruned and allows only one ALU and one
multiplier resource. Notice that dependency is observed in both senses. The task
add_v1 depends on the result afld_vO as input. Consequently, transitions that
scheduleadd_v1 only leave states wheradd_vO is known and likewise
add_vl~ is scheduled on transitions that must leave states wdgdevO~ is
known Furthermore, to prevent iteration-sense confusiorgdah vO result is not
forgotten untilafter it is accepted by dependeatld_v1 . Finally, only a single

ALU and multiplier use occur on any transition, regardless of the task sense.

This, like any other cyclidMA , represents constrained sequential behavior for
a cyclic composite task. Execution may begin at the task start state where all
produced information isunknown in one sense and proceed with infinite

5. Conventionally, iteration sense is maintained by iteration counters for each operand.
Iteration counters add substantial overhead to the scheduling process without significantly
adding to the representation power.

6. The ABSS scheduling problem for this example is presented in figure 2.4.
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executions of the loop. There are infinite execution sequences represented as
execution may stall indefinitely at various points. Although infinite execution
sequences are represented, state is bounded. State represents the set of
concurrentlyknownoperands. As only a singl®lA is assigned per task in this
composition, only three operands may be concurrektipwn in the system,
{mult_v2, add_v1, add_vO0}. These operands may be known in one of two senses,
odd or even, depending of which iteration produced them. Although an operand is
alwaysknownin one sense or the other, this does not imply that it is occupying
physical storage but only that it has been produced in that iteration sense. Finally,
unlike an acyclidMA, a minimum latency execution sequence is not the shortest
path from task start to final state. Ratherrepeating kernél which overlaps
iteration instances achieves minimum iteration latency. For this example, the
minimum iteration latency is shown dotted and requires two time-steps as two
complete iterations are represented in this four time-step cycle.

4.2.1 Basic Operand Dependencies

In a CMA modeling cyclic behavior, there are two senses, odd and even, of
every operand. Two dependency implications, for both operand senses, must be
built for each basic operand dependence. Fra-iteration dependencies, or
dependencies within the same execution iteration, the two implication expression
4.8 is built.

(maAinfo requiredD (mp'$nfo known _)) ¢ (4-8)
(maAinfo~ requiredD (mp'$nfo~ known _))

For inter-iteration dependencies, or dependencies between two successive loop
iterations, the two implication expression 4.9 is built.

(maAinfo requiredD (mp'$nfo~ known _)) ¢ (4-9)
(maAinfo~ required O (mp'$nfo known _))

These implications insure that for either operand sense, the required operand must
be knownto the system to allow angequiredlabeled transitions. Let, represent

either expression 4.8 or expression 4.9 dependingnhtav/intra-iteration depen-
dency type. The refinement af@@for a cyclic CMA is again as shown in equa-

tion 4.2.

An operand dependence tuple contains no explicit information regairtterg
or intra-iteration type. Rather, the scheduling problem is defined to be acyclic or
cyclic. If a scheduling problem is cyclic, then an operand dependence is written
with consumption pointa, always in the even sense while the produced operands
in f may be in the even or odd ‘~’ sense dependingnber- or intra-iteration type.
For example, the operand dependenteo(info) represents arntra-iteration

7. Repeating kernels are discussed in section 5.3.1.
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dependence whileir{fo~, info) represents annter-iteration dependence. All
operand dependencies only specify the first implication of either expressions 4.8 or
4.9 while the second implication is inferred.

Since a cyclicMA represents only two instances of an operand, it is only
possible to formulaténtra-iteration dependencies (within the same iteration), or
inter-iteration dependencies (between successive iterations) with a si#gldf
dependencies must be written across several iterations, then addiénalre
added to model the additional operand instances. This may be done in two ways.
First, iterates as described in section 4.4.2, build several instances of the entire
composite task. Hence, several iteration instances of all operands are available.
This approach is required to model several executing instructions in a pipelined
RISC example. Second, operand buffers, as described in section 4.5.4, provide a
local way to model storage for several instances of one particular operand within a
CMA.

4.2.2 Operand Capacity Constraints

Operand capacity constraints maintain operand iteration-sense consistency in
cyclic scheduling problems. They are not needed for acyclic scheduling problems.
Consider a basic operand dependerteskp.P.info taska.A.inf. It is possible,
due to MA nondeterminism, that the sourdmaskp may continuously produce
operandinfo, (info, info~ info, info~, ...), yet the sink,taska idles and never
accepts or accepts somefo operand a few iterations later. This is not only
wasteful but also leads to operand iteration-sense confusion. Which iteration of
info did taskaactually accept? What iteration do any takkds result operands
really belong to? Information capacity constraints avoid this confusion by insisting
that a particular produced operand remanswn(is not forgotten) in the current
iteration sense until all accepting tasks have accepted this operand in the current
iteration sense. Hence, operand iteration-sense consistency is maintained
throughout a composition.

Definition 4.2 Iteration-Sense Confusioroccurs when an operand dependency
implication is satisfied strictly by operand sense yet the satisfying operarat is
from the iteration expected by the accepting task.

For the RISC example, operand capacity constraints insist that intermediate
operands relevant to one instruction are accepted before intermediate operands for
the next instruction are produced. For example, suppose instruetiansli5 both
require an operand from the register file. The correct register file read operand for
instructioni4 may be in the even sensdread known while the correct operand
for instructioni5 may be in the odd sensdyead~ known Capacity constraints
insist that the4 register file read operandyead knownjs not overwritten by the
i5 register file read operandifread~ known, until all i4 tasks requiring
rfread knownhave accepted. Since only oMA represents this particulafread

53



operand, only one instance may exist. Capacity constraints insure that this single
operand instance is kept in the iteration sense expected by all accepting tasks.

4.2.3 Basic Operand Capacities

The capacity constraint for a single basic operand dependence,
(taskp.P.infotaska.A.inf®, is modeled by the implication,

mpAinfo forgetD ((ma'$nfo accepted_) + (_’ ma'%\fo acceptea) . (4'10)

This is opposite from the dependency implication in expression 4.1 as the enabled
transition in expression 4.10 belongs to theducerrather than theaccepter
Expression 4.10 insures that transitions labeféd forgetmay only occur if the
required information is accepted in the present state or will be accepted by the next
state. The implication’s consequent is written in terms of the next state so that the
producing task'sMA may forget an operand during the same time-step that an
accepting task'MA accepts. Figure 4.7 illustrates how this relates to a real sys-

clock

info /‘ i \ info
registered not registered

Figure 4.7 Simultaneou#nfo forget and accept

tem. ABSS transitions correspond to activity during time-step periods. The oper-
andinfo is forgotten and accepted during the same time-step period. ABSS state
corresponds to information available at a clock edge or time-step boundary. At the
start of this time-step periothfo was registered and hence may be accepted. Dur-
ing this periodinfo is forgotten and hence not registered at the next clock edge or
time-step boundary. More concretely, this correctly represents pipelined behavior
where pipe stage a is forgettingsultaland computingesulta2while at the same

time pipe stage b is acceptirgsultaland computingesultbl.

Let & represent expression 4.10 for one basic operand dependeypetbuilt
for both operand iteration senséfe refinement ohd2for aCMA s,
n+1

A" = A" &, (4.11)
el asic
4.2.4 Undetermined Operand Capacities

As with undetermined operand dependencies, no refinemenCMA’s pdata
is required for undetermined operand capacities. Capacity constraints are
important for produced operands of tasks with undetermined operand input
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dependencies. Since such tasks have no constraints onimfbeaquiredlabeled
transition may occur, they would be free to behave in any way if it were not for
capacity constraints on their produced operands. For example, a cache hit/miss
multivalue MA cannot produce its next cache hit/miss value until the current
operand is no longer required.

4.2.5 Alternative Operand Dependencies and Capacities

An alternative operand dependence leads to iteration-sense confusion in a
cyclic composition. Consider the sequence shown in figure 4.8 whereatgsk
may use the operand froemc_a orsrc_b . Inframe 1,src_a is knownin the

src_a src_b src_a rc_b src_a rc_b

acp acp acp
Frame 1 Frame 2 Frame 3
Figure 4.8lteration-sense confusion when alternatives are present

even sense as indicated by the solid circle. Consequently, in fraamp2accepts

this alternative result. In frame 3, it appears asrd_b is ready in the odd sense
soacp accepts this alternative result for the next iteration. Unfortunasety,b

is really from a previous odd iteration and iteration-sense confusion results.
Furthermoresrc_b may not even produce a current even result as a capacity
constraint fromacp to src_b preventssrc_b from forgetting its odd result.
Although acp has in fact moved forwardsrc_b ’s odd result is still kept since
acp has not accepted in the odd sense. This situation is referred dapa€ity
deadlock

Definition 4.3 Capacity Deadlockoccurs when an operand is kept in its current
iteration sense even though it is not needed. It typically occurs when an accepting
task some how accepmbeadof a potential producer.

Alternative dependencies are not allowed in cyclic compositions as they lead to
iteration-sense confusion and capacity deadlock. Instead, alternatives are
represented through use of nondeterministic control as discussed in section
section 4.4.7.

4.2.6 Viability Prune

Although all CMA states and transitions now observe dependency and
capacity constraints, there are still execution sequences present which exhibit
iteration-sense confusion. Figure 4.9 shows a three task loop and some dependency
and capacity refine€€MA states and transitions. From theS&A states and
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r0 known
ri~ known
r2 known

Figure 4.9Cyclic scheduling problem and an acausal pa@MA

transitions it appears as if a new iteration instance resdt, is producedevery
time-step. However, the inter-dependency edge fu@rback tov0 requires that

one iteration complete before the next iteration may begin. Hence, a minimum
iteration latency schedule must require at least three time-steps.

If execution were to begin at@MA task start state setthe state(s) where all
composition membeMA are in their task start state(Shask start then it is
impossible, due to dependency and capacity constraints, to reach iteration-sense
violating states and transitions. Consider the illustration in figure 4.10. All states

A
r2 known rl known r0 known
Step 0
r2~ known rl~ known rO~ known

r2 known rl known r0~ known
Step 1
r2~ known rl~ known r0 known

r2 known rl~ known r0~ known
Step 2
r2~ known r1 known rO known

Figure 4.10 CMA States reachable fro8ygy start

reachable from G start@re found after two time-steps and do not include the
erroneous states shown in figure 4.9. These erroneous states represent multiple

8. There is a singl8 ¢ starfor acyclic models while there are dual task start state sets,
Sask start@NdSask~ start for cyclic models. Likewise foEMA task final state sets,

Stask finalandstask~ final
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iteration instances of a single loop which is impossible given a natural initial entry
of a loop.

Symbolic image, preimage and reachability computations[31][32][90] are
important for viability pruning as well as futurEMA exploration. Given the
relationA O CMA, all next states of some s8¢ L Smay be determined by the
expression,

Oix, (A (Saper =) - (4.12)

In expression 4.12, the inner product determines all transitioAsnth predeces-

sors belonging t& e The seX represents all ROBDD variables used to encode
CMA state. All predecessors states are removed through existential quantification
leaving only successor states. This is commonly referred to as a next state or image
computation. Likewise, a previous state or preimage computation can be expressed
as,

O x(B* (— Sapen) - (4.13)

All states reachable fro®® 0 S may be found with a least fixed-point of expres-
sion 4.12. This fixed-point is found by computing

= S oox o (S, D) (4.14)

until "1 = S for some natural number. When the fixed-point is reachef! is
the set of all states reachable fr&h A similar fixed-point may be formulated to
determine all states which eventually reach some statg'$etS.

Given a cyclicCMA’s S« start the set of reachable statBSis determined
with equation 4.14. The viability pruning af2@for thisCMA is,

n+1

A"t = A" (RS RS. (4.15)

Theorem 4.1 The viability prune leaves only iteration-sense consistent states in
aCMA.

Proof Supposes is any state reached froBy¢ start DEPENdENcy impli-
cations prevent tasks from accepting operands unless the required input operands
are known Capacity implications prevent loss of an operand before all children
tasks have accepted. Sinees reached fronB s start Where no operands exist in

the even sense, then pathsd@roduce any and every operand as dictated by
dependency and capacity implications. Herges, not subject to iteration confu-

sion because it identifies MdA in a composition that has produced an operand
without proper required input operands. A& arbitrary, all states reached from

Sask start@re iteration-sense consistent.
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4.2.7 Cyclic Concurrency Constraints

Cyclic transition-based concurrency constraints are formulated as in
section 4.1.5. There is no dual sense for resource usage, sathlasyandalu~
busy All uses of a particular resourges are derived from a composite member
MA and are implicitly counted and prun€&CMA as in expressions 4.4 and 4.5. On
the other hand, since there are two senses of operands, two sense-distinct memory
care conditions must be formulated for each operand with expression 4.6. These
are implicitgl counted as in expression 4.7 and intersected with the present state
portion of A% to prune memory concurrency violating states.

4.3 Acyclic Control-Dependent Composition

Acyclic control-dependent composition introduces two new concepts beyond
those introduced for acyclic data-flow composition in section 4.2. First, a control
operand may select one operand from several choices to satisfy an input operand
dependence. This requires a new resolved operand dependency implication.
Second, some tasks may be deemed unnecessary under certain control conditions.
These tasks are bypassed to their task final state. A control-dependent composition
contains a two-phase transition relatidf2@and A" reflected in theMA
forming the composition, to facilitate task bypassing and control resolution.

Figure 4.11 presents an acyclic control-dependent scheduling problem to aid
discussion. Each task identifies which control block, it is valid in. Taskmt
produces the two-value control operastol Taskt2 has two potential sources for

in0

\ 1/

tO/ ch=0,1 inl

ro
\ ™ ch=0,1

V

t1l cb

ch=1
%

t2/ cb=0,1

Touto

Figure 4.11A simple acyclic control-dependent example

58



r2 known
r1 known

r0 known
cb=1 known
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r0 known
cb=1 known
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r1 unknown
r0 known
cb=1 known
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cbtol

2 unknowi
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cb known
S00101

r1 unknown
r0 unknown
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S00101

cbto0
t1 bypassed

S

2 unknowi
rl known
r0 known
cb=0 known

S01110

r2 known
r1 known
r0 known
cb=0 known
S11110

Figure 4.12Partial CMA for figure 4.11

its single input operand. Bb=0 at this operand resolution point, theh is used,
elserl is used.

Figure 4.12 shows a parti@MA with minimum latency execution sequences
for the example in figure 4.11. In the top path, wheloe1 , taskt2 waits untilrl
is available before executing. In the bottom path, wiore0 , tasktl is bypassed
during a control phase (dotted transition) as it is deemed unnecessary. Also, when
cb=0,t2 executes witm0 as an input operand.

4.3.1 Resolved Operand Dependencies

A guarded operand dependence specifies several possible source operands, one

of which is selected by another operand to satisfy an input operand dependence.
spec al=1 nospec— val=0 . «

For example,a™ [ +a Cd may be interpreted as “use
speculative operand®P€Cif multivalue operandd equals 1 or use nonspeculative
operanda"®SPeCif multivalue operandd equals 0.” Although the true operand
dependence is on eithafPeCor a"°SP€¢ the multivalue operand is needed to
select which operand dependency is correct. This selection process is called
operand resolution and corresponds to a join in a traditional CDFG
representation. A guarded operand dependence formsparand resolution
point where potential source operands are catiextesolution operandsand the
final accepting task is called thgostresolution task The multivalue control
operand, which selects a particular postresolution operand, is calledgbler
operand. Finally, as an operand resolution point example, behavior in a RISC
processor selects an operand from several possible sources to write back to the
register file. Some instructions require that a memory fetch be written to the
register file while other instructions require that an ALU computation result be
written to the register file.

It is possible that both preresolution operaad®*canda™sP¢Care knownbut
the resolver operandl, is unknown Although all input data dependencies for the
postresolution task are satisfied, appropriateequiredlabeled transitions still
may not be enabled. This is because the postresolution task fundamentally expects
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a singlea input operand. Without resolver operaddt is unclear whicha should
be used. Furthermore, the postresolution td#k is only allocated enough state to
model result operands for one task instance and hence may not processP5bth
anda"®sP€¢ Consequently, the postresolution tagR must stall until the resolver
operandl is knownand operand resolution occurs.

This artificial dependency on resolver operahdounds the state in @MA.
Consider how this dependency might be removed. Instead of a single
postresolution accepting taskA , two accepting taskMA may be specified. One
accepts and processa¥°while the other accepts and procesaf%P¢¢ Each
task could then begin execution immediately when its partialaput operand is
present. No dependency on resolver operdedists. Also, enough state exists to
represent production of result operands from processing &fif and a"°SPe¢
This task splittingcould be carried to the limit such that no resolver operands are
ever required. At the limit, &£MA may require excessive state for acyclic and
infinite state for cyclic control-dependent behavior. Furthermore, controllers
synthesized from such@MA are potentially infinite while synthesized datapaths
must correctly handle increased numbers of concurrent operands. On the other
hand, operand resolution points are convenient and appropriate places for a
designer to boun€MA state growth as well as any implied FSM controller and
datapath complexity. Specification and adjustment of operand resolution points is a
mechanism by which a designer architects the design.

A single operand resolution point dependence is modeled by the implication,

1
mad., requiredD (mp.Snfo1l known —) [(ml‘.Srinfova|=1 knowr —)¥ (4.16)
2 o
(mp".Snfo2 known —) [(mr.srinfovaI:Z knownr )t
n o« o —
(mp .Snfon known ) [(mr'srinfo"a':”knowri )

In this implication, multivalueMA mr produces resolver operantfo which
selects the actuahfo operand fromn possible choices. For some caséf rin-
fo¥a is knownAND infoi is known,then theinfo requiredlabeled transition is

allowed. LetW, represent expression 4.16 for one guarded operand depereence,

The refinement ocA%@for a scheduling proble @MA is,
AT = Am W, (4.17)

el uarded

Basic, Alternative and Undetermined dependencies may be formulated for cyclic
control-dependent composition as described for acyclic data-flow composition in
section 4.1.
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4.3.2 Acyclic Task Bypassing

The CMA constraints discussed thus far, dependencies, capacities and
concurrency, have all been applied to the data-phase transition remq?(‘)%,‘l'hey
enforce causal ordering of operands and task execution, limit resource use, as well
as maintain iteration-sense consistency in cyclic behavior. For scheduling
problems without control dependencies, these constPaamsA%@are sufficient.

For control-dependent scheduling problems, constraints applied to a control-phase
transition relationA"r! are required.

A CMA'’s control-phase transition relation serves two purposes. First, it
provides a resolve step for multivalUdA. As introduced in section 3.4, a
convenient deterministicesolvelabeled state is added to simplify validation
during aCMA'’s exploration. Validation is an exploration step and is described in
detail in section 5.2. Secondf®""! allows tasks to be completely bypassed if
deemed unnecessary by control resolution. This section focuses primarily on when
and how sucleontrol-obviatedask are bypassed.

To establish the need for task bypassing, consider a memory write task in a
RISC processor. For some instructions, this task is required while for others it is
not. In the event that it is not required, it may be bypassed to its task final state.
This simplifies termination detection for acyclic models and primes all tasks for
the next iteration in cyclic models.

As defined, the scheduling problem associates a control btdkyith each
task. This control block is a Boolean expression indicating when the pairetlisask
necessary. Supposseskland itsMA are in the control block,

cb = rinfo"® =%+ (rinfo"®' ™ * thinfo"* 7 Y.

Tasklis necessary wherinfo equals 0 orinfo andbinfo both equal 1. Assuming
multivalue operandenfo andbinfo are limited to the range 0 to fasklis unnec-
essary wheninfo equals 1 andinfo equals 0. When known to be unnecessary,
taskl may be bypassed to simplify determining a task final state in an acyclic
CMA. With task bypassingS,sk final for @ CMA simplifies to the set of states
whereall compositionMA are in their final task state(s) and all control cases are
included. This can be contrasted to a poss®lgy fina Without bypassing where
some tasks remain unexecuted. This varies from control case to control case and is
difficult to determine exactly withowd priori knowledge of which tasks have spec-
ulatively executed. Finally, task bypassing is necessary to maintain iteration-sense
consistency in a cyclic control-depend@MA .

A single scheduling problem taski8A is control-obviated when all operands
in the task’s control block expression have resolved yet the control block
expression igalse.Consider the control block expression,

9. Operand resolution dependencies are not required for data-flow only behavior as well.
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cb = rinfo"® =%+ (rinfo"®' ™ * thinfo"* 7 Y).

In terms of compositioMA states, the control-obviated expression for this control
block is,

(Srinfo known[SDinfo knowr) y . (4-18)
(S val=1 + (S

rinfo known rinfo known® ! EBbinfo knowﬁa':l))

The top term in this expression insists that both multivalue operanéts and

binfo are known regardless of value. The bottom term insists that the values of
rinfo and binfo are something other than those required for this control block.
Hence, all control block expression operands have resolved and the control block
expression is false.

The precise form of a control-obviated expressioog depends on the task’s
Booleancb expression. In general, the following two rules are used to create a
correct control-obviated expression. First, each opeliafal that appears in a
control block contributes &, knownt© @ control-resolved product term. The top
portion of expression 4.18 is an example of this. Second, the ettiiterm is
expressed a8lA states and complemented. The bottom portion of expression 4.18
highlights this. The product of these two terms is a correct control-obviated
expression for a task.

An MA'’s task bypasgabeled transition is forced if th®lA’s control-obviated
expression¢oeg istrue and theMA is not yet bypassed.

Dtask bypass™ (— €O Sy final (4.19)

The right side of expression 4.19 is written in the next state so thl&appears
bypassed in lock step with control block resolution. Before the control block is
resolved, theMA is considered necessary and may be executed speculatively. If
theMA has executed speculatively, it may often be in its task final state and hence
need not be bypassed. L@}, represent expression 4.19 for WA min the com-
position. The refinement &¢°""!for aCMA s,

A" =AM [ @ (4.20)
mO M

4.3.3 Concurrency Constraints

Both transition-based and state-based (memory) concurrency constraints are
built for acyclic control-dependent compositions as described in section 4.1.5.
Transition-based concurrency constraints are applieekd&ﬁa and hence, task
bypassing, which occurs i*°""! does not interfere. Furthermore, before control
resolves in aCMA path or execution sequence, only a single path exists.
Consequently, all task resource uses --both speculative and nonspeculative-- are
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implicitly counted from the same pool of resources. After control resolves in a
CMA, a path branches into various mutually exclusive control cases and
subsequent tasks are allocated resources in a correct mutually exclusive fashion.

State-based concurrency constraints for acyclic control-dependent
compositions highlight two issues. First, a memory care condition should not
include control-obviated dependents. Fortunately, once a task is control-obviated,
it is immediately bypassed and subsequently appears as if all input operands had
been accepted. It would not be counted when using the existing memory care
condition (expression 4.6). Second, memory care conditions through an operand
resolution point must be counted correctly. If a resolver operand has yet to resolve,
then allknownpreresolution operands must be counted as memory care. Once a
resolver operand has resolved, then only the selected preresolution operand must
be counted as memory care. To formulate this, an expression very similar to the
control-obviated expression (4.18) is built. The difference is that the preresolution
operand’s selection condition rather than a task’s control block is used as a starting
point. For example, suppose a preresolution operand is only selected when the
resolver isknownand equal to 3. The ternmfo3 [Finf 0"~ will be one term in
the sum of a resolved operand dependence tuple’s Boolean expredssomg this
term in place of a control block expression, a resolved memory care condition,
rmcg, is constructed in the same manner as expression 4.18. Then, assuaiing
depends ommp through an operand resolution point, a updated memory care
condition is,

mCano = mp'$nfo known® : (4'21)

— 1
(rmcGps, OMC . Snfo acceptedt

2 n
MC . Snfo acceptedt ... + MC .Sinfo accepted

Note that if a child depends on an operand through a resolution point, it is condi-
tioned by a resolved memory care condition.

4.4 Cyclic Control-Dependent Composition

Cyclic control-dependent compositions are the most complicated to formulate
as they require concepts from all previously discussed composition types. The
Cartesian product step, dependency constraints, iteration-sense issues, task
bypassing requirements and operand resolution all apply to cyclic control-
dependent composition. What differs is how iteration-sense confusion concerns are
handled. In data-flow composition, it is relatively straight-forward to formulate a
capacity constraint that maintains iteration-sense consistency locally at the
operand dependence level. For control-dependent composition, capacity
constraints are not straight-forward. First, task bypassing toggles the sense of tasks
within a control block and consequently creates additional sources of iteration-
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sense confusion. Second, operand resolution points allow postresolution tasks to
accept before all preresolution operands are known. This also adds to potential
iteration-sense confusion. Capacity constraints that address these new sources of
iteration-sense confusion are difficult to formulate. A new method to maintain
iteration-sense consistency is developed and presented here.

This section begins by with a general discussion on how capacity constraints
impact ABSS. Next, the impact of capacity constraints is relaxed through
duplication of a scheduling problem composition. With this background, a global
capacity constraint is developed for cyclic control-dependent models. An example
illustrates how control-dependent pipelining is modeled with this technique.
Finally, nondeterministic control is presented.

4.4.1 The Impact of Capacity Constraints

An MA in a composition typically models one instance of its produced
operands. For cyclic behavior with capacity constraints, this implies one ‘live’
iteration instance of an operand at a time. The operand must remain in its current
sense until all dependent tasks have accepted. This bounds, at a cost, the
potentially infinite state behavior of highly parallel cyclic behavior. To illustrate
how capacity constraints impact cyclic problems, two examples are considered.

Figure 4.13 shows how a simple chain of three cyclic tasks are pipelined in

W 00 O—@—0 00
t t t
Time-step 1 Time-step 2 Time-step 3 Time-step 4

Figure 4.13A naturally pipelined composition

ABSS. In time-step 1 the composition is in a composite task starting state as all
internal tasks ar&nownin the odd iteration sense. By time-step 2 ti#kkxecutes
(produces its operand) in the even sense. In time-step 3t2askecutes in the

even sense while tagk may execute in the odd sense as no capacity constraints
are violated. In time-step 4, tasksandt3 execute in the even sense while ta8k
executes in the odd sense. Now the pipeline is full and all tasks execute in one
iteration sense at each time-step by toggling between states shown in time-steps 3
and 4. Capacity constraints do not impact solution quality for this composition.

Suppose that figure 4.13’s example has an additional operand dependence from
tasktl to taskt3 as shown in figure 4.14. Now capacity constraints require tthsk

G0l 60 G b Go8 600

Time-step 1 Time-step 2 Time-step 3 Time-step 4 Time-step 5

Figure 4.14A capacity constrained composition
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to stall and hold its current result so that td8kmay accept the correct operand.
Full pipeline behavior sequences from time-step 5 back to time-step 2 and achieves
minimum iteration latency of two time-steps as two iterations require four time-
steps to complete. Thus, pipelined behavior is impacted by the constraint of
representing at most only one result operand fortiask

The impact of capacity constraints on control-dependent cyclic composition
can be more severe than what is seen in this three task data-flow example. For
example, a postresolution task has a dependency on a resolver to determine which
preresolution operand to accept. This dependency requires a capacity constraint
from postresolution task to the resolver to prevent iteration-sense confusion. This
capacity will hold a resolver in its current iteration sense until all postresolution
tasks have accepted. This is potentially costly as a resolver typically resolves
numerous operand resolution points. Pipelining control operands is difficult if state
for only one ‘live’ control operand is allocated. This, coupled with the complexity
of formulating correct capacity constraints in the presence of task bypassing and
through operand resolution points, makes the locally applied capacity constraint
route a rocky choice for control-dependent cyclic compaosition.

4.4.2 Relaxing Capacity Constraint Impact

Sometimes it is desirable to relax the impact of capacity constraints in a
controlled manner. This may be done by composing several copies of a
composition, calledterates, as one largelCMA. Figure 4.15 shows how two

600 600 S0 20 S H0b
605 S0 S0+ 60D

Time-step 2 Time-step 3 Time-step 4 Time-step 5
Figure 4.15Two iterates as one composition

iterates of figure 4.14’s example may be co-executed yet still under a single
resource constraint set. Even though a single iterate has iteration latency of two
time-steps, final iteration latency for the two iterate composition is one time-step
as both iterates execute. This improved performance is obtained because there are
now two MA for tasktl and hence twal result operands may exist concurrently.
Expanding the searched solution space by duplicating the entire scheduling
problem is analogous to “unrolling a loop” in traditional scheduling and compiler
theory. Although there are no inter-iteration dependencies in this example, it is
often required that dependencies from one iterate of the scheduling problem to the
next are added. In particular, including artificial dependencies from one iterate to
the next orders the iterates and hence avoids representation of symmetric solutions.

Duplicating an entire composition exceeds what is minimally necessary to
avoid impact of capacity constraints. In the above example, a single additignal
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that represents another instance s result operand would be sufficient to avoid
capacity constraint impact. This additioMA , inserted to break the dependency
and capacity froml to t3, would ‘buffer’ t1's result operand. Consequently,is

free to produce the next iteration’s result while this buffer holds the current value
required byt3. The difficulty with this approach is determiniray priori where
capacity constraint impact occurs. Furthermore, with control-dependent
scheduling and buffered resolver operands, task bypassing becomes illdefined.
Which resolver should control-obviate a task and when? For these reasons,
duplication of an entire control-dependent cyclic composition is preferred.

4.4.3 Global Capacity Constraints in Iterates

Although duplicating a composition relieves capacity constraints, it does not
eliminate them. For control-dependent scheduling, capacity constraints must be
correct even when task bypassing and operand resolution points are present. These
are difficult to formulate at the local operand dependence level and hence a global
capacity constraint is introduced.

Suppose that an iterate did not mix the iteration sense of intdvial
Beginning with iterate start stateSgq start €XECUtioN proceeds until iterate final
statesS,sk finat @re reached and vice versa for an odd execution. At no time during
an even execution is a task allowed to execute or produce result operands in the
odd sense and vice versa. This behavior is precisely what exists in a Malic
where execution in one sense is always mutually exclusive from execution in the
other sense. An iterate with such a constraint could be thought of as a single,
although complex and control-dependeltA. This has the advantage that no
internal operand capacity constraints need be imposed. Since an iterate final state
for either sense must be reachedfore the next iteration may begin, it is
guaranteed that all internal tasks of an iterate have completed, either through
execution or bypassing, in the current iteration sense. This is, by definition, a task
final state,Sin4 state This, coupled with knowledge that an iterate is globally
executing either in one sense or the other, eliminates the need for capacity
constraints among internal operands. Another way to view an iterate with a global
capacity constraint is as a cycMA created from dual acyclic control-dependent
MA similar to section 3.2. The acyclic control-dependsi®t are constructed as
discussed in section 4.3 and as such do not require capacity constraints.

An iterate may be forced to not overlap iterations by introducing an artificial
sense operand MA msa This is a single time-step cycliMA as shown in
figure 3.12 that identifies the current sense of the entire iterate. It may be thought
of as a sequential constraimsol] Q, of the scheduling problem. Constraints are
applied to an iterateCMA which restrict all internal tasks to even iteration
executions if the sense operankimwnin the even sense and vice versa for odd
iteration executions. In other words, an internal task of an iterate may only leave its
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even iteration-sense task start state if the sense operand is in the even iteration
sense and vice versa for the odd sense. This may be enforced with the implication,

(m'Sask start m'Sask starg O (mso'gense known_) . (4'22)

This is built for allm 0 M in an iterate and for both iteration senses. Furthermore,
a capacity constraint preventsofrom forgetting the current sense until all inter-
nal tasks of an iterate atenownor will be knownin the current iteration sense.
This may be enforced with the implication,

mSOAsense forgep E(m'Sask final _) + (_' mS[ask finaDEL (4'23)

This too is built for allm 0 M in an iterate and for both iteration senses. The prod-
uct of all such implications prunes an itera”8@] CMA as in expression 4.2.

4.4.4 The Impact of a Global Capacity Constraint

Although a global capacity constraint simplifies the construction of an iterate
by eliminating local capacity constraints, an additional impact on the solution
space, due to the granularity of the global capacity constraint, occurs. Figure 4.16

G300 63090 6850 6>858 5>050 S>>0
S530rb $r0D 63050 6>050 65050 Sr0rd
5+058 5308 53090 6000 €6>850 65050

Time-step 1 Time-step 2 Time-step 3 Time-step 4 Time-step 5 Time-step 6
Figure 4.16Three global capacity constrained co-executing iterates

shows the same three task pipelined example but now all iterates have a global
capacity constraint applied. Now, a single iterate has an iteration latency of three
time-steps and three iterates must be co-executed to achieve single time-step
iteration latency. In fact, the maximum number of ‘in processing’ instances of a
scheduling problem is exactly equal to the number of co-executing iterates.
Although iteration overlap is now prohibited within an iterate, iteration overlap is
still possible among iterates as shown in figure 4.17.

Iterate 1 [ ]
Iterate 2 [ ]
Iterate 3 [ I

Figure 4.17Iteration overlap among iterates with global capacity constraints
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Figure 4.17 further motivates the need for iterates. ImaginEMA that
models execution of a single RISC instruction. Because of the global capacity
constraint required for cyclic control-dependent models, only one instruction may
be ‘in flight at a time. By creating several iterates of tH&MA, several
instructions may be simultaneously ‘in flight’. This models what happens in a
pipelined or even superscalar RISC processor implementation.

4.4.5 Composing lterates

Each iterate is an entire instance of a scheduling problem that is made to
appear as a single cycli?dA. All control considerations are completely
encapsulated within an iterate. Hence, when composing several iterates into a new,
larger CMA, all formulation steps for cyclic data-flow composition, section 4.2,
apply.

Within an iterate there is control. Since an iterate with control will have a
global capacity constraint applied, it may be constructed as described for acyclic
control-dependent composition, section 4.3. The only difference is that an iterate
and allMA in an iterate are cyclic and hence all section 4.3 constraints must be
built for both iteration senses.

When several independent iterates are used within a composition, all sequence
permutations of one iterate executing before another are represented. This freedom
may lead to inefficient representation. Furthermore, from a final system
implementation perspective, one ordering permutation may be indistinguishably
symmetric to all other ordering permutations. Artificial dependencies, from one
iterate’smsoto a next iterate’snsq may be used to arbitrarily choose one ordering
permutation.

4.4.6 An Example Iterate

Figure 4.18 shows an iterate for the acyclic control-dependent composition
example of figure 4.11. This iterate is a cychbA . Starting at the iterate’s task
start stateSask star{S000000, SO00001}, only even sense execution occurs until
Sask finar{S111110, S111111} is reached. The same is true for odd sense
execution fromS gk~ startt0 Sask~ finag NOtice that iterate task start and final state
sets contain states representative of every possible control case. Furthermore, it is
still possible to execute @b=0 control case in two time-steps whileck=1 case
requires three time-steps. Several of these iterates may be composed into a new
CMA as described in section 4.2 to model high-level task pipelined behavior.

4.4.7 Nondeterministic Control

An MA in a composition may produce operands yet require no input operands
as described in section 4.1.4. This is particular valuable for multivdlieserving
as resolvers. To model an alternative, an operand resolution point with a
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Figure 4.18lterate for cyclic control-dependent example
nondeterministic resolver is specified. Then, during exploration, whatever resolver

choice appears best is kept. This allows for alternatives in the composition yet does
not require that every alternative eventually produce as some may be bypassed.
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As a specific example of nondeterministic control, consider a memory access
task in a RISC processor. This memory access task exhibits control-dependent
behavior. If a cache hit occurs, the memory access task produces the requested
operand relatively quickly. If a cache miss occurs, a sequential penalty is paid. In
this example, a multivalu®lA produces a control operand which decides between
cache hit or miss. This multivalu®lA may be modeled with no required input
operands (undetermined operand dependencies). Then, a cache hit/miss
probability determines how schedules should be prioritized during exploration. For
example, if schedules favoring cache hits are desired, then exploration will give
higher priority to schedules where the cache hit/miss multivdédée resolves to
hit. This is not an internal timing constraint but rather a probabilistic selection of
various control-dependent behaviors.

4.5 Composition Generalizations

This section highlights and generalizes some of the composition techniques
used in sections 4.1 through 4.4. In particular, Boolean constraints among different
MA, which dependency and capacity constraints are instances of, are discussed.
Concurrency constraints, which are also Boolean constraints albeit
combinatorially large when written explicitly, are discussed. In a more general
setting, these Boolean constraints enable additional sequential constraints and
hierarchy of concurrency constraints. Finally, task splitting and operand buffers are
presented as ways to increase freedomGiViA .

4.5.1 Explicit Boolean Constraints Among MA

Any Boolean constraint that may be expressed explicitly in terms of
composite-membévlA states and/or transitions may be applied @\4A . This is
a substantial amount of expressive freedom which may not always lead to correct
system execution models. Iteration-sense consistency, causal operand ordering and
valid control behavior are a few important system execution considerations that
must be maintained by Boolean constraints. Several types of explicit Boolean
constraints have proven useful and valid in ABSS and are generalized here.

Both dependency and capacity constraints fit into an implication constraint
form. In a ROBDD, implications may be built s q = pg . The two most
useful formulations are,

mi.AD (M).S 2 (4.24)

and,
mi.AO ((Mmj.§ 5 +(— mj.9)). (4.25)

Implication 4.24 may be interpreted as activity.A is enabled yet not forced if

m;j.Sis true in the present state for twdA miandmjin a composition. This impli-
cation is typically written with consequent state sets labeled igtorical labels
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such adnfo knownor info acceptedHistorical labels identify that certain knowl-
edge exists or has existed earlier during the execution of a-taBkis allows an
implication to enforce an ordering of events. Implication 4.24 may be interpreted
as, “Activity miA occurs some time after the activity recorded hy}.S”
Implication 4.25 differs only in that the consequent is written in the present state
or the next state. This may be interpreted as, “ActivityA occurs at the same
time or some time after the activity recordednnyS.”

The consequent of these implications is extended to handle alternatives or
resolved operand dependencies. Alternatives are simply multiple terms related by
Boolean OR in the consequent. For example,

miAD ((M}.S§ =) +(mk.S ) (4.26)

may be interpreted as, “Activityni.A occurs some time after the activity recorded

by mj.SOR the activity recorded bsnk.S Although it is possible to form a simi-

lar implication with multiple terms related by Boolean AND in the consequent, it

IS not necessary as the intersection of multiple single-term consequent implications
is equivalent. With resolved operand dependencies, alternative choices are condi-
tioned or guarded by an additional term. For example,

mi.A0O ml.SOmMj.$—) + (mn.SOmk.S (4.27)

may be interpreted as, “Activityni.A occurs some time after the activities recorded
by mj.SAND ml.SOR the activities recorded b;mk.SAND mn.S’ In typical
application of implication 4.27, guard terms are chosen which are known by con-
struction to be mutually exclusive. Hence, at most only one alternative is ever
valid. Both implications 4.26 and 4.27 may include consequent states in the next
state as in implication 4.25.

A double implication is used to synchronize activity or information in an
ABSS composition. The double implication,

mi.A = mj.A (4.28)

may be interpreted as “ActivityniA must occur during the same time-step as
activity mj.A” Although a transition set is specified, transitions in terms of
states, ¢S or even just states may be used. A double implication is used to
require a task bypass transition if a bypass is deemed necessary and no bypass has
occurred yet. A double implication is also used when sequential constraint or pro-
tocol MA are included in a composition. Theb#A, as described in section 3.3,

do not necessarily represent sequential behavior of operand production but rather
describe how severdlA in a composition must sequentially interact. Conse-

10. Historical state labels are contrasted with current state labels sinfh atredwhich
identify currently available information and do not remember that this information once
was available after it is lost.
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guently, activities labelethfo requiredandinfo producedof the various operand
MA are synchronized to appropriate transitions and states of the sequential con-
straint or protocoMA with double implications.

These implications are the most applicable constructs for ABSS composition.
In fact, all presented ABSS compositions only require these implications and the
implicit constraint described next for all constraint pruning.

4.5.2 Implicit Boolean Constraints Among MA

Some Boolean constraints are prohibitively large when expressed explicitly.
Consider all ways of choosing only true Boolean variables from a set aof
Boolean variables. In sum of products form, this Boolean expression reﬁ%s
terms. Rather than expressing all such choices explicitly, an implicit BDD
construction technique builds all such choices efficiently. Statements such as, “at
mostr registers are available for thesgesult operands” or “at mostALUs are
available to implement thesa tasks” require formulation ofr-combination
expressions. Formulation of ROBDicombinationexpressions may be traced to
several sources [16][64][80][114].

Figure 4.19 shows an “at most 2 of 6” ROBDD. Only 12 ROBDD nodes are
required to efficiently encapsulate all 127 combinations. Although figure 4.19
chooses at most 2 of 6 single Boolean variablespmbinationsof Boolean
functionsare possible. Memory concurrency constraints provide a sophisticated
example or-combinationsnvolving Boolean functions. A memory care condition
is a fairly complicated expression as it contains Boolean variables from a
producingMA and all acceptindMA . Still, regardless of ROBDD ordering and
overlap, arr-combinationconstraint may be built implicitly from a set of memory
care conditions. This requires time and nodes proportional *a . A modern
implementation of ROBDD r-combination constraints may be found in
PYCUDD[53].

All applications ofr-combinationconstraints so far have considered just one
set of sizen and at most combinations from this set. It is possible to use sewveral
combinationconstraints which choose combinations from several not necessarily
disjoint sets to generate stronger concurrency constraints. Suppose a scheduling
problem has a single register file available. This register file has two ports and
supports at most 2 reads or 1 read/1 write during a single time-step. Numerous
tasks in the scheduling problem may access this register file. Each ké&kinay
haved read busyand/orérf write busytransition sets. Twa»combingtionconstraints
are required. One considers &)} read busy@Nd O write busytransitions and creates
all combinations of at most 2. The second considerdafsite pusytransitions and
creates all combinations of at most 1. Together, these two constraints enforce at
most 2 reads or 1 read/lwrite during any time-step.
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Figure 4.19"At most 2 of 6” ROBDD
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Someres busylabeled transitions may require more than a single resaesce
As discussed in section 3.1.4unit-weightres busylabels may be attached to a
single transition to representesource uses. The set with cardinafitirom which
all combinations are chosen must containstances of a function with weigint
When a ROBDDr-combinationconstraint is constructed from such a set, choosing
one instance automatically chooses all other instances and hence the appropriate
weight results. Suppose tasks within a scheduling problem produce both single
word and double word operands. More precise local storage constraints may be
formulated by assigning weight 2 to double word memory care conditions and
weight 1 to single word memory care conditions. By using concurrency weights as
well as hierarchical concurrency constraints, sophisticated bounded resource use
may be modeled.

Two final points remain for concurrency-type constraints. First, conditions may
be applied to a concurrency constraints. Just as an operand value selects among
alternatives in an operand resolution, an operand value (or some other condition)
may select among several static or dynamic constraint scenarios. Second, although
a transition-based concurrency constraint applies for an entire time-step, a time-
step may still represent several concurrency-limited activities. For example, an add
task may require two busses to transfer two input operands from local storage, an
arithmetic function unit, as well as an additional bus to transfer a result to local
storage. A single time-step implementing this task may be broken down into three
time periods: input transfer, computation and output transfer. This may still be
modeled by occupying all required resources for the duration of the time-step
while allowing the actual order of use to remain implicit.

4.5.3 Task Splitting

The notion of ‘task splitting’ was introduced in section 4.3.1. This permits
postresolution accepting tasks to begin execution before a resolver resolves by
duplicating the postresolution task and executing a copy for all preresolution
values. Figure 4.20 shows how a postresolution task is split into three to increase

r—ar—ar—" r— a — 1

|
g
|
|

No Task Splitting Task Splitting
Figure 4.20Task splitting
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speculation. Although more state is added, it may be done in a controlled manner
to enlarge the solution space and determine potentially better execution sequences.

4.5.4 Operand Buffers

As pointed out in section 4.4.1, the number of concurrent instances of a
particular operand is bound by the numbeMA modeling the production of this
operand. This bound may impact cyclic composition execution sequences and also
prohibits dependency implications between executions iterations that are not
successive. Section 4.4.2 described how this bound could be relaxed with iterates
of an entire composition. In some scheduling problems, several instanads of
operands in a composition are not necessary and costly to represent. It is possible
to relax this bound locally through use of operand buffers.

Figure 4.21 illustrates how a particular operantb may be buffered. Each
operand buffer is a single time-step cycMA as introduced in section 3.2. If

O—O——>»O—--—0
info buffeft buffet2  buffet™

Figure 4.210perand buffers

dependency implications are written as in implication 4.24, with no ‘look ahead’
as is commonly done, then this chain of buffers is similar to a synchronous shift
register where the last result operands are preserved. This type of operand
buffering is useful when operand dependencies exist across several execution
iterations. With this style of operand buffering, operand dependenciesféonse

the desired iteration resulbuffe’!, as producer. The original producer is
considered iteration O.

If dependency implications for figure 4.21 are written as in implication 4.25
with ‘look ahead’, then all buffers in this chain may simultaneously transit. Hence,
buffet™ may represent any result from the current iteratipto the past iteration
t-n. This type of operand buffering is useful to relax capacity constraints. If
required by capacity constraints, a past result may be stored by a buffer while a
new result is produced. But if not impacted by capacity constraints, all buffers may
immediately represent the current result with no delay. With this style of operand
buffering, all operand dependencies bséfel ™" as the sole producer and typically
only one buffer is useful. In general, operand buffers provide a localized way to
increase model freedom yet maintain an information-centric view.

4.6 Efficient CMA Representation

Composition may result in large ROBDD structures. In particulaGNA’s
transition relations may be exponentially large, even when expressed as ROBDDs.
As with all ROBDD-based techniques, a good ordering can significantly reduce
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the size of ROBDD structures. Also, targeted partitioning @MA'’s transition
relations reduces ROBDD representation size. Finally, the operand resolution
formulation may be simplified for some cases to reduce ROBDD size. This section
discusses these three strategies for effi€ldmf representation.

A CMA’s final encoding is relatively sparse. It more closely resembles a ‘one-
hot' encoding of operand existence rather than a logarithmic one. Although
additional research may determine a best encoding, the current sparse encoding
has one key advantage. Because all composite-mekhBeaire encoded over their
own unique set of ROBDD variables, a Cartesian product is easily and efficiently
represented. In fact, a Cartesian product requires only total nodes equal to the
summation (not product) of all nodes for MMA in a composition. This may be
contrasted to a logarithmic encoding that may identify guaranteed mutually
exclusive operands in the scheduling problem and reuse the same Boolean
variables to represent both. This would result in less total Boolean variables but not
necessarily less ROBDD nodes. With the ‘one-hot’ approach, constraints are
written between a small set of typically local Boolean variables. This does not
greatly disturb the original efficient Cartesian product. With a logarithmic
approach, constraints would have to be written between a larger, more dispersed
set of Boolean variables. From experience, constraints which involve a large
number of dispersed Boolean variables typically cause the most severe
representation growth. Hence, ABSS strives for sparse encodings that lead to
efficient ROBDD representation rather than a minimal number of state variables.

4.6.1 ROBDD Ordering

A good ABSS ROBDD ordering places two tabkA related by an operand
dependence as close together as possible. In other words, a good ABSS ROBDD
ordering follows the flow of the original behavioral description. Consider a
scheduling problem consisting ofsingle time-step tasks where taskl depends
on the result of task. Figure 4.22 illustrates how this ‘chained’ scheduling
problem looks for 10 tasks. When ordered as shown in figure 4.22, only 72 nodes

Ot 2223456 >t/ —»t8—19

Figure 4.22A ‘chained’ scheduling problem

are required forA O CMA. If ordered {0,2,4,6,8,9,7,5,3,1}, 3638 nodes are
required to represent the same problem! In this bad ordering, the dependency from
task O to task 1 extends across all other tasks. An ordering which insists that all
constraints cross over as small a numbe€bA ROBDD variables as possible is
typically good. With real scheduling problems, it is not always possible are
productive to find this best ordering. Rather, a heuristic task ordering, which tends
to minimize constraint length, is used. Traditional ROBDD sift reordering then
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finds a better ordering from this good starting point. Finally, when employing
traditional ROBDD ordering techniques such as sift\M#\ in a composition are
first sifted as whole blocks and then sifting occurs within individie . This
grouping of MA variables during sifting speeds up reordering and results in
smaller ROBDDs.

4.6.2 ‘Long’ CMA Constraints

Suppose that a ‘long’ inter-iteration dependency is added to the example as
shown in figure 4.23 to create a loop. Even though all other dependencies are of
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Figure 4.23A “chained” scheduling problem with “long” constraint

optimal length, this one long constraint causesGMA transition relation to grow

from 72 to 237 nodes. Instead of attempting to find a better average order, a
CMA'’s transition relation may be partitioned. Consider a transition relation
partitioned into two partitions, 0 and 1. Both partitions are originally the Cartesian
product of all compositiotMA . Most constraints are applied to partition O while a
few long constraints are applied to partition 1. Care must be taken when computing
image and preimage of such a partitioned transition relation because both state and
transition information are important to ABSS. To compute an image, a present
state set is intersected first with partition 0. Present state variablesMAathat

do not involve any of the long constraints in partition 1 are then existentially
guantified out. Next-state variables are not mapped or shifted to present-state
variables yet. Transitions of aMA involved with long constraints, whether
accepting or producing, are preserved by delaying existential quantification of
their present state-variables. Finally, this intermediate set is intersected with
partition 1 and all present-state variables are existential quantified out and next-
state variables are shifted to present-state variables. This may be generalized to
several additional partitions for long constraints. There are trade-offs and it is not
necessarily best to have numerous partitions. With more partitions, Mrbave
constraints appearing in later partitions. ThédA may not have present-state
variables existentially quantified out during early partition computations. This can
lead to larger intermediate set sizes.

The scheduling problem in figure 4.23 was built in two partitions, 0 and 1.
These two partitions require a total of 72+7=79 nodes. Tasks 1 and 9 involve long
constraints and hence have present state variables existentially quantified out
during image computation only with partition 1. A partitioned transition relation
for long constraints is typically only used during the viability prune described in
section 4.2.6. The viability prune removes states and transitions with iteration-
sense confusion. These erroneous states and transitions are the primary
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contributors to non-partitioned transition relation growth. Once they are removed,
all transition relation partitions are merged into one transition relation through
intersection. For the example in figure 4.23, the post-viability ‘flattened’ transition
relation requires only 73 nodes. Finally, concurrency constraints are typically
applied only after a transition relation is flattened.

4.6.3 Simplified Operand Resolution Formulation

Operand resolution may be simplified in compositions without capacity
constraints. This includes cyclic control-dependent iterates and regular acyclic
control-dependent composition. In these cases, tasks are bypassed immediately
when their control-obviated expression tisie. Figure 4.24 illustrates operand
resolution for these cases. In frame 1, the resolver has yet to resolve while the task
in control block 2 has speculatively produced. In frame 2, the resolver resolves and

r—ar—ar— A r—ar—ar—A r—ar—ar—a r—ar—ar—A
| |l |l | | |l |l | | |l |l |
VAN O AL 4/ 2 O AL 4/
1~ 1~ 1~
Frame 1 Frame 2 Frame 3 Frame 4

Figure 4.240perand resolution sequence with immediate task bypass

the task in control block 0 is immediately bypassed. This is possible as there is no
chance of iteration-sense confusion for the composition cases considered. In frame
3, the task in control block 1 executes. In frame 4, the postresolution task may
accept. The postresolution task’s dependency on preresolution operands need not
be conditioned to refer to just a single preresolution operand but may be written in
terms ofall preresolution operands. Provided that all preresolution operands are in
control blocks which are only active when they supply the postresolution task, then
all preresolution operands will be known in the correct sense through bypassing or
speculative execution by the time the resolver resolves. Hence, an operand
resolution point may be written as,

1
(maAinfo requiredD (Mp".Snfo1 known —) E(mr'srinfo known —))* (4.29)
2
(maAinfo requiredD (Mp".Sinfoz known —) [(mr'srinfo known ).
(maAinfo requiredD (mpn.Snfon known —) [(mr'sinfo known —))

For postresolutionAjng, required 10 b€ enabled, the resolver must keown
Siinfo known @S Well asall preresolution operandsino1 knownthrOUINSHfon known
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From experience, thiat operand resolution formulation is often more efficient
to represent.

4.7 Summary

This chapter described how a composite modeling automadA , is
constructed. The Cartesian product of 8IA, each representing a task or
sequential constraint from the scheduling problem, creates an iGHi&A .
Dependency implication constraints, applied through intersection, prune acausal
states and transitions fromGMA . Capacity implication constraints and a viability
pruning step prevent iteration-sense confusion in cyclic models. Task bypassing
double implications, operand resolution point implications and iterates help model
correct execution of acyclic and cyclic control-dependent scheduling problems.
The requiredCMA pruning steps for various types of scheduling problems are
summarized in table 4.1.

This chapter stressed that concurrent operand instances are bounded in a cyclic
CMA. As an MA represents existence or nonexistence of a finite number of
operand instances, only operand instances proportional to the numidiéy of a
composition may be simultaneously represented. Thus, a ¢gdli& bounds the
solution space. Several techniques were presented to relax this bound in a
controlled fashion. These include using iterates, adding operand buffers and
performing task splitting.

Table 4.1: Summary of Composition Steps

Acyclic Cyclic Acyclic Cyclic
Data-Flow Data-Flow Control- Control-
Dependent Dependent
Cartesian Product Yes Yes Yes Yes
Transition Relations Adata Adata Adata Acontrol Adata Acontrol
Task Bypassing None None Yes Yes
Dependency Basic Basic Basic Basic
Constraints Alternative Resolved Resolved
Capacity Constraints] None Basic None Global
Iterates
Viability Pruning No Yes No Yes
Concurrency Transition Transition Transition Transition
Constraints State State State State

This chapter also discussed composition techniques in general terms.
Implications and double implications are necessary for all dependency and
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capacity constraints as well as synchronization with sequential constraints.
Concurrency constraint hierarchies enforce sophisticated resource bounds of both
system activities and local storage.

The final discussion in this chapter focused on efficient ROBDD representation
of a CMA. A good ordering is found by following the expected flow of a
scheduling problem’s behavior. Some dependency and capacity constraints cause
excessive ROBDD growth. This is avoided by partitioningC®IA’s transition
relation. Finally, operand resolution points may be formulated in a more efficient
manner for certain types of scheduling problems.
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Chapter 5

Exploring Modeling Automata

MA andCMA as described in chapters 3 and 4 encapsulate all legal execution
sequences of a system. Still, they may not be used directly as a finite state machine
controller. Fundamentally, they represent multiple legal execution sequences via
nondeterministic choices, yet a real implementation must make deterministic
choices. If nondeterministic choices are pruned IICMA to leave only one
deterministic choice, or if multiple choices are made deterministic by conditions,
then a finite state machine controller may be directly synthesized. But this raises
guestions as to which nondeterministic choices should be kept and made
deterministic and which choices should be pruned. This chapter introduces
exploration techniques that answer these types of questions.

Optimization requires an objective. The objective directs how and what type of
deterministic sequences are extracted fromMA. A common objective is
minimum latency. This may be stated as, “What execution sequences implement
the entire scheduling problem in the smallest number of time-steps?” Variations of
this exist for cyclic behavior, where minimum iteration latency is often desired,
and control-dependent behavior, where some control cases are more favored than
others. The exploration techniques presented here are directed by a minimum
latency objective. They first determine if, given all constraint imposed GMA ,
any valid execution sequence of any length exists. Then, they determine all such
sequences of minimum latency.

At the core of ABSS exploration techniques is an implicit implementation of
Dijkstra’s shortest paths algorithm. For acyclic models, shortest paths from
Sask starttO Sask finalF€Present minimum latency execution sequences. For cyclic
models, shortest repeating sustainable paths @M& correspond to minimum
iteration latency or maximum throughput execution sequences. Control-dependent
models require that a set of shortest paths, covering all possible control cases in a
deterministic and causal way, is found. Finally, with control-dependent models,
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some control cases may be favored over others and hence shortest paths for these
favored paths are found at the expense of other control cases.

With regard to the RISC example, exploration determines execution sequences
that exhibit high instruction throughput for the most common instruction cases.
This requires finding shortest repeating paths @MA that execute all iterates.
This is a difficult problem as paths for all control cases must be found and
furthermore must each exhibit sustainable repeating behavior.

This chapter is organized as follows. First, exploration for acyclic data-flow
models is presented. Basic exploration ideas and a detailed example are introduced
here. Next, validation and ensemble path sets, which are both required for control-
dependent exploration, are discussed in regard to acyclic models. Finally,
exploration techniques relevant to cyclic models, such as behavior cuts, repeating
kernels and closure, are presented first for data-flow and then for control-
dependenCMA.

5.1 Acyclic Data-Flow Exploration

This section introduces exploration techniques for acyclic data-flow models.
First, a detailed example illustrates basic exploration concepts required here and in
later sections. Next, these exploration concepts are more formally defined and
described. Finally, this section provides reasons WIBMA's representation and
exploration is efficient.

5.1.1 Example

Section 4.1 introduced a simple acyclic data-flow example with a final pruned
CMA presented in figure 4.5 and again here in figure 5.1. The two minimum
latency paths in this example are evident. Either the top or the bottom path may
reachSsi finalfrom Sask startin three time-steps. Although this is evident here, it
is not evident in most real scheduling problems. Consequently, an implicit
implementation of Dijkstra’s algorithm is used to find all such shortest paths.

2 unknowi
r1 known
r0 known
S011

r0 i2 required
alu busy

r0 i3 required
alu busy

r2 known
r1 known
r0 known

S111

i0 i1 required
alu busy

r1 unknown
r0 known
S001

r1 unknown
r0 unknown
S000

r0 i2 required
alu busy

r0 i3 required
alu busy

r2 known
r1 unknown
r0 known
S101

Figure 5.1Final CMA for acyclic data-flow example from section 4.1
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r0 unknown
S000

r1 unknown
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r1 unknown
r0 unknown
S000

2 unknow,
r1 unknown
r0 known
S001

r1 unknown
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r1 unknown
r0 known
S001

2 unknow,
r1 known
r0 known
S011

rl known
r0 known
S011

r2 known
r1 unknown
r0 known
S101

r1 unknown
r0 known
S101

r2 known
rl known
r0 known
S111

Time-step O Time-step 1 Time-step 2 Time-step 3

Figure 5.2Forward exploration of figure 5.1

Consider states, as shown in figure 5.2, that are reached during a forward
exploration starting with state S000. The state set at time-step O only contains
S000. After a single image computatiothe state set at time-step 1 contains states
S000 and S001. Only at time-step 3 &g finaiStates present in a time-step set.
Reaching states i, fing S the forward exploration termination condition. This
forward exploration process is similar to labeling graph vertices with their
distances fronB, startif @ll transitions are considered unit weight. For instance,
S011 appears in the state sets at time-steps 2 and 3 because it is at least two image
computations away from any state33qy start 1here is no guarantee that states in
Sask final@re ever reached during forward exploration as constraints applied to a
CMA may prohibit this. When this occurs, no solution is possible since ABSS
implicitly searches the entire solution space.

Once forward exploration terminatespackward pruning step occurs. This
pruning starts with any states reachedigy fina COMputes a preimage, and then
uses this preimage set to prune the previous time-step set. Figure 5.3 illustrates
how backward pruning is applied to figure 5.2. The preimage of S111, the only
state reached i, fing returns states S011 and S101. This is intersected with the

1. Aimage computation is described in section 4.2.6.
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Time-step O Time-step 1 Time-step 2 Time-step 3

Figure 5.3Backward pruning of figure 5.2

time-step 2 state set to prune states not on a path that re§gheg,, Next, the
preimage of this pruned time-step 2 state set is used to prune the time-step 1 state
set. This continues until states at time-step O are reached. All shortest paths from

Sask starttO Sask finalf€main.

Nondeterministic choices are still present in figure 5.3 as all shortest paths are
represented. It is possible to arbitrarily pick and preserve a single choice whenever
faced with a nondeterministic choice to create a single deterministic execution
sequence awitness scheduleas shown in figure 5.4. This assumes that all choices
are of equal cost as they all require the same minimum latency to &aghina
There may be additional cost considerations that prefer one choice over another.

2 unknowi
r1 known
r0 known
S011

r0 i3 required
alu busy

r0 i2 required
alu busy

r2 known
rl known
r0 known
S111

i0 i1 required
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r1 unknown
r0 known
S001

r1 unknown
r0 unknown
S000

Figure 5.4 A final deterministic witness schedule
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5.1.2 Basic Exploration Definitions and Algorithms

To facilitate a more formal discussion of exploration, some new definitions and
notations are needed. In the example, states reached at a certain time-step were
preserved in a time-step state set. This family of time-step state sets is called a path
set.

Definition 5.1 A path set of a CMA is an indexed family of state sets
{L, s ..., 3% where S™1 or S is contained in the image or preimage f
respectlvely This encapsulates set€bBfA paths as defined in definition 3.2.

Symbolic preimage and image computations, as defined in section 4.2.6, are
used extensively during exploration. To denote an image or next-state
computation, the function,

IMI(Saper ) = Gix, (A (Saper —)) (5.1)

is defined. This function returns all next states of state3, 5, mapped to present
state ROBDD variables. If the argumeis suppressed than the default transition
relation for theCMA under consideratioy92@ js implied. Likewise, a preimage
or previous-state computation is denoted by the function,

IMG ™ (Saper &) = O x(B* (— Saped)- (5.2)

Minimum latency exploration of an acyclic data-flo@MA employs three
algorithmic steps: forward exploration, backward pruning and, if desired, withess
schedule extraction. Forward exploration begins witRMA's task start state,
Saskstat and constructs a path seRS of cardinality i+1 such that
PS.$0 Saskfina? O- Figure 5.5 details the basic forward exploration algorithm.
As long as an image computation does not contain stat&gdpsing @ time-step
set is added t®S.Forward exploration terminates when the last time-step state set
in PScontains some states$)qy final

i=0

PS.$ Stask start

while(  (PS.$n Sask fina) == 0 X
PS.$1= Img(PS.9

i=i+1

Figure 5.5Basic forward exploration algorithm

Once a candidate path s&sS,is created via forward exploration, backward
pruning only preserveall paths fromS gk starf0 Sask finat AS Shown in figure 5.6,

85



the last state set iRSis restricted to states that also appea® i fina A Series of
preimage computations prunes all states set8Srsuch that only and all paths
from Sask start 10 Sask final 'f€Main. A path set that contains all paths (not just a
single path) is useful if further refinement is desired. For example, since all
minimum latency paths are found, it is possible to further prune this path set by
additional design objectives.

i=|PS|-1

PS.$= (PS.$ Sask fina)

while( > 0){
PS.$1= (PS.$1n Img(PS.$)
i=i-1

Figure 5.6Basic backward pruning

The pruned path seES contains all minimum latency execution sequences.
This set may be restricted to represent a single witness schedule if desired. This
begins by choosing a single state at time-step 0, computing an image, restricting
time-step 1 by this image, and continuing through all time-step state sets in like
manner. The witness extraction algoriﬁﬁsl shown in figure 5.7.

i=0
SO PS.$
PS.$&s
while(  i<|PS|-1){
i=i+1
PS.$= (PS.$0 Img(PS.SY)
sOPS.$
PS.$=s

Figure 5.7Witness extraction algorithm

2. If only a single witness schedule and no path set representing all minimum latency
schedules is desired, then backward pruning and witness extraction may be merged into
one step for acyclic data-flo@MA .
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A witness schedule, as well as any other execution sequenc€MAa or a
path set of &CMA , must be interpreted through transition labels. The pattPSet
contains state sets representing time-step boundaries. To determinactriidy
occurred during theth time-step, the transition(s)PS. $ 1 ps.$)  must be
considered. Any label which referencéBS. gt ,PS.9) |dentifies an activity
that occurred during thath time-step. In general for eachjped LT, if
(PS.$7LPS.9)0A,,, then label occurs for at least one transition in
(PS.$71 Ps.9). if (PS ¢! Ps.9) represents a single transition, thibel
deflnltely occurs for that transition.

Figure 5.8 shows a conceptual view of the basic exploration steps. At the top,
forward exploration has created a path set that includes minimum latency paths
from Sask start 10 Sask final BOth time-step state sets and transitions are shown.
Backward pruning has been applied to the path set shown in the middle. Every
minimum latency path is present. Finally, a single witness schedule remains in the
path set shown at the bottom. This represents one minimum latency deterministic
execution sequence for tMA .

L T8¢ g2 L 18 £ ¢ &

Forward Exploration

J — 4 D
[4
S(ask start Sask final
L 18 T2 L 78 @ ¢ &
Backward Pruning == [~ S
4
Stask start Stask final
L T8¢ g2 L 18 £ ¢ &
Witness Schedule .Z D
S(ask start Sask final

Figure 5.8 Conceptual view of exploration steps

5.1.3 Efficiency of a CMA's Representation

Representation and exploration ofCdMA is potentially very costly as up to
approximately 290 states and an even larger number of paths may be dealt with.
Still, exploration and representation of @VIA is often efficient for several
reasons. First, use of implicit ROBDD representation often, though not necessarily
always, provides dramatically efficient representation and manipulation of large
sets. Second, particular properties of the ABSS formulation also enhance
efficiency. Note that during forward exploration, the entire reached state set, not
just the frontier, is propagated forward. Consider a task starting state SO00000.
Suppose the task represented by the single timefi&pn the most significant
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state bit position executes during time-step 1. Hence, S000000 and S100000 are
contained inPS.$. Only the cube S-00000 need be represented and no ROBDD
variable is needed for the most significant state bit. On the other hand, if just the
frontier is preserved and propagate®S.$ will only contain S100000. This
requires an ROBDD node to represent the most significant state bit. Propagating
the entire reached state set rather than the frontier results ir Enp8ovement for
ABSS.

Another reason for efficiency is merging of paths i€&IA and its path sets.
Imagine a scheduling problem with three tasks:b and c. These tasks are
completely independent --there are no operand dependencies among them. These
tasks all require a single time-step ALU and only one such ALU is available.
Given these assumptions, there are six possible orderinggaindc. A path set
that doesn't support path merging is shown in figure 5.9. All six distinct paths
reach six distinct task final states. A path set that does support path merging is

Figure 5.9Nonmerging path set

shown in figure 5.10. Only half as many states are required when paths are allowed
to merge. Path merging is similar to the sharing of isomorphic subgraphs that
makes ROBDDs compact. £MA’s nondeterminism and ‘one-hot’ Cartesian
encoding naturally enables this efficient merging of paths. Although path merging
is possible in an explicit representation, the number of paths for exact search of the

88



Figure 5.10Merging path set
scheduling solution space is typically so large that an implicit representation,
which still supports path merging, is efficient and preferred in practice.

Even with these reasons for efficiency, representation and especially
exploration of a&CMA may be complex and costly. Still, ABSS is practiceable for
problems of useful scale. Specific discussion regarding ABSS cost and complexity
is presented in section 6.1.3 and section 7.2.3.

5.2 Acyclic Control-Dependent Exploration

To determine minimum latency schedules from an acyclic control-dependent
scheduling problem’sCMA also requires finding shortest paths. Similar to
section 5.1, symbolic reachability finds shortest paths fro@MA’s task start
states, Sask start t0 task final statesS,sk finat Unlike section 5.1, a witness
schedule is not a single path in a path set but rather an ensemble of paths from
Sask start!0 Sask final Such an ensemble of paths is calledesrsemble schedule
and must include a path for each distinct control-dependent execution sequence.
For instance, a RISC processor must be able to exeallitenstructions and
therefore an ensemble schedule for a RISC processor contains sequences for every
instruction. As a more specific example, consider some control-dependent
behavior that branches into two sets of behaviors dependingroe/falsecontrol
resolution. An ensemble schedule for this examp&8A must contain a path
from Sask start 10 Sask final that represents execution @fue control resolution
behavior and another path that covefalse control resolution behavior.
Furthermore, all paths of an ensemble schedule must be mutually compatible. As
will be shown, it is possible to find paths fro8ysk startt0 Sask finaithat cover all
control cases yet do not represent a casual ensemble schedule. A fixed-point
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pruning, calledvalidation, is performed during backward exploration pruning to
insure that only valid ensemble schedules remain.

Control dependent models contain two transitions relatiaf2andacentrol
A time-step still corresponds to a single image computation of eiftfal or
ANl \When modeling clock synchronous systems, two time-steps, of&'36
and another foA®""° correspond to a single clock period. As ahés now not
enough to create an entire path set, a transition set is associated with a path set to
identify whichA should be used to relate one time-step state set to the next.

Definition 5.2 If multiple transition relations are required in the computation of
a path set, aransition set is associated with a path set. A transition set,
{A° AL, ..., A™Y is an indexed set containing all transition relations used in the
computation of a path set. A transition relati®nelates set§,S*?.

5.2.1 The Validation Problem

To illustrate the validation problem, three possible ensemble schedules for the
behavior in figure 5.11 are discussed. Notice that this behavior contains four tasks

if (d > 100) { I/l Task cl
y=a xb;} /l Task m1
else {
y=c xb;} I/l Task m2
z=X +tYy; /I Task al

Figure 5.11A behavioral example for discussion on validation

(c1, ml, m2, andal), two control blocks ¢>100, d<100), and one operand
resolution point y*>190 or yd<100 yesplves toy for task al). For discussion
simplicity, assume that each task is implemented in a single time-st&€pMA
representing this behavior is constructed and subsets of paths iGCN#s are
explicitly presented for discussion.

Figure 5.12 shows &€MA portion representing the behavior in figure 5.11
where no speculation occurs. Bits in the state vector are ordered
{c1,cl1,cl,ml, m2,al}. In the first time-step, taskl executes as seen by the
change in state from 00- to 01- icll’s state portion. Al is modeled by a
multivalueMA , resolution occurs during the control-phase. A path covering every
possible control resolution leaves tlesolvelabeled state, S01-000. Furthermore,
during control-phase resolution, either tagklsor m2 are bypassed. Thgaue path,
shown at the top, executedl and finallyal. Likewise, thefalsepath, shown at the
bottom, executesn?2 and finallyal. This results in a valid ensemble schedule
requiring 6 time-steps or 3 clock ticks for either control case. It is a valid ensemble
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schedule as all control cases are covered and all possible value resolutions leaving
aresolvelabeled state continue 8, final

S,
500-000 task start
cl true

Stask final

c1 false
ml bypass

) D D) D )

Figure 5.12A CMA subset of a valid nonspeculative ensemble schedule

sr(—:'solve

Figure 5.13 shows an explicd@MA portion where speculation for the behavior
in figure 5.11 does occur. In the first time-step, taslexecutes and either task.
or m2 executes speculatively. Tagkd andm2 may not both execute speculatively
during the same time-step as only one multiplier resource is available. Now there
are two resolvelabeled states, S01-100 and S01-010. Only paths favoring
speculation are shown leaving thessolvelabeled states. The paths covering
cases for incorrect speculation aretincluded. It appears as if either control case
may complete and reac gy fing in just four time-steps. In fact, there are legal
speculative paths for either control case which do complete in just four time-steps.
Thus, all control cases are covered, yet this is not a valid ensemble schedule. Since
the control operand is not known at time-step 0, a deterministic machine can not
choose the appropriate speculatepriori. It must choose to speculate either on
ml or m2. If it chooses to speculate incorrectly, then it must have a recovery path.
Unfortunately, theesolvelabeled states only have exiting paths which presume a
correct speculation was done. Hence, a deterministic implementation can not be
synthesized which requires just four time-steps for both control cases.

cl true

Srt—:‘sctlvr-,' stask final
cl false

Figure 5.13A CMA subset of an |nvaI|d speculatlve ensemble schedule

Stask start

Figure 5.14 shows EMA path subset that contains recovery paths. Although
speculation may occur for eithenl or m2, paths exitingresolvelabeled states
S01-100 and S01-010 now coval possible control resolution cases. Hence,
when a control value resolves, a deterministic machine always has an appropriate
path for the particular value resolution. In fact, figure 5.14 contains two valid
ensemble schedules. One speculatively execoitbsand may complete &rue
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Figure 5.14A CMA subset of two valid speculative ensemble schedules

resolution in four time-steps yet requires six time-steps flalseresolution. The

other speculatively execute® and may complete falseresolution in four time-
steps yet requires six time-steps fotrae resolution. This observation leads to a
deeper scheduling objective question, “Which subset of control cases should be
favored for minimum latency and at what expense to other control cases?”

A validation step is added to backward pruning to guarantee every path is a
member of some valid ensemble schedule. The validation step insures that all
resolvelabeled states in a path set have exiting paths covering all control
resolutions. Finally, control cases may be prioritized during backward exploration
to favor minimum latency of some control cases at the expense of others.

5.2.2 Unprioritized Exploration Overview

Two types of exploration are presented for acyclic control-dependent models:
unprioritized and prioritized. Unprioritized exploration does not favor some
control cases at the expense of others but rather finds a minimum latency execution
sequence that includes all control cases. This is the simpler exploration strategy
and is presented first.

Figure 5.15 shows a conceptual overview of control-dependent exploration
steps. These steps are described in detail in subsequent sections. First, forward
exploration creates a path set with shortest paths 83k startt0 Sask finat A
further criteria is that states i8,¢ fingCOVering all possible control resolutions
are reached. Next, backward pruning is attempted. During backward pruning, a
validation step insures that when a multivaMé resolves, all control cases are
still present and continue 8, finas AS Shown in the failed backward pruning,
states inS are removed as they fail validation. No states remain and hence no
valid ensemble schedules exist. Therefore, another forward step is added to the
original path set and backward pruning is attempted again. In the second backward
pruning attempt, one state 8 survives validation as it has exiting paths for both
control values. Still, several ensemble schedules exist. The final step reduces the
path set to a single withess ensemble schedule.
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Figure 5.15Conceptual view of control-dependent exploration steps

5.2.3 Forward Exploration
Forward exploration for acyclic control-dependent models proceeds in similar
fashion as previously described for acyclic data-flow models. With basic data-flow
forward exploration, termination occurs once any stateSjg fing are reached.
With control-dependent forward exploration, termination occurs once states in
Sask fina e reached which also cover all control cases.aflrpaths checkis
i=0
PS.$= Sask start
apdPS.5n Sk fina # aPASask final X
PS.$1= Img(PS.9
i=i+1}
Figure 5.16Forward exploration algorithm with all-paths check

while(
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formulated to determine if a state set covers all control casesX|8lyuesbe the
set of all ROBDD variables in &MA less those variables that encode a control
value2 The all-paths check for some stateSist expressed as,

apo(9 = [y (5:3)

no values —

All variables, except those indicating control value, are existentially quarftified
out. This leaves only control case valuesapiic exactly equals all expected control
case values for @MA , then the all paths check is successful. All expected control
cases for aCMA may be determined by applying equation 5.3 tcC®A’s
Sask final Finally, figure 5.16 shows a forward exploration algorithm modified to
include an all-paths check.

5.2.4 Backward Pruning with Validation

Backward pruning for acyclic control-dependent models requires a validation
step at each state set in a path set that may co8iajg),states. Validation simply
insures that for any state labelegsolve a transition to every possible resolved
value exists. Due to the way a multivalA is speC|f|ed,Sreso|vestates are only
reached during backward pruning in a preimageA$#"! Hence, validation is
only required when computing a preimageA&"tr!

V=0

- D(_’ _ X,a.ues)((_’ S . Acontrol)
=1
while ( Viz V1)

i+l _
V - Dm[l Mmultlvalue(( (_ m. X/alugvm resolvé V I’ESO|V(2
j=i+1
}

return D(—, ><Va|ues)vj

Figure 5.17Validated preimage computation

Figure 5.17 describes a validated preimage computation. An initial\Set,
computes partial preimage of state s& This is a partial preimage as not all next
state variables are existentially quantified out. Next-state variables which

3. When encoding a multivallMA , some state variables serve only to distinguish oper-
and values. These variables are den¥{gfles Xno values X-Xvalues

4. Existential abstraction is used rather than universal abstraction as states reached in
Sask finamay cover all control cases yet still differ when considering other state variables.
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distinguish value for any multivalu®lA in a composition remain. The validation
fixed point, within the while loop, acts on this sétFor every multivalueMA m
within the composition, two partitions are formegy wsovecontains all states i
wherem is not in theresolvelabeled state whil&/|,, esoeCONtains all states i
where m is in the resolvelabeled state. Next-state variables formawhich
distinguish value are universally quantified. Onigsolvelabeled states with
transitions to next states covering all possible resolved values remain. As
validation for some multivaluen may remove required transitions for other
multivalue m, validation is repeated for ath until no additional pruning occurs.
Finally, remaining next-state variables are existentially quantified out. The
returned set is the validated preimagé&of

This validated preimage computation is incorporated directly into backward
exploration pruning as seen in figure 5.18. Within the while loop, two preimages

i=|PS|-1
PS.$= (PS.$n Sask fina)
while( 1> 0){

PS.$1= (PS.$1n Valimg(PS.9)
if(  PS.$1=0) break

i=i-1

PS.$1= (PS.$1n Img}(PS.9)
i=i-1

Figure 5.18Backward pruning with validation

for both A"l andA%2@are computed. A validated preimage computation is only
used withACMo!l This assumes that the initial path set always contains an odd
number of time-step state sets and forward exploration is altered to guarantee this.
If the validated preimage returns an empty set, then backward pruning fails.
Backward exploration pruning is attempted again with another path set that is
extended by two time-step sets with forward exploration. For this reason, a copy of
PS is always used during backward exploration pruning so that the original may be
extended. When necessary, the original path set is extended through image
computationsPS.$ 1= Img(PS.9.
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5.2.5 Ensemble Witness Extraction

For control-dependent exploration, iterative calls to the witness extraction
algorithm shown in figure 5.7 are made until a complete ensemble is obtained.
Figure 5.19 illustrates how a complete ensemble is extracted. After a single

LT8¢ 12 L 182 @ 1¢ &1 D

Initial Witness Extraction p\ q )

[ K
Sask start Sresolve Sask final

L 18 T2 LT8¢ S 1¢ ST P

Branch Extraction p\ ; — ] )

[ S
Stask start Sresolve Sask final

Figure 5.19Conceptual view of ensemble witness extraction

application of the witness extraction algorithm te@pyof PS a single schedule

for precisely one control case is extracted. States labhelgolveare reached at
various time-step state sets in this initial schedule. Whene\g g, State is
reached, a random choice is made as to which control case to proceed on. When a
subsequent iterative call to the witness extraction algorithm is made, it begins in
the original path set with thissegoeState and at the appropriate time-step state
set. When the image odqoneiS COMputed, it is restricted by intersection to
include control cases other than what has already been completed. This is never
empty as validation has guaranteed that the image ofsgagyj,e. State includes
states covering all control cases. These subsequent iterative calls serve to extract
branches for all control cases. Iterative calls to the witness extraction algorithm
continue until all control cases are covered. The original witness schedule and all
branches are included in a final path set encapsulating a complete ensemble
schedule.

Witness extraction is not an essential step in exploration. It is useful primarily
when a single schedule or ensemble schedule must be explicitly examined. As a
backward pruned path set contains all minimum latency schedules, an implicit
direct path from this to a dynamic finite state machine controller is preferred.

5.2.6 Prioritized Exploration Overview

The problem with unprioritized exploration is that only the longest latency
control case is optimized. It may be that other control cases have valid paths that
complete in even fewer time-steps. Furthermore, other control cases may be
optimized first at the expense of the longest latency control case. For instance, in a
RISC processor, some instructions occur more often than others. Execution
sequences for these high probability instructions may be optimized at the expense
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Figure 5.20Conceptual view of control-dependent prioritized exploration

of other infrequent, though still necessary, instructions. Figure 5.20 shows a
conceptual view of control-dependent prioritized exploration steps. First, forward
exploration creates a path set that adds time-step state setsllrdiates are
reached. This is desired because prioritizing one control case may delay
termination of another control case. For instance, speculation in favor of a
prioritized control case will consequently delay other control cases. By computing
all reachable time-step sets, all possible delays are accounted for. Next|iast
termination algorithm finds the first time-step set where stateSify fina @re
reached that cover the highest priority control case(s). Future activity for
terminated control cases is removed from the path set. Backward pruning then acts
on the entire path set. If successful, the same steps are applied for the next highest
priority control case. If unsuccessful, the control cases under current consideration
are allowed to terminate two time-steps later and backward pruning is attempted
again. This continues until all control cases have been prioritized. Finally, a
witness ensemble may be extracted.

To facilitate control-case prioritization, @riority list is created. This is an
ordered list of control-case termsp. Each control-case term is a present state
expression of multivalueMA values. A control-case term may be a sum of
products and hence represent multiple control cases. BMA with numerous
control cases, it may be impractical or unneeded to prioritize each individual
control case separately. Often a set of control cases, represented by one control-
case term, is prioritized. In this case, the latency of the worst control case within
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this control-case term will be minimized. The latency for all other control cases is
only guaranteed less than or equal to this worst-case latency. Even if better latency
is possible for these other control cases, it will not be guaranteed unless these paths
are specifically prioritized.

Control-case prioritization is a greedy algorithm. Even if a certain control case
should only be favored slightly over another, it will be favored as much as possible
and at any expense to lower priority control cases. For this reason, a hierarchy of
control-case terms is often used. At first, several control cases are prioritized
jointly. After this, individual control cases may be prioritized. In an ideal control-
case prioritization algorithm, control cases would be prioritized such that expected
latency is minimized. The expected latency is the weighted sum of all control-case
latencies where each latency is weighted by its execution probability.

5.2.7 Full Forward Exploration

Control-case prioritization requires a path set that includes all reached states.
Full forward exploration, or complete reachability, is required. This allows
prioritization of one control case to delay other control cases, yet these delayed
control cases are still contained in a path set. A new termination condition of no
new states reached is added to previously described forward exploration
algorithms. Figure 5.21 describes the full forward exploration algorithm.

i=1

PS.$ Stask start

rs = Img(PS.8)

while(  rsz PS.$1)y
PS.$=rs
rs= Img(PS.S
i=i+1

}

Figure 5.21Full forward exploration algorithm

5.2.8 Control-Case Termination and Future Exclusion

Minimum latency prioritized schedules are not found by applying backward
pruning directly to a full path set. Rather, a full path set must be pruned to include
earliest terminations of the control case undergoing prioritization. Earliest
termination is aPS.$such that states i, fing@re reached which cover the
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i=0
while( i <|PS|){
if ( apdPS.$n Sask fina) == CH) )
break
izi+1
}
ets=i
Figure 5.22Earliest termination algorithm for control casgs

currently considered control-case tercp, Figure 5.22 describes the algorithm to
find such &S.4 Beginning with the first time-step set in a path set, each time-step
set is checked for intersection withq fingr@Nd containment otp. If so, the
algorithm breaks andtsindicates the earliest time-step where task final states are
reached focp.

Even thoughcp terminates inPS.$' time-step state sets past this are still
required as paths for other control resolutions, required for a valid ensemble, may
terminate later. Still, for the control cases under consideration, no future
terminations may be allowed as they would imply schedules with latencies longer
thanets. To meet these two conditions, all path set time-step sets are kept but all
time-step set®S.Swherej > etsare intersected withp to exclude any states for
the terminated control-case term.

5.2.9 Backward Pruning for Control-Case Prioritization

Earliest termination and future exclusion of terminated control-cases is
performed on a copy of the original path set. As before, this allows for failure
during backward pruning and additional attempts with incrementally extended
path sets. Backward pruning for control case prioritization builds on what is
described in figure 5.18 and is detailed in figure 5.23. One difference is the
preservation ofS,q finaiStates at each preimage computationA8’2° This is
required as backward pruning starts at the last time-step $&iithis time-step
state set may have some control cases excluded due to future exclusion of
terminated control cases. Consequently, these previously terminating control cases
will never appear in a series of preimage computations starting with the last time-
step state set iRS Hence, their termination states must be preserved when they
appear in a time-step state set. Another difference is the removal of the break

5. This occurs only for preimage computationa%f®and notA®"'®! as termination
occurs at a clock-tick boundary and not at every time-step boundary.
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i = |PS|-1

PS.$= (PS.$ Sask fina)

while( i > 0)
PS.$1= (PS.$1n Vallimgi(PS.9)
i=i-1
Terminated= (PS.$%n Sask fina)
PS.$1= (PS.$1n Img(PS.9)
PS.$1= (PS.$1 0 Terminated
i=i-1

}

Figure 5.23Backward exploration with preservation of terminated states

condition. Backward pruning now fails only BS.8 is an empty set rather than
when any time-step set is empty. This allows some late time-step sets in a full path
set to be reduced to empty by validation while the real schedule exists in early
time-step sets

The entire prioritized exploration flow requires successive iterations of early
control case termination, future termination exclusion and backward pruning for
all control casesgp, in a priority list. Once all prioritization has completed, a
witness ensemble may be extracted as described in section 5.2.5.

5.3 Cyclic Data-Flow Exploration

With a cyclic CMA, shortest path searches are also used to determine
minimum iteration latency. However, unlike acyck&MA , shortest paths from
Sask startt0 Sask finai@re not sufficientRather, a shortesepeatingpath is sought.
Such a repeating path, calledepeating kernel, represents a minimum iteration
latency steady-state repeating behavior. This section describes how minimum
iteration latency repeating kernels are determined for cyclic dateCildw .

This section presents several new concepts and algorithms required to find
repeating kernels in @MA. First, an overview of repeating kernels is presented.
To determine repeating kernels, a behavior cut is made to determine a potential
starting state set as neith8ggy start OF Sask final MY €veNn appear in minimum
iteration latency repeating kernels. Then, in similar fashion to forward exploration,
a path set, which contains all time-step state sets for candidate repeating kernels, is
created. These candidate loop kernels are pruned so that only complete and closed
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repeating kernels remain. Finally, a single witness repeating kernel may be
extracted.

5.3.1 Repeating Kernels

Consider at an abstract level how execution for some repeating data-flow
behavior may appear. As shown in figure 5.24, execution begins with a sequence of

Iteration 1 Iteration 3
I ! I I ! I
OO D=O=D=O=O=O=D
v v v
Preamble Iteration 2  Repeating Kernel

Figure 5.24Repeating execution unrolled to reveal repeating kernel

preamble states and continues with multiple iterations of the behavior. After
enough iterations have passed, a steady-state behavior may become apparent. In
the figure, the state sequenggbegins to repeat. Such a repeating state sequence

is a repeating kernel. In this exampiteration delay, or time required for one
complete iteration, is three time-steps, whiieration latency, or time between
successive iterations, is two time-steps.

Two repeating kernels, shown as dotted transitions, are also seen in the explicit
CMA for the example introduced in section 2.5 and duplicated here in figure 5.25.

Figure 5.25An explicit CMA for a cyclic data-flow scheduling problem

Because of the symmetric even/odd construction of cyl&A and CMA, two
iteration executionlegs even and odd, represent two potentially overlapping
execution iterations of the repeating behavior. Both legs are identical except for
sense (duals) and imply a complete closed repeating kernel consisting of a single
leg. Such a repeating kernel represents a finite state machine controller with
number of control steps equal to the iteration latency.

It may be that a complete closed repeating kernel may not consist of a single
leg as in this example but rather an ensemble of legs. This may be necessary for
complex repeating behaviors where the average iteration latency is optimized. For
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example, some behavior may require 2 time-steps for even iteration legs yet 3
time-steps for odd iteration legs. This leads to an average iteration latency of 2.5
time-steps. Even more complex cases are possible. This implies a finite state
machine controller with number of control steps greater than the average latency as
each leg may have a different execution sequence. ABSS extracts a complete
closed repeating kernel which contains such best average iteration latency
schedules. In the current algorithm for witness extraction, a repeating kernel with

exactly one leg is found.

Conventional scheduling techniques do not always guarantee optimal steady-
state repeating behavior. Instead, search typically starts from a natural system
starting state, proceeds through the initial iteration, and then enters a steady-state
behavior based on this initial iteration. Basing the steady-state behavior on this
initial iteration may lead to suboptimal solutions. On the other hand, determining
optimal steady-state behavior is challenging as no obvious end or beginning exists.
The questions of where and how much iteration overlap should exist in an optimal
steady-state solution usually leads to circular reasoning. In this respect, the
technique presented here cleanly finds and guarantees an optimal (exkrgd
optimal) steady-state repeating kernel sinltgpossible executions are considered.

5.3.2 Overview of Repeating Kernel Algorithms

A repeating kernel is found for figure 5.25 by example. This serves as an
overview of the upcoming specific discussion of repeating kernel algorithms. The
first step is choosing an activity to construct a behaviolqutiori. It is not known
what state(s) occur in a repeating kernel. It is known that some activity must occur
during every iteration of the scheduling problem. Consequently, any single activity
that is known to be necessary in every iteration, can be chosen as the behavior cut
activity. All immediate next states of transitions exhibiting the behavior cut
activity form a behavior cut state s&,.. In the example, if the activitgdd_vO is
chosen as the behavior cut, th8g. is as identified in figure 5.26. By symmetry,
there is also the du§,.-.

Figure 5.26Cyclic CMA with behavior cut state sefs. and§,.-
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The next step is to find shortest paths fr&p to §,.~ This is just forward
exploration and creates the path set,
PS={{S101,5001P, {S101,5001,S011 {S101,S001,S001,5010,S1%p} Then,

a backward prunin% step preserves only states belonging to shortest paths,
PS={{S001}°{S011}* {S010,S110%}. This path set represents all iteration legs
with latency of two time-steps.

Some of the iteration legs contained in a backward pruR&lare not
repeatable within the same iteration latency. For example, if leg
{{S001}°{S011}1{S010}% is used, then it may not execute a subsequent
iteration in two time-steps or less. This can be determined by examining the last
time-step state, S010. Its dual, S101 is not present in the first time-stef of
Hence, there is no iteration leg to attach to this iteration leg which completes the
next iteration in two or less time-steps. This argument may be made as a cyclic
CMA is symmetric by construction and therefore a dB&- exists. A closure
algorithm prunes #Ssuch that the first and last time-step states are exactly equal
as duals. After closure, the closed prur®8={{S001}°{S011}*{S110}%}. This
path set represents all minimum iteration latency repeating kernels and a witness
extraction algorithm may choose a single repeating kernel.

5.3.3 Behavior Cuts and Tags

A valid cut activityis any atomic activity of somMA in the composition that
occurs once in every complete iteration. L&Y activity represent the set of all
even-sense transitions for which thet activityis true. An even behavior cut state
set is all next-states of these transitions and is computed as,

Soc = D(X, —)Acut activity (5-4)

The dual§,., may be found in similar fashion. Because of the encoding choice
used in all cyclicMA , duals may also be found by bitwise complementation. This
is the preferred method and may be implemented with the standard RQRIDD
pos€) function.

Scheduling problems may consist of multiple independent behaviors sharing
one resource set. In this case, if a cut activity is selected from independent
behaviorgl, §,. will contain all possible states in both even and odd senses for
behaviorg2 by fact that it is independent. This implies that paths exist f@pto
Sc~ Which schedule the first independent behavior but stall in both senses for the
other independent behavior and consequently never execute a single tagifrom
This is illustrated in figure 5.27. Here, a state is divided into two portions
representing states contributed by both independent behaviors. The cut set is
determined with aMA from g1. Hence it may have a state in only on sensg§jn
or S~ On the other hand, all possible permutationsg®exist. Consequently, it
is possible to have states in both senses present for this independent behavior.
Closed and pruned paths are shown that reach a Sglidyet no state change has
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She She~
Figure 5.27False closure

occurred forg2. Closure mistakenly assumes that the dotted paths exist but in
reality the solid paths exist. In reality, no execution activitygidoccurs.

To circumvent this scenario, additional ROBDD variables are add&g.tand
Sy~ Which ‘tag’ the sense of eactixternal output operand identified from the
scheduling problem’slym,+ These do not change during traversal and hence
provide a record of the initial sense of an output operand. Consequently, only paths
producingall output operands at least once may be identified. In the example from
section 2.5 and used in section 5.3.2, the only external outpuisproduced by
taskv2. The correctly tagge, is {S0,01,5S401} where subscript ‘1’ tags states
labeledrv2 knownand ‘O’ tags states labelet2~ known Likewise, the correctly
taggedS,.- is {S1310,SQ10} where ‘1’ tags states labeled2~ known(inverted
from §) and ‘0’ tags states labeled? known

In the ABSS implementation, a triple of ROBDD variables is assigned for each
state bit. This triple consists ofag, ps ng wherepsandnsare present and next
state variable respectively. Applying an initial tag as requiredSgyrequires
intersecting the termag 0 ps for every state variable that belongs to aMask
producing an externally visible operand. Hence, the tag state is identical to the
present state for these task §j.. Likewise, a tag as required b§,.- requires
intersecting the termag 0 ps for every state variable that belongs to aMask
producing an externally visible operand. Hence, the tag state is opposite from the
present state for these task3g... Consequently, any path frof,. to S~ must
toggle present state variable value relative to these talyfe@nd can not simply
idle. Finally, when computing a dyahg state bits are not complemented.

5.3.4 Forward Exploration and Backward Pruning

The states set§,. andS,.. are analogous t8 s start@NdSask finalYet apply to
legs in a repeating kernel. Forward exploration, as described in section 5.1.2 is
used to create a path s€S containing shortest paths frof, to .. Also,
backward pruning, as described in section 5.1.2, is used to prune away all states
not on some shortest path frofy. to ... The remaining sequences represent
candidate minimum iteration latency legs for repeating kernels. As the next step,
closure, may fail, a&opyof PSis used during backward pruning. The origif®
may then be extended by a single time-step and backward pruning attempted
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again. Furthermore, backward pruning may be applied t®Sawith early
terminations. These terminations are preserved and added back to the preimage
computation as in figure 5.23. Finally, closure requires that all terminations, at
whatever time-step they are reached, be considered. Therefore, thiRSget
accumulates all states .- that are reached at any time-step set. Figure 5.28

i=|PS|-1

PS.& (PS.$n S

RS$.= PS.$

while( 1> 0){
Terminateds (PS.$1n S,
RS = (RS-0 Terminatedl
PS.$1= (PS.$1n Imgl(PS.9)
PS.$1= (PS.$1 0 Terminated }

Figure 5.28Backward exploration pruning with termination accumulation

describes this modified backward pruning. As shown;Téreninatedset preserves
any early terminating states. Also, the §§,.. accumulates termination states
reached at any time-step set in the path set.

5.3.5 Closure

As illustrated in section 5.3.2, paths exist in a backward pruned path set which
are not closed --there is no way to continue their execution within the current
minimum iteration latency bounds. A fixed-point algorithm prunes the path set so
that onlyclosedshortest paths remain. Backward pruning is applied to a path set
until PS.8 equals all termination®§,.-, as duals. Hence, by symmetry argument,
only repeatable iteration legs of at most lengtemain.

The algorithm in figure 5.29 describes thsure fixed-point Within this
fixed-point, the set®S.8 andRS,.are set equal as duals. As longrS.$ and
RS~ are not equal as duals, a backward pruning is applied. Backward pruning
computes a nevRS,... Only whenPS.$ equalsRS,. exactly as duals does the
fixed-point terminate. This guarantees tladit paths originating inPS.8 0 Soc
always reach state(s) RS~ [ §,.~in at mostn time-steps. Furthermore, for any
path terminating at some state ] RS, there exists a stage] PS.$ such thas
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while(  PS.8#dualRS,.) X
PS.8=PS.8n dualRSc)

RS,.= dualPs.9$)
PS.8= PS.8n RS,
PS= BackwardPrun&9
if(  PS=0) break

}
Figure 5.29Closure fixed-point
always initiates path(s) reachimS,.~ with length< n. This is true by way of a
CMA'’s symmetry and the closure fixed-point.

Figure 5.30 illustrates a closed path set abstractly. The?&® andRS,. are
equal although in opposite senses. There are two paths (iterationdégs); and
d to d~, directly repeatable after five time-steps. (By symmetry, paths also exists
from a~ to a and fromd~ to d requiring five time-steps.) These paths represent
schedules with iteration latency of five and requiring five control steps for the
steady-state repeating kernel. A schedule which favors minimizing iteration
latency at the expense of control depth is represented by the pattbfi@or and
by symmetry fromc~ back tob. This steady-state schedule has an average iteration
latency of four but requires eight control steps. This path, wiweravas first
reached aPS.S, is remembered as~ is accumulated ilRS,... Note that if the
best possible average minimum iteration latency schedule is desired, the initial
path set must extend toRS.$ such that all reachable states are included. In this
way, all repeatable paths are represented and the best average combination is

guaranteed.
S s
N s g
C ] 3 | > b~
PS.S°\_d—~ 5 Nod RShe-

Figure 5.30Closed paths fror®S.8to RS-

If backward pruning returns an empty set during closure, it indicates that
iteration leg(s) with iteration latency ofwere found (i.e. all output operands were
produced once) but no compatible iteration legs with iteration latentgxist to
sustain repeating execution. A preserved copy of the forward exploration path set
is extended by one time-step and backward pruning and closure are attempted
again.

As constructed, alosed path sebf cardinalityn is the set of all iteration legs
with iteration latency< n such that any of these iteration legs may be used as part
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of a repeating kernel in which all other iteration legs (if required) also belong to
this closed path set.

5.3.6 A Witness Schedule

Although a closed path set contains many execution sequences to choose from,
it is often desirable to find a path from some statdirectly to its duals~ as it
represents a FSM controller with number of control steps equal to the minimum
iteration latency. This is a joint iteration latency/control depth minimization
objective since schedules meeting other objectives such as average latency also
exist in aCMA . This may be done by adding enough additional information (tags)
to every states] PS.8 such that the identity of a parent statenay still be
determined for children states RS~ In this way, any child state~[ R§,.-
with tag encoding equaling state encoding as duals identifies a path from some
state s directly to its duals~. Unfortunately, adding this much additional tag
information at once is costly. Instead, this idea is implemented iteratively. First, a
small number of state bits (5-10) for all statelS PS.8are tagged to record their
initial value. Next, a closure fixed-point leaves only repeatable paths from parent
states irPS.8 to children states iRS,.in which parent and children states match
as duals for the tagged portion of the state vector. These two steps are repeated
until all state bits have been tagged. This resultdineatly closed path set

Given adirectly closed path set an arbitrary stats from it's PS.8 is picked
as a witness. A closure fixed-point is applied with oslysed as a newS.$ and
s~as a newPS.$. This produces a set containing all valid executions fetms~.
A single witness repeating kernel may be extracted as described in figure 5.7. This
single schedule is for steady-state repeating behavior and may be directly
translated to FSM control steps.

Loop entry and exit sequences must still be determined as this witness
repeating kernel represents only the steady-state execution. A straight-forward way
to determine entry/exit sequences is to simply ignore tasks from previous/next
iterations in the witness schedule during loop entry or exit. This produces adequate
although not necessarily minimum length entry/exit sequences. Alternatively,
minimum length entry/exit sequences may be determined by finding shortest paths
from Sask start@NdSask finalt0 @ny state in the witness schedule.

5.4 Cyclic Control-Dependent Exploration

Cyclic control-dependent exploration requires no fundamentally new
exploration concepts. It does require combining techniques seen in acyclic control-
dependent exploration as well as cyclic data-flow exploration. Consequently,
cyclic control-dependent exploration is the most complex. This section reiterates
the steps for cyclic data-flow exploration but includes ideas necessary for control-
dependent behavior. First, behavior cuts and behavior cut state sets are described.

107



This is similar to section 5.3.3 but always uses an operand $¢Astwansition as

the cut activity. Next, forward exploration proceeds in similar fashion to acyclic
control-dependent forward exploration. After this, a backward pruning step with
validation is applied. As with cyclic data-flow exploration, closure of a backward
pruned path set is required. Finally, control cases may be prioritized.

Exploration of a RISC processd@MA requires cyclic control-dependent
exploration. Minimum latency executions sequences for high probability
instructions are found. Still, valid executions sequences must exist for all
instructions. Furthermore, any current instruction sequence must be able to lead
into another execution sequence for any instruction supported by the RISC
processor.

5.4.1 Behavior Cut

A cyclic control-dependenCMA typically contains several iterates. Each
iterate has a sense operavid as described in section 4.4.3. A sense operand has
the attractive traits that it occurs once during each iteration and is never bypassed.
This makes a sense operakbA an ideal choice for a behavior cut. The sense
operandJA for one iterate in the composition is arbitrarily picked as the\At.

The transition (MS0.S¢nse knownMSO-Sense knowh Where the even sense
operand becomes known is used as the cut actSifyis determined as shown in
equation 5.4.

Consider what set§,. and §,.- look like if a composition contains only a
single iterate. Remember that a sense opekdds only allowed to change sense
when all internaMA have completed or reached th8is fings CONsequentlys,.
is equal to the iterate’s even serf§gy siaridnNd Sy IS equal to the iterate’s even
senseSskfinal IN this case, exploration reduces to acyclic control-dependent
exploration as paths fron® sy start 10 Sask final d€termine shortest legs in a
repeating kernel. Even though both senses are present in an iterate, no iteration
overlap is allowed within the iterate and hence this is equivalent to exploring an
acyclic model. When several iterates are included in a composition, which is
typically the case, exploration does not reduce to the acyclic case as iteration
overlap is allowed among the iterates.

For independent iterates, the possibility exists that some iterate may never
execute but stall indefinitely in paths frof to .~ This is the case as an
independent iterate would haa# of its states --no matter what the sense-- in both
ScandS .~ Backward pruning and closure would still permit idling paths. This
problem was addressed in cyclic data-flow exploration with tags. Section 5.3.3
described howMA producing externally visible operands were tagged to identify
their original state ir§,.. Only states where change had occurred were allowed in
Sy~ A similar approach is taken for cyclic control-dependent exploration but may
be greatly simplified by an iterate’s sense operl#fd. As complete execution of
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an iterate is represented by its sense opeMAd only thisMA need be tagged to
guarantee execution of independent iterates.

5.4.2 Forward Exploration

Forward exploration for cyclic control-dependent models is similar to acyclic
control-dependent forward exploration as described in sections 5.2.3 and 5.2.7.
Instead of finding shortest paths frda sy starfO Sask final Shortest paths frorg,
to S~ are found and used to create a path set. In full forward exploration, which is
preferre@, the initial path set contains paths to all reachable states. Note that with
cyclic models, this full path set represents two iteration execution sequences for all
iterates.

5.4.3 Control-Case Termination and Future Exclusion

The remaining discussion describes how minimum iteration latency paths are
found and prioritized in a cyclic control-dependent exploration. This closely
follows what was previously described for acyclic control-dependent exploration
in sections 5.2.6 through 5.2.9. From a high-level, the procedure requires iterative
application of a series of steps for each control-case term in the priority list. These
steps are earliest control-case termination, backward pruning with validation and
closure.

Earliest control-case termination takes a full path B&,and finds the earliest
time-step set for which states 8. are reached for a particular control-case term,
cp. The algorithm described in figure 5.22 is used with cyclic control-dependent
models provide® ¢k finallS replaced withs,... Also, longer latency terminations
for cp must be prohibited. This restricts the search to the best-possible latency for
cp. As in section 5.2.8, alPStime-step sets are kept but all time-step e&$
wherej > etsare intersected witbp to exclude any future termination states épr

5.4.4 Backward Pruning with Validation

Backward pruning for cyclic control-dependent exploration requires validation
as well as preservation and accumulation of terminated states. This updated
backward pruning is shown in figure 5.31. The salient difference from what was
previously seen in figure 5.23 is the accumulation 9§, for reached
termination states. Although there are two operand senses in cyclic control-
dependent models, validation still works as before. Wheneuwessalvelabeled
state is reached, regardless of the iteration sense, validation still guarantees that
next-state transition_er?xist for every possible resolution value. In the validation line
from figure 5.17,V' " " = Oy ny (O m.x. Vinresoivd * V.

m.resolvg !

6. Full forward exploration is preferred as a path set containing all reachable states allows
for control-case prioritization.
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i=|PS|-1
PS.$ (PS.%n S
R$.= PS.$
while( i >0}
PS.$1= (PS.$1n vallimg(Ps.9)
i=i-1
Terminateds (PS.$1n S,
RS -= (RS-0 Terminatedl
PS.$1= (PS.$1n Imgl(PS.9)
PS.$1= (PS.$1 0 Terminated
i=i-1
}
Figure 5.31Backward pruning with validation & termination accumulation
both senses of resolve are considered together. In other words, the partition

Vi resolvdNcludes any state that is labeledolveor resolve- for m.

5.4.5 Closure and Prioritized Control Cases

As with cyclic data-flow models, cyclic control-dependent models require a
closure step. This insures that all legs in a backward pruned patRSehay be
used in repeating kernels with sustainable iteration latency less than or equal to
| PS| - 1. Unlike cyclic data-flow models, cyclic control-dependent models require
that a validensembl@f legs, which cover all control cases, exists. Still, the closure
algorithm for cyclic data-flow models as described in section 5.3.5 is directly
applicable for cyclic control-dependent models.

If backward pruning or closure fail to find valid solutions, then the earliest
termination state for the curremp is delayed by one time-step and backward
pruning and closure are attempted again. After backward pruning and closure has
occurred for all control case terms in the priority list, a closed valid path set results.

5.4.6 Closed Valid Path-Set

The discussion so far has focused on determining a closed valid path set for a
cyclic control-depender@MA.. It is helpful to discuss what a closed valid path set
is. Consider a closed valid path s&S,with cardinalityn. Let §,.= PS.$ and
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Sye. = dualS,o). Letsbe an arbitrary state selected frét8.8. There exists a path
beginning withs that reaches some state] S within PS. This is true by
successful closure. This path frao u~ is a single sequence of states and hence
represents one arbitrarily chosen control case. At some state(s) in this path, control
operands resolve and deterministic behavior may bifurcatet betan arbitrary

state in this path where some control oper& is in its localresolvelabeled

state. For every possible control operand value resolution, there exists a path from
that reaches some statel] S§,.—. This is true by successful validation. Asis
arbitrary, a path exists for every state . that eventually reache§,.-
Furthermore, ag is arbitrary, every such path has causal branches for every
possible control resolution that also eventually re§gh. Finally, as§,. equals

Sy~ as duals and a cycli€MA is symmetric by constructigrevery such path has

an path-end state which is also a path-start state (as duals) of some other path in
PS.Hence, all paths are infinitely and causally sustainable within a closed valid
path set.

A closed valid path set is an interesting collection of execution sequences.
Imagine choosing some statg PS.$. It is possible to wander endlessly through
paths inPS.At each state in this journey, a new next-state out of a set of possible
next-states may be arbitrarily chosen. As soon as a staéfe§,.- is reached, this
state is considered as] SOC:PS.§ and the journey may continue. Each path from
S t0 Sy~ represents a valid single execution of some control case through alll
iterates in aCMA. At every point a control-operand resolves, execution may
continue for every possible resolution value.

As with a closed path set for a cyclic data-fl@MA , a closed valid path set
may contain better average iteration latency solutions. This becomes even more
complicated as some iteration leg may be preferred for one control resolution
history while another iteration leg may be preferred for another control resolution
history. For instance, suppose there is one control poug/falsein an iterate and
two iterates in &MA . Thus, there are four possible control casasge-true, true-
false falsetrue andfalsefalse It may be that after several successive iterations of
true-true execution, iteration sequenteglis preferred. Now suppose execution
shifts tofalse-true Immediately after this shift, the best iteration sequence may be
leg2 yet afterfalse-trueexecution continues for several successive iterations, leg3
may be best. Every possible optimal iteration sequence leg, for every possible
control pattern sequence or shift in control pattern sequence is contained in a
closed valid path set. Hence, all optinthinamicfinite-state machine controllers
are encapsulated. For this reason, determining a witness schedule as done before is
not very meaningful. Rather, research is required to synthesize an optimal
deterministic dynamic finite-state machine directly from this representation.
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5.5 Summary

This chapter described how all minimum latency execution sequences of a
CMA may be represented as a path set. This serves two purposes. First, it provides
a performance metric for the subsystem modeled @B\ . Second, it provides a
route to latency-optimal finite state machine synthesis. Determining minimum
latency execution sequences is equivalent to finding shortest path€MAa A
series of algorithmic steps implement variations of Dijkstra’s shortest path
algorithm. Forward exploration builds an implicit unrolled network view of a
CMA portion called a path set. Backward pruning restricts the path set to states
and transitions only in shortest paths. Witness extraction arbitrarily selects a single
deterministic schedule for examination or synthesis. Cyclic models require a fixed-
point closure step to guarantee that executions are infinitely sustainable. Control-
dependent models require a validation step during backward pruning to insure that
only causal speculation occurs. Finally, control cases may be latency optimized as
ranked in a priority list.
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Chapter 6

Applications

This chapter presents results and discussion for various ABSS applications and
is organized in four sections. Data-flow and control-dependent applications drawn
from academia and industry are presented in the first two sections. A RISC
processor model and results are presented in the last two sections.

ABSS is implemented in Python[118] and uses the Colorado University
Decision Diagram package[123][53]. ABSS is freely available on the web[54]. All
examples and applications presented in this chapter, except those from industry,
are also available on the web[54].

6.1 Data-Flow Applications

In this section, experimental results are reported for several traditionally
referenced acyclic and cyclic DFG benchmarks. A case study shows how a
designer can use ABSS in a practical setting. Complexity issues are discussed.
Results for five large synthetic benchmarks demonstrate scalability. Finally, an
industrial example of meaningful scale and complexity illustrates practical
application.

6.1.1 EWF Case Study

The elliptic wave filter, EWF, a common cyclic DFG benchmark[43][114], is
used as a case study to demonstrate how a designer might interact with ABSS. An
EWF composite task requires 26 addition tasks and 8 multiplication tasks.
Suppose a designer needs to implement EWF using a particular standard cell and
IP-block library. Given the nature of EWF, the designer decides to explore reuse of
the IP block shown in figure 6.1. Internally, this IP block contains an optimized 3-
stage pipelined floating-point multiplier, a single time-step floating-point ALU, a
small coefficient ROM and one multiplexer. The timing of the multiplier’s third
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stage and the ALU is such that they may be chained in one clock cycle. The output
of the ROM is hardwired to one input of the multiplier. The multiplexer allows one
external input to bypass the multiplier and directly feed the ALU. Depending on
the control settings of the bypasses, this IP block may implement three functions:
multiply by coefficient, multiply by coefficient and accumulate, and add.

Coefficient Address—  Multiplier Bypass ALU Bypass

MULTIPLIER

Output

Figure 6.11P block for reuse

The designer codes the EWF composition task at an abstract level (< 100 lines)
and specifies several appropridd (again < 100 lines). TheddA specify the
various executions sequences expected when using the IP block in figure 6.1.
Table 6.1 summarizes results for this exploration while varying available 1P
blocks. At this point, the designer has the freedom to explore other IP options and
configurations if he wishes. Suppose he decides that a configuration with one IP
block and one additional adder provides acceptable performance with a small
resource contingent as the iteration latency, 18, is equivalent to using two IP
blocks.

Table 6.1: Constrained IP-block results

IP Blocks Iteration Latency CPU Seconds
1 30 2.8
2 18 1.9
3 16 1.7
4 16 1.6

Figure 6.2 shows what type of local storage and interconnect the designer has
in mind. A bank of registers stores intermediate results. Any of these registers
connects to a function block input or output through a limited number of busses.
The single 10 port, which feeds bus structure 2, permits communication to and
from the function blocks via the register bank.

After editing the EWF description and model files, (~20 edited lines), the
designer now experiments with various register and bus constraints. Several fast
iterations of ABSS provide the data shown in table 6.2. Given the existing 1 IP-
block and 1 ALU constraints, execution of EWF is impossible with less than 9
registers and no improvement occurs for more than 9. Varying available busses
does vary iteration latency. The designer has a trade-off decision and opts to reduce
interconnect at the expense of iteration latency by choosing the 3/2 bus solution
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Figure 6.2 Target high-level architecture

shown in bold. (Even with only 3 busses, both function blocks may simultaneously

begin execution as a single operand may broadcast on one bus to multiple
function-block inputs.) Once the designer decides on a final constraint

configuration, ABSS provides an optimal loop-pipelined witness schedule (control

sequence) which may be directly synthesized into a FSM. Although the final

selected solution has an iteration latency slightly greater than what is commonly
reported as optimal for EWF, it incorporates practical and important interconnect,

memory and IO-protocol constraints necessary for a realistic design.

Table 6.2: Results with Constrained Registers and Busses

Bus 1 Bus 2 Registers| 10 Poyts IEZEEZ; SgcpolrJ1 ds
- - 8 1 Impossible 14
- - 9 1 18 2.0
- - 10 1 18 2.2
- 1 9 1 30 2.6
- 2 9 1 18 2.0
- 3 9 1 18 2.0
2 2 9 1 29 2.4
3 2 9 1 20 2.0
4 2 9 1 18 2.0
5 2 9 1 18 2.0

6.1.2 EWF Benchmarks

The next few sections summarize results for several academic cyclic
benchmarks. All results in these sections were produced on an Intel-donated 866
MHz Xeon PC running Linux. As required computation resources are often a
concern with symbolic and exact techniques, required CPU seconds, the imposed
ROBDD memory model and peak ROBDD node usage are reported. Reported
time and memory use includes all ABSS steps from parsing the scheduling
problem, model construction, composition, refinement and exploration, to finally
printing a single witness schedule. Peak ROBDD nodes indicates the maximum
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number of ROBDD nodes (1 node requires 16 bytes) kept by the manager at any
point during symbolic scheduling. The constraint configuration column lists
resource bounds such as 1 two time-step pipelined multiplier (1 2-ts piped mult)
imposed on the scheduling problem. Finally, when betterageiteration latency
solutions exist in theCMA, a lower iteration latency bound is reported in
parenthesis.

Table 6.3: Elliptic Wave Filter Results

Iteration CPU | Memor Peak
Benchmark Constraint Configuration Y| ROBDD
Latency Seconds Model
Nodes
EWF1 IP | 20 3 busl, 2 bus2,9reg, 110 port, [2.0 64 MB | 251,412
1 IP block, 1 1-ts alu
EWF1 a 17 2 1-ts ALU, 1 2-ts piped mult 1.0 64 MB 107,310
EWF1_b 16 3 1-ts ALU, 1 2-ts piped mult 1.0 64 MB 98,112
EWF2 16 3 1-ts ALU, 1 2-ts piped mult 4.2 64 MB 370,986
EWF1x1 9 (>8) 3 1-ts ALU, 2 2-ts piped mult, 137 64 MB | 2,466,086
110 Port

The first row in table 6.3, EWF1_IP, shows results for a highly constrained
single EWF loop using an IP block from the previous case study. The next two
rows, EWF1_a and EWF1_b, duplicate previously reported optimal results[114]
for a single pipelined EWF. The run times are fast enough that ABSS can be used
in an iterative design environment.

As mentioned in chapter 4, allowing only oA per task in a scheduling
problem limits solutions by permitting only one instance of any particular operand
to exist at any time-step. By unrolling a DFG, this complexity bound may be
directly controlled. EWF2 is one unrolling of EWF so that two EWF iterates are in
a composition. These iterates are not independent as they contain data
dependencies between them. Together, they represent one execution of EWF yet
with two MA per task so as to potentially overcome any capacity constraint
impact. Although CPU run times increase by a factor of three to four, latency does
not improve indicating that a single iterate EWF composition is not impacted by
capacity constraints.

EWF contains several long inter-iteration data dependencies which prevent
much benefit from loop pipelining. (lteration latencies for optimal pipelined
solutions are typically only one time-step improved over non-pipelined solutions.)
Still, hardware resources may be under-utilized. By scheduling two independent
iterates of EWF under one set of resources, additional resource utilization may be
realized. This effectively models two independent EWF streams executing on a
single hardware subsystem. The EWF1x1 row presents results for this experiment.
A resource set of 3 single time-step adders and 2 two time-step pipelined
multipliers is used. This resource set is fairly ideal fosiagle EWF loop as

116



reducing available resources negatively impacts scheduling results but increasing
available resources does not improve scheduling results. Furthermore, an 10
protocol that limits the system to one external IO transaction per time-step and
orders 1O transactions between EWF copies is imposed. Although the iteration
latency for a single EWF loop with this resource set is 16 time-steps, iteration
latency for two parallel copies improves significantly to only 9 time-steps. As there
is considerable added freedom (both copies are independent except for 10
ordering), ABSS finds a way to make better use of the available hardware
resources. A literature search revealed no other scheduling results reported for
parallel EWF configurations.

6.1.3 FDCT Benchmarks

Table 6.4 presents results for a fast discrete cosine transform, FDCT
[114][134]. The FDCT benchmark is challenging for three reasons. First, it
contains two independent loops. For cyclic behavior, this independence leads to a
substantial expansion of the solution space as solutions for every resource-
compatible permutation of loog with b over all time-steps may be represented.
FDCT1_a (acyclic) and FDCT1_c (cyclic) differ only in acyclic versus cyclic
modeling and highlight this solution space expansion. Second, FDCT contains no
inter-iteration dependencies. This freedom permits considerable pipelining but
further expands the solution space. Results for FDCT1_b, which contains no
resource constraints, exhibits this freedom. Iteration latency is only 2 and is
constrained only by the one live operand instance modeling state bound. (Since no
resource constraints or inter-iteration dependencies exist, two copies of a final
witness schedule may be directly translated to a single FSM with iteration latency
of 1.) Finally, FDCT is highly symmetric. Each path through the DFG is similar in
length and operation sequence to every other path. This too enlarges the solution
space and hence instance representation cost. Due to the high symmetry of this
problem, a partial 10 ordering is imposed to eliminate representation of
structurally symmetric solutions.

FDCT1_b illustrates a general scheduling complexity concept. Although this
result is for a challenging benchmark, very limited computational resources are
required. On the other hand, the same benchmark scheduled with resource
constraints, FDCT1_c, requires considerably more computational resources. This
is expected as a scheduling problem with no resource contention such as FDCT1_b
reduces to topological ordering. Hence, in the absence of resource contention, a
straight-forward as-soon-as-possible list scheduler will always find optimal
solutions and require no search. Even so, symbolic scheduling of FDCT1_b sitill
requires some computational resourcesallsschedules, even those observing
resource constraints, are encapsulated. In general, contention for resources makes
scheduling hard. For ABSS, the most challenging cases occur when resource

117



constraints tend to balance dependency constraints. When resource constraints
either dominate or do not exist, ABSS is facile.

Table 6.4: Fast Discrete Cosine Transform Results

Iteration CPU | Memor Peak
Benchmark Constraint Configuration Y| ROBDD

Latency Seconds Model

Nodes
FDCT1 a | 19 1 1-ts add, 1 1-ts sub, 1 2-ts piped|3.3 128 MB | 409,822
mult, 4 bus*, 8 reg, partial 10 order

FDCT1 b |2 - 2.7 64 MB | 240,170
FDCT1 c | 16 1 1-ts add, 1 1-ts sub, 1 2-ts piped|2375 256 MB| 9,911,356

mult, 4 bus*, 9 reg, partial 10 order

FDCT1_d | 17 (>15) 1 1-ts add, 1 1-ts sub, 1 2-ts piped 84.7 128 MB | 4,813,620
mult., 4 bus*, 7 reg, partial IO order

FDCT1 e | 13 1 1-ts add, 1 1-ts sub, 2 2-ts piped| 300 128 MB | 5,001,668
mult., 8 bus*, 7 reg, partial IO order

FDCT1 f |20 2 1-ts ALU, 1 1-ts piped mult., 7 bus33 256 MB | 829,864
6 reg, partial 10 order

FDCT1 g | 17 (>16) 2 1-ts ALU, 1 1-ts piped mult., 7 bug8 256 MB | 4,992,470
7 reg, partial 10 order

FDCT1 _h | 17 (>16) 2 1-ts ALU, 1 1-ts piped mult., 7 bu§s 256 MB | 2,970,954

7 reg, partial 10 order, 2 10 port
(unbuffered reads and writes)
FDCT1 i |17 2 1-ts ALU, 1 1-ts piped mult., 7 busl44 256 MB | 5,788,608
8 reg, partial 10 order, 10 protocol, 2
IO port (unbuffered reads and writeg)
FDCT1_j |20 (>18)| 2 1-ts ALU, 1 1-ts piped mult., 7 bug38 256 MB | 9,966,544
11 reg, partial 10 order, 1O protocol, L
IO port (buff. reads, unbuff. writes)
FDCT1 k |19 (>16)| 2 1-ts ALU, 1 1-ts piped mult., 7 bu§61 256 MB | 9,769,298
14 reg, strict 10 order, 1 10 port
(buffered reads, unbuffered writes)
*Assumes busses can be reconfigured from input to output in the same time-step as historically
done[60][84][114].

As FDCT1_c exhibits some of the greatest complexity, it is used as an example
for a discussion on representation complexity and growth. Chapters 3 and 4
described how &MA is constructed. This includes &MA construction as well as
aCMA's composition, dependency/capacity constraint pruning, viability pruning,
and resource constraint refinements. Surprisingly, all this accounts for an
insignificant use of computational resources. For FDCT1_c, only 4.9 seconds and
1,145,662 ROBDD nodes are needed to crea@MA with 553,670 ROBDD
nodes in the transition relatiody. The largest growth occurs during resource
constraint refinement wheh grows from 58,768 to 553,670 nodes. Note that at
this point,A contains all valid resource constrained executions of the scheduling
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Figure 6.3FDCT data-flow graph

problem. After 123.6 seconds of ROBDD sift reordering, the sizA of reduced

to 341,338 nodes. Most of the representation growth occurs during the exploration
steps described in chapter 5. For FDCT1_c, finding a path set requires 200 seconds
while total ROBDD node usage peaks to 9,911,356. The largest ROBDD in the
path set is 753,831 nodes. Determining a closed repeating path set is not as costly
in terms of node usage but does require time. This fixed-point requires 476
seconds. The largest ROBDD in this set is only 36,109 nodes and peak node usage
remains at 9,911,356 as no garbage collection is performed. Finally, finding all
schedules with control steps equal to iteration latency requires 1570.5 seconds.
The largest ROBDD in this set is 4,439 nodes and peak node usage does not
increase. As a reward for this hard work, ABSS finds a 16 time-step solution for
FDCTL1_c, bettering the best previously reported result [134] of 17 time-steps for
this benchmark with the same arithmetic resources.
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Figure 6.3 shows the FDCT data-flow graph while table 6.5 shows a 16 time-
step iteration latency solution for FDCT1_c. Each time-step lists the tasks that
begin during that time-step as well as the result operands in local storage and
available at thdeginningof that time-step. For example, task m36 begins in time-
step 4. Since all multipliers are two time-step pipelined, it produces a result at the
end of time-step 5. This is latched into local storage and ready to be used at the
beginning of time-step 6. Tasks and result operands are shown in both the even and
odd, ‘~', iteration senses. Iteration sense toggles when looping back from time-
step 16 to time-step 1. For instance, the result of s11~ is in storage at time-step 16
but appears as s11 in time-step 1. Although iteration latency is 16 time-steps, delay
for one complete FDCT execution is 27 time-steps. This is the delay from the first
odd tasks, a4~ and s5~ in time-step 3, through flipping sense when looping from
time-step 16 to time-step 1, to the final now even task, a40, in time-step 13+16.

Table 6.5: Witness Schedule for FDCT1_c

Time-step Task In Storage
1 m31 a30 s29 m16 s11 m19 a27 s8 s28 s22
2 a23 s24 m37 m15 m16 s11 m19 a27 a30 s29 s28
3 m17 a4~ s5~ s11 m19 a27 m31 a30 s29 s28
4 a39 m36 m19 a4~ s5~ a27 m31 m37 a30 s29 s28
5 s25 m34 m17 m19 a4~ s5~ a27 a30 s29 s28
6 a3~ m32 s6~ ad~ sb~ a27 a30 s29 m36 s28
7 m38 s41 a3~ a4~ s5~ a30 s29 m36 m34 s28 s6~
8 a2~ m35 s7~ a3~ a4~ sb~ m32 s29 s28 s6~
9 al0~ sll1~ mil4~ a2~ a3~ a4~ sb~ m32 m38 s28 s7~ s6~
10 s42 m13~ al0~ s11~ a4~ s5~ m32 m38 m35 s28 s6~
11 al~ s8~ m33 al0~ s11~ a4~ s5~ m35 s28 m14~
12 a9~ ml1l6~ sl2~ al~ al0~ sll~ a4~ s5~s8~ m35 m13~ mi4~
13 m20~ a40 a9~ s11~ s12~ s5~ s8~ m35 m33 m13~ ml1l4~
14 ml18~ a2l~ s22~ a9~ m1l6~ sll~ s12~ s5~ s8~ m13~ mi14~
15 m19~ a27~s28~ | a9~ ml6~ sll~ m20~ sl12~ s5~ s8~ a2l~ s22+
16 ml15~ a26~ a9~ m1l6~ s1ll~ m18~ m20~ a27~ s8~ s28~ s22~

Result rows FDCTL1_f through FDCT1_k from table 6.4 show more practical
and useful configurations of FDCT than are typically reported. Two ALU
resources rather than separate add and subtract resources are used. Also, one set of
busses, where each bus is occupied in one way for the duration of a clock cycle, is
used. FDCT1_g shows results for a minimal register contingent. FDCT1_h adds a
two bidirectional 10 port constraint. Reads and writes through this 10 port are
assumed unbuffered. FDCT1_i adds the protocol constraint described in
figure 3.15. Even with this forced alternation between reads and writes, schedules
with excellent iteration latencies are found. FDCT1_j restricts 10 ports to one.
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Now, 10 reads must be buffered and are modeled with several additional operand
MA . All optimal solutions are readily found even with this tight set of constraints.
FDCT1 _k forces a strict ordering of input and output operands communicated
though one 10 port. This models what might happen in a real design where
samples can not be reordered but must be accepted and produced in sequence.
Although more registers are required, iteration latencies similar to loosely
constrained configurations are still achieved. As these examples demonstrate,
ABSS handles real-world design constraints, produces optimal results yet requires
acceptable computational resources.

6.1.4 Miscellaneous Academic Benchmark Results

Table 6.6 presents miscellaneous academic benchmark results. These are
smaller cyclic DFGs reported in the literature[25][134]. As would be expected,
their smaller size requires less computational resources for scheduling. These
benchmarks, as well as all other benchmarks in section 6.1 with the exception of
fdctl_a and the upcoming industrial example, are cyclic. ABSS has been applied
to acyclic versions of EWF and FDCT[50]. These simpler acyclic solutions are a
subset to what is presented here.

Table 6.6: Miscellaneous Academic Benchmark Results

Iteration CPU | Memor peak
Benchmark Constraint Configuration Y| ROBDD
Latency Seconds Model
Nodes
DIFFEQl1 |6 1 1-ts add, 1 2-ts piped mult, 4 reg 0.2 64 MB 3,066
FIR16P1_a| 8 (>6) 2 1-ts add, 1 2-ts piped mult, 3 reg 0.8 64 MB 73,584
FIR16P1 b| 15 (>14) 2 1-ts add, 1 2-ts piped mult, 2 reg 0.7 64 MB 29,632[3

6.1.5 Comparison to Other Work

Table 6.7 compares ABSS, with existing work. SST[114] is a symbolic
scheduler while the others are heuristic. Where possible, register use is reported in
parenthesis. As can be seen, existing techniques produce optimal or near optimal
results for these well-studied examples. For the heuristics, required computational
time is typically a few seconds. For ease of comparison, only limited additional
constraints are applied. In fact, only TCLP bounds register usage and only SST
and Theda.Fold bound bus usage.
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Table 6.7: Academic Benchmark Comparisons

EWF | EWP | FDCT® | FDCT!
ABSS 17 (9r) 16 (10r) | 16 (9r) 13 (7r)
SST[114] |17 16 1§ (9r) |14 (11r)
Theda.Fold[60]| 17 16 17 13
RS[25] 17 16 NA NA
TCLP[120] |17 (10r) [ 16(10r) | 16(12r) |NA
MARS[134] |17 16 17 13
a. 3 1-ts ALU, 1 2-ts piped mult
b. 3 1-ts ALU, 1 2-ts piped mult
c.11-tsadd, 1 1-ts sub, 1 2-ts piped mult, 4 bus
d. 1 1-ts add, 1 1-ts sub, 2 2-ts piped mult, 8 bus
e. Not loop pipelined
f. Assumes 1 1-ts mult

6.1.6 Synthetic Benchmarks

Five larger synthetic benchmarks demonstrate the scalability of ABSS for
cyclic data-flow problems. A set of guidelines generated realistically shaped
synthetic benchmarks. These guidelines ensure that the synthesized DFG is fairly
connected, contains several inter-iteration dependencies, yet is reasonably random.
All synthetic benchmarks contain 100 tasks assigned to one of two resource
classes. Resource class A consists of 2 single time-step units and resource class B
consists of 1 two time-step pipelined unit. Each unit accepts two input operands
and produces one output operand as would be the case for an ALU and pipelined
multiplier. A large number of synthetic benchmarks were produced and from this
pool, five finalists meeting the following two criteria were selected. First, a
minimum iteration latency schedule requires loop winding. (i.e. a non-pipelined
schedule cannot be an optimum throughput schedule.) Second, both dependencies
and resource bounds must impact schedule solutions. Resource bounds are not
made meaningless by tight dependency constraints and vice versa. Table 6.8 shows
results for the five final synthetic benchmarks. A 128 MB memory model is used

Table 6.8: Synthetic benchmark results

Benchmark lﬁi:ztr:?:; Res. A Res. B Sch;)L;ds Peak Nodeg
216 43 79 21 15.6 1,101,716
229 37 (>35) 73 27 154.3 4,806,466
278 44 (>43) 72 28 41.7 3,859,072
282 40 74 26 14.2 1,670,970
288 37 67 33 26.6 3,244,850
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for all cases and computation times range from 15 to 154 seconds. These
benchmarks, all academic benchmarks, as well as the ABSS source code are
available on the web[54] for comparison with other scheduling techniques.

6.1.7 An Industrial Example

ABSS was applied to a substantial industrial example. The assembly code for
computing f=X on Intel's new Itanium architecture was statically scheduled. This
127 task acyclic data-flow example is interesting because of the real-world
peculiarities of the Itanium VLIW architecture. The Itanium contains 6 pipelined
processors (m0, m1, i0, i1, fO and f1), each of which may compute some subset of
Itanium instructions. Depending on the type and complexity of the instruction,
some instructions may only be assigned to one of processors m0O, m1, i0 or il,
some may only be assigned to fO or f1, some may only be assigned to i0 or il and
so on. In the worst case, some instructions must be assigned to two processors, i0
and f0, concurrently.

A hierarchical resource bound (section 4.5.2) was constructed to enforce these
complex constraints. Figure 6.4 illustrates the six hierarchical resource bounds
applied to model these constraints. They are hierarchical as an instruction which
must be assigned i0 and fO concurrently must belong to five resource constraint
groupings: ( (i0), (f0), (i0, i1), (fO, f1), (m0O, m1, i0, i1)). On the other hand, an
instruction which may be assigned to i0, i1, mO or m1 only need belong to one
resource constraint grouping: (mO, m1, i0, il1). Through use of these six
hierarchical constraints, all Itanium resource bounds were correctly modeled.

|' Ok

11

N

Figure 6.4 Hierarchical resource bounds

For this Itanium example, it was also necessary to model a communication
penalty. This penalty varied dependingwhichchild processor consumes a result
operand. For example, processar may compute a result which may be
communicated to processbafter a delay o5 but may only be communicated to
processor after a delay 09. This type of sequential constraint was naturally
modeled during specification of &MA . For instance, figure 6.5 shows BIA that
requires one time-step to reach states labekadly knownyet requires two time-
steps to reach states labelelhte known Depending on the required
communication delay, a child’s input would be enabled by eitraety knownor
late knownlabeled states. This approach to modeling both computation of a result
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late late
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Figure 6.5Acyclic MA with communication delay

and communication delays within oA was generalized to pipelined delays of
up to 9 time-steps.

An ABSS speed-up techniqueyer-estimation, was devised and used with
this example. As described, ABSS creates a path set from a completely constrained
transition relationA. Forward exploration to create this path set is often the most
computationally expensive step in ABSS --especially with certain resource
concurrency constraints applied. In over-estimation, ABSS creates a path set with
apartially constrained\. Some or all resource concurrency constraints are left out
and hence an over-estimation of the true solution space results. Once backward
pruning has reduced the size of the path set, a completely constésisaded to
determine if true solutions actually exist. Although over-estimation requires
iterative refinements of a path set, it avoids costly completely-constrained forward
exploration. After all is said and done, all schedules plus an optimal withess
schedule with latency of 81 time-steps required 131 seconds and 9,910,334 nodes
(256 MB memory model) for computation.

6.2 Control-Dependent Applications

This section presents several academic control-dependent examples as well as
an industrial control-dependent application. First, two academic examples
illustrate iterate use for pipelining, control prioritization, average latencies and
local registers constraints. Finally, an acyclic industrial control-dependent example
is discussed. A new partitioning strategyime-zone partitioning reduces
computational requirements for this industrial example.

6.2.1 ROTOR Benchmark

ROTOR, as shown in figure 6.6, was introduced by Radivojgl14] ROTOR
performs a rotation of coordinate axes by anflend is used in applications
ranging from graphics processing to positional control systems. As seen in
figure 6.6, ROTOR requires computation of trigonometric functions. High-
performance systems often precompute these values and store them in a look-up
table. As a compromise between numerical accuracy and storage requirements,
values for only one quadrant are stored. It is possible to compute trigonometric
values for all guadrants based on a single quadrant table. ROTOR assumes that just
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X X’
Y- X:|X*c:osﬁl+|y*sin9I
,,/’/ ./X' Y = -x+Sin + yxcod
Y < :
s .
X
a = 1800;
if (a>=0) {
b = 906;
if (b>=0) {
sind = T(0);
coP = T(b);
} else {
sin = T(a);
cod) = -T(-b);
} else {
c = 2706,
if (c>=0) {
sinB = -T(-a);
cod = -T(c);
}else {
sind = -T(3600);
coP = T(-c);
} }
X = xxcoP + yxsind;
Y = -x+sinB + yxcoP;

Figure 6.6 ROTOR example

a single look-up table is available for sine values in the first quadrant.
Consequently, four control cases, covering correct look-up table modifications for

each quadrant, occur in ROTOR.

If only a single ROTOR iterate is used in a composition, then ABSS reduces to
finding acyclic (non-overlapping) ROTOR execution sequences. Such results are
directly comparable to SST[114] and are shown in table 6.9. Four sequential
behaviors are defined for four classes of tasks: ALU (addition, subtraction,
negation), table look-up, multiplication, and compare. Consequently, a ROTOR
composition task contains 28 internal tasks. The schedule latencies are equivalent
to, yet the computation times are 5-10 times imprc]veqbr those for SST[114].
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For comparison purposes, no control-case prioritization is applied in these results
and consequently only the worst control case is optimized.

Table 6.9: Acyclic ROTOR Results

Function Units Schedule| CPU
ALUA Multiply ? Tabl& Compard | Latency Seconds
1 - 1 1 12 1.0
2 B 1 1 7 1.0
1 2 1 1 10 11
2 2 1 1 8 11

a. ALU is single time-step

b. Multiply is two time-step pipelined. ‘-’ implies ALU does multiplication.
c. Table is single time-step

d. Compare is single time-step

Two ROTOR iterates may be included in a composition to explore pipelined
solutions. Table 6.10 shows results for this depth of pipelining. With two iterates,
there are 16 care control cases as both iterates may independently précess a
one of four possible quadrants. A priority list with 21 control-case terms was used

Table 6.10: Results for Cyclic ROTOR with Two Iterates

Function Unité Avera_lge CPU
Iteration S d
ALU Multiply Table Compare | Latency | “°¢ON9S

2 1 1 1 4.8 15

2 2 1 1 4.4 113

2 3 1 1 4.4 117

3 2 1 1 3.95 9.35
Unlimited Unlimited Unlimited Unlimited 34 5

a. Function unit sequential behavior as in table 6.9.

to produce the reported average iteration latencies. First, all control cases were
prioritized together so as to optimize the worst control case. Then, four groupings
prioritized the quadrant combinations with the most tasks (combinations of

guadrants 4 and 3) down to quadrant combinations with the fewest tasks
(combinations of quadrants 1 and 2). The last 16 control case terms prioritized
individually all possible control cases starting with the most task intensive down to

the least task intensive.

The results in table 6.10 show that ROTOR benefits from pipelining. The row 2
result (113 seconds, 4.4 average iteration latency) has the exact resource

1. Comparison is adjusted for differences in computation resources.
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constraints as the row 4 result from table 6.9 (8 time-step latency). Although the
table 6.9 result is for the worst control case, the sustained pipelined iteration
latency for this worst control case is 4.5 time-steps. Pipelining almost doubles the
performance. This worst control case, quadrant 4 followed by quadrant 4, truly
does have a non-integer average latency of 4.5 time-steps. ABSS finds a control

Iteration Latencies

5 =) =] =) =)
T T T T T T T

H
H
Hl

i

4.8}

46}

--g8-\-8--8-[-8--¥--8--8--8--8--4

a4}
a2}

41
3.8}

______ Best Average

Favor Quadrant 1 Mixes 1

1,1 12 21 1,3 31 14 41 22 23 32 24 42 33 34 43 44
Quadrant Mixes
Figure 6.7 Results from two contrasting priority lists

sequence that adjusts even when two identical computations are in the pipe such
that the best average is found. In this specific case, a quadrant 4 calculation taking
4 time-steps may only be followed by another quadrant 4 calculation requiring 5
time-steps.

The control-case priority list used in table 6.10 was carefully crafted to average
iteration latency equally among all control cases. The driving assumption was that
0 may lie in any quadrant with equal probability. This is not the case in all control-
dependent behavior as there are often control cases which occur with considerably
higher probability than others. It is possible to reverse the control-case priority list
used in table 6.10 so that quadrants with the smallest number of tasks are most
favored. This optimizes an expected ROTOR use wBeaknost always lies in the
first quadrant. Figure 6.7 contrasts iteration latencies for all 16 possible quadrant
mixes given these two different priority lists. As can be seen, the reversed priority
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ROTOR lterates
Figure 6.8lteration latency versus ROTOR iterates

list heavily favors quadrant 1 mixes. ABSS is capable of favoring particular control
case(s) if directed by simulation data or design intent.

Row 3 and 4 configurations from table 6.10 were extended to three ROTOR
iterates in one composition. Figure 6.8 plots the iteration latency improvement
achieved by doing this. The required computation resources for the constrained
three iterate solution was 7 minutes on a 733 MHz Pentium IIl with a 400 MB
memory model. Four iterates were attempted for the constrained configuration but
computation exceeded an imposed two hour limit.

Complexity dramatically increases with additionatiependentterates. The
only dependencies and capacities imposed between ROTOR iterates is an ordering
of operand sensBIA. This allows all solutions, some potentially absurd, to be
represented. Imagine a solution where iterate 1 begins and executes just one task
and then nondeterministically stalls. Iterates 2 and eventually higher may begin,
and even finish, as all prior iterates have begun. Hence, every dependency-allowed
meshings of iterates is represented at often considerable cost. This may be avoided
by adding additional constraints. 10 protocols and orderings as well as local
storage bounds are real constraints that may help prune the solution space. 10
protocols and orderings eliminate some of the impractical meshings by defining
more precisely when events in various iterates may take place. Local storage
constraints group communicating tasks so that other impractical meshings, which
typically require some operand to remain in local storage for an extended time, are
pruned. Finally, artificial dependencies or groupings may be imposed to avoid
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impractical meshings. Time-zone partitioning, presented in section 6.2.3, is an
example of this approach.

6.2.2 S2R Benchmark

S2R, as shown in figure 6.9, was also introduced by Radiwb[évi4]. S2R
translates spherical coordinates [®, ®] into the Cartesian (rectangular)
coordinate values [X, Y, Z]. Both cosine and sine must be compute® famd .

As with ROTOR, a single look-up table with trigonometric values for only the first
guadrant is available. Consequently, four control-dependent behaviors are required
to compute trigonometric values for boBhand® in all four quadrants (2 parallel
ROTORS). An S2R composition task contains 48 internal tasks, 16 care control
cases, and requires similar resources as ROTOR.

Figure 6.9S2R example

Table 6.11 presents results for a single iterate of S2R. Of particular interest is
the effect of local register boundisBoth rows 1 and 3 achieve the same schedule
latency yet row 3 constrains local storage to 4 registers. In fact, row 3 takes less
computation resources even though it is more constrained than row 1. In some
cases, register constraints tend to temporally group communicating tasks. This
serves to beneficially prune the solution space. This is not always the case as seen
when comparing rows 5 and 7. In fact, if a register constraint is slightly over what
is minimally necessary, required computation resources often grow dramatically.
Imagine now that there is always one (or more) extra registers at each time-step.
ABSS searches all solutions and hence propagates all possible though non-
productive uses of extra registers. Consequently, stringent register constraints are

2. In this particular configuration, local register bounds apply to any internal operand stor-
age. External input and output operands are unbuffered and must be either supplied on
demand or stored separately.
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applied first and then iteratively relaxed. Alternatively, a register constraint
hierarchy (section 4.5.2) may help reduce computation resource requirements.

Table 6.11: Acyclic S2R Results

Function Units . Schedule| CPU
Registers
ALUA Multiplyb Tablé Compar@ Latency | Seconds
2 1 1 1 - 10 7
2 1 1 1 3 11 5
2 1 1 1 4 10 7
2 1 1 1 5 10 12
3 2 1 1 - 9 5
3 2 1 1 3 10 6
3 2 1 1 4 9 7
3 2 1 1 5 9 11
3 2 1 - - 8 4.3
; ; - - - 8 2

a. ALU is single time-step

b. Multiply is two time-step pipelined. ‘-’ implies ALU does multiplication.
c. Table is single time-step

d. Compare is single time-step

A literature search identified only one heuristic[121] and SST[114] as the only
other scheduling techniques to report results for acyclic instances of ROTOR and
S2R. SST produces exact results for acyclic ROTOR and S2R instances. The
heuristic[121] can achieve exact acyclic results although it is unclear what
computation resources are required. An average search time plus a density of
optimal solutions is reported. Consequently, estimated times for finding, but not
guaranteeing, optimal solutions range from 1 to 20 seconds. ABSS determines all
schedules, including minimum latency for individual control cases, in 1 to 12
seconds. Guaranteed exact minimum latency schedules are provided in comparable
time to a well-built heuristic.

Table 6.12: Cyclic S2R Results

Function Unit§ Worst
. . CPU
Registers| Iteration S d
ALU Multiply Table Compare Latency | S€CONYS
3 2 1 1 3 5 330
3 2 1 1 4 5 414
3 2 1 1 5 5 716
3 2 1 1 - 5 822

a. Function unit sequential behavior as in table 6.11.
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Table 6.12 presents results for two S2R iterates. As shown, it is possible to
achieve worst control-case iteration latency of five time-steps. This is almost
double the performance achieved in row 7 of table 6.11. Interestingly, fewer
registers are needed when pipelining S2R. The five time-step iteration latency is
found even with only three local storage registers. No improvement occurs with
additional registers. In fact, only computational complexity increases with
additional register freedom. A configuration with two registers was attempted but
failed to find any valid solutions.

6.2.3 Industrial Example

ABSS was applied to an industrial example with control-dependent behavior.
This acyclic example, abstractly shown in figure 6.10, is a specialized graphics
processing task containing 132 internal tasks and 6 care control cases.
Furthermore, the behavior is such that it may be partitioned into 3 distinct blocks,
where each block contains two control-dependent behaviors. Consequently,
depending on control value resolution, either the first block only, the first and
second block, or all blocks are executed. Finally, an IO protocol defines when
external input and output operand transactions occur.

Y

vy

vy

—

Block 1 Block 2 Block 3

K&

Figure 6.10High-level behavior of industrial control-dependent example

vy

10 Protocol

Table 6.13 presents results for the control-dependent industrial example. These
results were produced on a 400 MHz PII Linux machine with 512 MB of memory.
Latencies are reported for all 6 care control cases. Both register file ports and local
storage constraints are included since the behavior accesses a large number of
coefficients stored in a register file as well as maintains a small number of
intermediate results in local registers.
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Table 6.13: Control-Dependent Industrial Example Results

Configuration 1

Configuration 2

Configuration 3

Local Registers

ALU Units 11-ts 1 2-ts piped 1 3-ts piped

Multiply Units 2 1-ts 2 3-ts piped 1 3-ts piped

XOR Units 11-ts 11-ts 11-ts

MAC Units - - 1 4-ts piped
9 4 Single, 3 Double 5

Register File Ports

3 Read, 1 Write

2 Read, 1 Write

3 Read, 1 Write

10 Protocol Yes Yes Yes
Interconnect Guidg- Yes -
Schedule Latencies3, 11, 19, 27, 27, 37 12, 17, 26, 34, 36,43 12, 18, 35, 36, 44

CPU Seconds

29

865

11

, 46

Configurations 2 and 3 in table 6.13 emplioyie-zone partitioning to reduce

computational complexity. Without time-zone partitioning, tasks from the three

behavior blocks have ample freedom to be scheduled over a wide range of time-
steps as illustrated in the top of figure 6.11. This freedom causes excessive
representation growth during exploration. With time-zone partitioning, tasks from

the three behavior blocks may be scheduled only in one of three time-step ranges.
These zones, which may overlap, allow a designer to restrict the scheduling
freedom according to high-level design intent. This reduces representation growth

during exploration at the expense of not guaranteeing optimal solutions.

No Time-Zone

Partitioning

With Time-Zone

Partitioning

«—Block 1—»‘

Schedule Time-Steps

>—
’<—Block 3—

lock

Block 3——»

Schedule Time-Steps

Figure 6.11Time-zone partitioning
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Configuration 2 employs interconnect guides to produce bindable schedules
which require less interconnect. Figure 6.12 shows where interconnect is required
in this example. With a single pool of local registers, a result operand from any of
the three function units may be stored in any register. Consequently, input
operands for any of the three function units may exist in any register. Hence, full
connectivity in interconnect blocks A and B is assumed. On the other hand,
suppose that results produced by the ALU and accepted by the multiplier may only
be stored in a restricted subset of registers. Furthermore, suppose that analysis of
communications in the original composite task allows all such communications to
be ‘routed’ through a subset of regist%rtf this is done, it is possible to exclude
some connectivity in interconnect blocks A and B. These types of register
concurrency constraints are imposed in a hierarchical fashion as described in
section 4.5.2. Along with bus concurrency constraints, interconnect guides halve
the upper bound for multiplexing requirements in this industrial example.

Interconnect Block A

v v v v v v o

ALU Multiply XOR Register Bank

v v v G o

Interconnect Block B

Figure 6.12Abstract view of interconnect in industrial example

Configuration 3 replaces numerous individual multiply and add tasks with a
MAC IP-block aggregate task. A use of this MAC is modeled by an aggrégate
as described in section 3.1.4. This reduces the task count to 58 Multiply, 7 ALU, 4
XOR and 21 MAC for a total of 80 tasks in the composition. By using a MAC with
a constrained set of sequential behaviors, a more restricted set of datapath uses and
hence interconnect is assumed. Finally, less state is needed to model the
composition and consequently computation requirements are significantly
reduced.

6.3 A RISC Processor Model

A RISC processor model, implementing the SimpleScalar[20] instruction set
architecture, ISA, was constructed. The SimpleScalar ISA suersetof the
MIPS IV ISA. The primary reason for choosing this ISA is that the open-source
SimpleScalar tool suite provides easily modifiable simulation and tracing tools.

3. The number of registers in the register bank may be increased to make such subsets dis-
joint.
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With this simulation capability, benchmarks from the MediaBench([70] suite of
representative embedded applications may be profiled. These profiles are used in
both prioritization and evaluation of the resulting schedules. This is critical since
no processor can guarantee high throughput for every control case when
contention for resources exists. Finally, the floating point subsystem is not
modeled. However, all other instructions, including all control, integer and load/
store instructions are modeled.

6.3.1 An Instruction Task

RISC processor behavior is modeled at two levels of abstraction. At the higher
level of abstraction, tasks represent execution of one entire instruction and are
calledinstructiontasks. Figure 6.13 shows an instruction task graphically. Given

\V/ _\V/ \V/
bypass inst ppc
Instruction Task
bypass ninst nppc
\V/ \V/ \V/

Figure 6.13Abstracted instruction task

an instruction operandhst, an instruction task sequences through some subset of
behaviors depending on the decoded instruction. Internal to an instruction task are
memory and register access tasks which are often sequentially constrained. Each
instruction task represents a single, complete instruction execution. An instruction
task computes the next preincremented program counter vgpe as well as
prefetching the next instructiominst at the correct next program countepc
address. Botmppc and ninst are heavily control-dependent on the currently
decoded instruction and on the processor state. Finally, to avoid dynamic data
hazards between values that have yet to be updated and future instructions that will
read the same values, laypassoperand is provided. Bypass allows a single
operand to be forwarded to the next instruction as well as being written to the
register file. Bypass can also cause processor stall behavior in cases of multiple
data hazards.

This particular abstraction lends itself to ordered instruction fetch and ordered
commit. Note that more sophistication may be added to instruction tasks. For
instance, additional input operands, representing conditional register file
commitment, may be added. These would prove useful for enabling limited out-of-
order execution. Also, instruction prefetch could be separated from the instruction
task, and a separate instruction fetch task, providing a model of out-of-order
instruction fetch, would provide instruction operands to instruction tasks.
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bypass inst ppc
Instruction Task
bypass ninst nppc
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bypass inst ppc
Instruction Task
bypass ninst nppc
L
bypass inst ppc
Instruction Task
bypass ninst nppc
) J J

Figure 6.14A processor composition of three instruction iterates

6.3.2 A Processor Composition

Each instruction task is atomic. Several instruction task iterates are composed
to represent the behavior of several simultaneously executing instructions. For
example, figure 6.14 composes three instruction task instances to represent
behavior of three instructions. Resource concurrency constraints as well as other
sequential constraints are applied globally in a processor composition. Thus, the
resultingCMA describes all execution sequences for three ‘in-flight’ instructions
on a target hardware. Clearly, if higher performance is desired, a composition
consisting ofn instruction iterates may be built with the trade-off of greater
storage, resource, and control complexity. Finally, this technique models behavior
independently of any anticipated structural hardware pipeline. TMA
exploration step reveals an appropriate hardware implementation --which very
well may resemble a structural hardware pipeline.
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6.3.3 Modeling an Instruction Task

Table 6.14: Low-Level Tasks

INTUS( (op1, op2, cop), (op) )

Simple integer computation

INTUC( (opl, op2, cop), (ophi, oplow)

) Complex integer computation

RFRD( (regi), (op) )

Integer register file read

RFWR( (regi, op), () )

Integer register file write

MEMRD( (addr), (op) )

Memory read

MEMWR( (addr, op), () )

Memory write

DMEMRD( (addr), (opl, op2))

Double word memory read

DMEMWR( (addr, op1, op2), () )

Double word memory write

RDHL( (cop), (op) )

Read architecture hi or lo registers

WRHL( (op, cop), ())

Write architecture hi or lo registers

DECODE( (inst), (class, subclass, coq

) ) Instruction decode

An instruction task is composed of smaller low-level tasks such as register file
access, memory access, integer computations, instruction decoding and other
activities. The complete set of low-level tasks used in the model is shown in
table 6.14. SmalMA specify the target sequential behaviors of each of these low-
level tasks. A low-level task’s input operands are enclosed in the first set or
parenthesis while its output operands are enclosed in the second set.

Table 6.14 and upcoming descriptions use generic operand names syh as
op2 and addr. These are name place holders and should not be confused with
physical registers or global composition operand names. The high-level intent of
an operand is revealed by its generic name. Table 6.15 summarizes the generic
operand names used in an instruction task.

Table 6.15: Generic Operand Names used in an Instruction Task

=]

op, opl, op2, ophi, oplow Generic integer operands
addr Generic address operand
regi Generic register index operand
pc, ppc, npc, nppc Instruction address operands
inst, ninst Instruction operands
rs, rt, rd Register index portions of inst
(source, transfer, destination)
imm Some immediate portion of the instruction
cop A control operand produced by the decode task
bop A branch control operand produced by comparisg
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Instructions are grouped into three sequentially distinct instruction classes:
Integer, Load/Store and Control. Each class is further broken down into subclasses
that describe additional variations of behavior. All instructions in a particular
instruction class::subclass require the same organization of low-level tasks and
hence exhibit the same expected sequential behavior. The class and subclass of an
instruction is determined by the instruction decode task. Before the instruction

Table 6.16: Integer Arithmetic and Load/Store Instruction Class

Subclass SimpleScalar Instructions Necessary Tasks
rrl add, addu, sub, subu, and, or, XdRFRD( (rs), (opl) )
nor, sll, srl, sra, slt, sltu RFRD( (rt), (op2))

INTUS( (op1, op2, cop), (op) )

RFWR( (rd, op), ())

rr2 mult, multu, div, divu RFRD( (rs), (opl))

RFRD( (rt), (op2))

INTUC( (opl, op2, cop), (ophi, oplow) )
WRHL( (cop, ophi), () )

WRHL( (cop, oplow), ())

ri addi, addiu, andi, ori, xori, slti, | RFRD( (rs), (opl))
sltiu INTUS( (opl, imm, cop), (op) )

RFWR( (rt, op), () )

tohilo mthi, mtlo RFRD( (rs), (op) )
WRHL( (op, cop) )

fromhilo | mfhi, mflo RDHL( (cop), (op) )
RFWR( (rd, op), ())

Ids Ib, Ibu, Ih, Ihu, Iw RFRD( (rs), (opl))

INTUS( (opl, imm, cop), (addr) )
MEMRD( (addr), (op) )
RFWR( (rt, op), ())

Idd diw RFRD( (rs), (opl))

INTUS( (opl, imm, cop), (addr))
DMEMRD( (addr), (opl, op2))
RFWR( (rt, opl), () )

INTUS( (rt, 1, cop), (op) )
RFWR( (op, op2), () )

strs sb, sbu, sh, shu, sw RFRD( (rs), (opl))

INTUS( (opl, imm, cop), (addr) )
RFRD( (rt), (op) )

MEMWR( (addr, op), () )

strd dsw RFRD( (rs), (opl))

INTUS( (opl, imm, cop), (addr))
INTUS( (rt, 1, cop), (op) )
RFRD( (rt), (opl))

RFRD( (op), (0p2) )

DMEMWR( (addr, op1, op2), ())
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decode is completed, every instruction class::subclass is possible and can be
speculatively executed. For example, a register file read task is typically speculated
simultaneously or prior to decode despite the specification order.

6.3.4 Integer and Load/Store Behavior Subclasses

Instructions in the Integer and Load/Store classes will exhibit one of the
behaviors described in table 6.16. Most of these instructions represent simple
behaviors which are largely distinguished by the operand fetch behaviors. The
exceptions aremult and div instructions which use a special integer task
INTUC. This task can be customized to represent the practical issues of making a
scalar multiply/divide pipeline including potentially complex sequential
constraints. Other exceptions are the memory access tasks, MEMRD, DMEMRD,
MEMWR and DMEMWR, used in load/store instructions. These too may require
more complex sequential constraints representing memory subsystem access
protocols and/or delays. Additionally, memory access tasks may have
nondeterministic control to model cache hits and misses. Since these sequential
constraints are represented by automata models, they may be more flexible and
realistic than interval based constraints and hence lead to potential improvements
in scheduling efficiency.

6.3.5 Control Behavior Subclasses

The control class consists of those instructions primarily involved with update
and management of the program counter, and hence correct instruction prefetch.
Their behavior is dependent on whether the current instruction is a jump or branch
and, if a branch, on whether the branch is taken or not. Next-pc calculation and
instruction prefetch are often bottlenecks in processor architecture because the
correct next pc and consequently the correct instruction prefetch location are not
known until relatively late in an instruction’s execution. In manual designs,
speculative pc increment and instruction prefetch are used to improve performance

if (branch taken) {

INSTUS( (pc, 4, cop), (opl))

INSTUS( (op1, imm, cop), (npc b))}
elseif (jump taken) {

INSTUS( (pc, imm, cop), (npc i))}

elseif (jJump register taken) {
RDRF((rs), (npc )}
elseif (default) {
INSTUS( (pC, 4! COp), (an def ) ) }

MEMRD( (npc »5), (ninst) )

Figure 6.15Possibilities for next-pc calculation and instruction prefetch
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for the most common cases. Although fork-type control behaviors are implicitly
speculated in ABSS, join-types of behaviors (operand resolution) are not. To allow
speculative pc increment and instruction prefetch in at least the most common
cases,multiple pc increment and instruction prefetch tasks must be modeled
through task-splitting.

Figure 6.15 shows a pseudo-code if statement representing all possible ways a
next pc may be calculated. This pseudo-code calculates the nexp@hiased on
the decoded instruction. The correapc is used to prefetch the instruction
executed by the next instruction iterate in the processor composition. Since there is
only a single instruction prefetch task modeled, the current instruction must be
decoded to distinguish and correctly resolvertheused in the prefetch.

Additional speculation freedom is added to the model by duplicating the
instruction prefetch before thepc resolution point. Figure 6.16 shows this same
pseudo-code but now with two instruction prefetches: speculative and
nonspeculative. The speculative instruction fetch occurs only under default cases.
Although the current instruction must be decoded to resolve the correct prefetched
next instruction,ninst the speculatively prefetched instructioninst,e, may
often be usedmmediatelyif the current instruction decodes to the default case.
The dependency from current decoded instruction to instruction prefetch is
removed for the default case by task splitting (section 4.5.3) an instruction prefetch
within the default case.

if (branch) {
INSTUS( (pc, 4, cop), (opl))

INSTUS( (opl, imm, cop), (npc b))}
elseif (jJump taken) {
INSTUS( (pc, imm, cop), (npc i))}

elseif (jump register taken) {
RDRF((rs), (npc )}

elseif (default) {
INSTUS( (pc, 4, cop), (npc def))
MEMRD( (npc gef ), (ninst spec) )}

if (not default) {
MEMRD( (npc »7), (ninst nospec ) ) }

Figure 6.16Speculative instruction prefetch in the default case

Figure 6.16 still requires thgic be incremented in the default case. Further
optimization of the default case is achieved by speculatively preincremegrtiag
shown in figure 6.17. Notice that both the branch and default cases now use a
preincrementegc, calledppc Furthermore, the next preincremeniad nppg is
computed speculatively in the default case and nonspeculatively in other cases. As
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if (branch taken) {

INSTUS( (ppc, imm, cop), (npc b))}
elseif (jump taken) {
INSTUS( (pc, imm, cop), (npc i))}

elseif (jJump register taken) {
RDRF((rs), (npc )}

elsif (default) {
MEMRD( (ppc), (ninst ~ gpec) )
INSTUS( (ppc, 4, cop), (nppc spec) ) }

if (not default) {
MEMRD( (npc 77), (ninst  pospec ) )
INSTUS( (npc -, 4, cop), (nppc nospec ) )

Figure 6.17Speculative pc preincrement in the default case

with the speculatively prefetched instructiomppgpecmay be correctly resolved
and usedmmediatelywhen the current instruction decodes to the default case. The
dependency on whighcto increment in the default followed by default instruction
case is removed by addition of a speculatively preincremepted the default
case.

With these speculative pc preincrement and instruction prefetch goals in mind,
it is possible to specify control class and subclass behaviors. Table 6.17 describes
control subclasses and necessary tasks. Of particular note is the branch, b,
subclass. This subclass is necessary if the instruction decodes to a branch and
represents a branch’s comparison behavior. A new control opetzoml, is
produced in sync with this comparison. For branch instructibog, determines
whether branch not taken, bnt, or branch taken, bt, subclass behaviors are valid.

Table 6.17: Control Class

Subclass SimpleScalar Instructions Necessary Tasks
default all except j, jal, jr, jalr (No task - ppc is used as npc)
or bnt INTUS( (npc, 4, cop), (nppc) )

MEMRD( (npc), (ninst) )

ji j INTUS( (pc, imm, cop), (npc) )
INTUS( (npc, 4, cop), (nppc) )
MEMRD( (npc), (ninst) )

il jal INTUS( (pc, imm, cop), (npc) )
INTUS( (npc, 4, cop), (nppc) )
RFWR( (31), (ppc) )
MEMRD( (npc), (ninst) )

ir ir RFRD( (rs), (npc) )

INTUS( (npc, 4, cop), (nppc) )
MEMRD( (npc), (ninst) )
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Table 6.17: Control Class

Subclass SimpleScalar Instructions Necessary Tasks

jrl jalr RFRD( (rs), (npc) )

INTUS( (npc, 4, cop), (nppc) )
RFWR( (rd), (ppc) )

MEMRD( (npc), (ninst) )

b beq, bne, blez, bgtz, bltz, bgez RFRD( (rs), (opl))

RFRD( (rt), (op2))

INTUS( (op1, op2, cop), (bop) )

bt (only if |beq, bne, blez, bgtz, bltz, bgez INTUS( (ppc, imm, cop), (npc) )
branch INTUS( (npc, 4, cop), (nppc) )
taken) MEMRD( (npc), (ninst) )

6.3.6 Data Hazards

An instruction task has bypass output and input operands to resolve data
hazards. Incorporating data hazard detection and bypass freedom in an instruction
task requires three additions. First, when an instruction is decoded, an additional
control operandhazardop is produced which distinguishes between data hazard
or no data hazard&econd, bypassed values must be passed and available from the
previous instruction task. This bypass operand is an operand resoluteref
potential register-file write-back operand from the previous instruction task.
Finally, an operand resolution point is added whenever a register file operand is
required in the current instruction task. At this operand resolution ploazardop
selects either the register file operand or the bypassed operand from the previous
instruction-level task. For example, instructions in the rrl class require the register
file entry atrs. It may be that the last instruction iterate is computing a new
operand that has yet to be written to this register file location. Instead of always
reading a value at locatiais, an operand resolution point is added to one input of
rrl’s INTUS task. Depending on the valuelwdzardop either the register file read
result or the bypassed value is accepted.

Iterate i Potential bypassed operands

decod

lterate i+1 K j Potential use of bypassed operand
hazardop—?

Figure 6.18Single bypass modeling
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In the worst case, three register file reads may be required by a single
instruction belonging to the store double, strd, subclass. It is also possible that data
hazards exist on at most two of these register file reads as instructions belonging to
the load double, Idd, subclass perform two register file write-backs. A designer
may choose to model bypasses for as many situations as desired. This comes at a
cost as each additional bypass value implies additional or expanded operand
resolution points as well as anothesizardopoperand to indicate when this new
bypass value is required. Because of this added complexity, often only a single
operand is bypassed from one instruction iterate to the next. The production source
of a bypassed operand is a resolution poinewérypotential register-file write-
back from the previous instruction iterate. A sindlazardopcontrol operand
distinguishes between three situations: no hazargéad hazard at read hazard.

When a single bypass is modeled, it is still necessary to correctly handle
scenarios where multiple data hazards exist. Since no bypass route exists for
additional data hazards, the dependent instruction task must stall until the previous
instruction task has finished all register file (or other state) write-backs. This may
be modeled with an additional control operastdllopwithin each instruction task.

The operandstallop indicates whether or not theextinstruction iterate should

stall. If stallopresolvedrue, then the prefetched instruction is deemed to have too
many data hazards and is not made available to the next instruction iterate. Hence,
the next instruction iterate is forced to stall. Only when every register file write-
back has occurred is the prefetched instruction made available. This implies an
operand resolution for the passed prefetched instruction. Vetalop resolves

true, this operand resolution point requires the correct prefetched instruction AND
all write-backs to bé&known Whenstallop resolvesfalsg this operand resolution
point only requires that the correct prefetched instructidmmwn Finally, stallop

is used to stall dependent instructions for other data hazards, such as hazards on
architecture registers hi and low, as well.

The control operandsazardopandstallop are both non-deterministic. This is
because without actual data values, it is impossible for this model to determine
precisely when data hazards occur. Whaizardopand stallop do provide is
distinguishable variations in behavior for data hazard and bypass scenarios. This
allows probabilistic data, gathered from profiling actual code, to guide schedule
prioritization during exploration.

6.3.7 Operand Resolution Points

As discussed in section 4.3.1, ABSS limits state growth and guarantees finite
state representation in control-dependent behavior through use of operand
resolution points. To better understand the freedoms and limitations of the
SimpleScalar ABSS model, it is helpful to summarize all such resolution points.
The most important resolutions are for instruction prefetchesst,e; and
ninstyospee @Nd for program counter preincrememppcpecandNPPGpspee These
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may be correctly resolved once the current instruction is decoded. If the current
instruction decodes to a branch, correct resolution is delayed until the control
operandbopis known Other important resolution points relate to data hazards. If
data hazards are modeled, then hazard-prone data fetches and mated bypasses must
be correctly resolved. These too may occur once the current instruction is decoded
and presence or absence of data hazards is determined. Finally, other operand
resolutions occur in the presented SimpleScalar model which are hidden by
covering dependencies. For instance, the integer write-back task occurs for three of
the five Integer subclass behaviors. Operand resolution is required to determine
which subclass’ result should be the write-back value. For each of these three
subclasses, an earlier task already dependsogrfrom the instruction decode

task. Hence, instruction decode will have had to occutvetbre the operand
resolution point is reached. Thus, some operand resolution points may be hidden
and do not impact model freedom.

6.4 RISC Processor Results

As described in section 6.3 and shown in figure 6.19, an instruction iterate
contains 25 low-level tasksand 37 care control cases. Only 25 low-level tasks are
required as many instruction subclasses share common tasks. For example, several
subclass behaviors require esregister fetch, yet only a singles register fetch
task is instantiated and all tasks requitisglepend on this task.

When three instruction iterates form a processor composition, a cyclic
scheduling problem with 75 tasks and 50,653 care control cases is created. This
processor composition represents three ‘in-flight’ instructions and does not require
that these instructions be initially pipelined as is traditionally done. This section
presents results for scheduling a three in-flight instruction processor model. All
control cases and cyclic considerations are handled automatically and exactly by
ABSS. Although the behavioral specification does not demand pipelining but only
ordered instruction fetches, what results is a pipelined implementation suitable for
embedded applications with performance equivalent to what one expects from a
well-done manual implementation.

The MediaBench[70] suite of benchmarks serve as a measurement point and
exploration guide for RISC processor scheduling results. The MediaBench suite
consists of 11 representative embedded applications. For the present purposes, 4
applications were eliminated due to substantial floating-point content or inability
to compile correctly for the SimpleScalar tool suite. The remaining 7 consisted of
three speech compression/decompression applications: adpcm, gsm and g721,
three graphics applications: jpeg compression and decompression, mpeg
compression and ghostscript postscript rendering, as well as one encryption/
decryption application: pegwit.

4. The figure shows more than 25 tasks as synced multivdAidor control are included.
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Figure 6.19RISC processor instruction iterate

The SimpleScalar tool suite was modified to produce simulation statistics
relevant to the processor model. Instruction class mix, correlation between two
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instruction classes, single and blocking hazard probabilities, and branch taken/not
taken statistics were generated and analyzed. All 7 benchmarks exhibited similar
behavior and hence the following generalizations were made. The majority of
executed instructions, ~88% average for all benchmarks, were in the register-to-
register simple integer (rrl), register-to-immediate simple integer (ri), branch taken
(bt) or load single word (lds) subclasses. Within these four majority subclasses, rrl
and rri were most common, then bt and finally Ids. Correlation among these four
majority subclasses was also high at 72% on average for all benchmarks. Branches
were taken about 80% of the time. Hazards which could be eliminated with a
single bypass occurred for roughly 35% of all executed instructions. Hazards
which stall successive instructions occurred for only approximately 1% of all
executed instructions.

6.4.1 Priority Mix Set 1

With this application character in mind, two exploration control prioritization
mix sets were devised to help evaluate and direct the expected performance of a
FSM controller synthesized from this symbolic processor model. Priority mix set
1, as shown in table 6.18, gives highest priority to register-to-register, register-to-
immediate and branch taken mixes. Other mixes, each with slightly less priority,
are prioritized with load single word, branch not taken mixes being the last
specifically prioritized mix. After this, all remaining instruction mixes are
prioritized together in a final step. Likewise, mix set 2 also prioritized six
instruction mixes but favors load single word, branch mixes over register-to-
register, register-to-immediate mixes. A particular instruction mix in a mix set
includes all permutations of three instructions with exactly one branch if a branch
is present in a mix. Similarly, if no branch is present in a mix, but only register-to-
register, register-to-immediate and load single word instructions, then exactly one
load single word instruction is present in every mix permutation. For example, the
mix ‘rrl,ri,lds’ includes all permutations (rrl,rrl,Ids), (rrl,ri,lds), (ri,ri,lds),
(ri,rrd,lds), (rrl,lds,rrl), etc. with exactly one Ids.

Two sequential constraint scenarios, A and B, were modeled. Within a
scenario, constraints were added in two phases: sequential and concurrency.
Scenario A assumes all tasks complete in a single time-step except for double
word memory reads and writes and complex integer computations. A double word
memory read returns the first word after a single time-step and then the final word
in the immediate next time-step. Likewise, a double word memory write requires
the first write word during the first time-step and requires the second write word
during the second time-step. A complex integer computation returns the hi result
after a single time-step and then the lo result in the second time-step. Scenario B
extends scenario A such that all memory reads, whether instruction fetch or load
instruction, require two time-steps. The read value is only available after two time-
steps. These scenarios model a probable embedded processor core with two types
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of non-cached embedded system memory: single time-step word access and two
time-step word access.

Three resource concurrency constraint configurations, none, moderate and
tight, were applied to sequential constraint scenarios A and B. No concurrency
constraints were applied for the none configuration and hence only sequential and
dependency constraints apply. The moderate configuration assumes two memory
ports for all memory read/write and instruction fetch tasks. Furthermore, the
register file has 3 ports and supports at most 2 register file reads and 1 register file
write concurrently during any single time-step. A single integer function unit is
available for all instruction implementation computations. An additional integer
function unit is available for all program counter updates and calculations. Only a
single instruction decode unit as well as single access to architecture hi/lo registers
are allowed. The tight configuration is a restricted version of the moderate
configuration in which only one memory port is available. Also, the register file
has 2 ports and supports at most 2 register file reads or 1 register file read/1 register
file write concurrently during any single time-step. Finally, just a single integer

function unit is available for all program counter and instruction implementation
computations.

Table 6.18: Expected CPI Given Mix Set 1

Prioritized Resource Configurations
Mix A2none |Amoderatq Atight | Bnoné | B moderatd| B tightt

rrd,ri,bt 1.67 1.67 2.67 2.67 2.67 3.00
rrl,ri,bnt 1.33 1.33 2.00 2.00 2.00 2.00
rrd,ri,lds 1.33 1.33 2.00 2.33 2.33 2.67
Ids,lds,bt 2.33 2.33 2.67 3.33 3.33 4.33/4.00
Ids,lds,bnt 2.00 2.00 2.00 2.67 2.67 3.33

no stall 3.00 3.00 3.33 4.00 4.00 4.67
stall 5.00 5.00 5.00 5.00 6.00 6.00
best 1.00 1.00 1.33/1.00 2.00 2.00 2.00
CPU Seconds 180 848 1648 156 717 1610

a. All tasks 1 ts except double word read, write, multiply and divide which are 2 ts piped.

b. All tasks 1 ts except read, write, instruction fetches which are 2 ts, multiply and divide
which are 2 ts piped.

c¢. No hardware utility constraints.

d. 1 datapath ALU, 1 pc ALU, 1 3-port register file (at most 2 reads, 1 write), 2 memory
ports, 1 decode unit, 1 port to architecture hi/lo registers.

e. 1 datapath/pc ALU, 1 2-port register file (at most 2 reads or 1 read/1 write), Imemory
port, 1 decode unit, 1 port to architecture hi/lo registers.

Table 6.18 shows expected cycles per instruction, CPI, data for a synthesized
FSM controller which prioritizes mix set 1. In some cases, two CPI numbers are
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reported. The larger one is the expected CPI for entering this instruction mix from
any arbitrary instruction and the smaller one is the expected CPI for sustaining this
instruction mix. If a single CPI is reported, than the expected CPI is the same no
matter what earlier instructions were executed. In all prioritized cases, the
moderate resource configuration achieves the same performance as the none
configuration. ABSS is able to find optimal schedules for these prioritized control
cases as well as all 50,653 care control cases for three instructions in-flight. The no
stall (no multiple data hazards) and stall (multiple data hazards) rows indicates CPI
for worst control cases while the best row indicates CPI for the best control cases.

Many of the 50,653 control paths do achieve single cycle throughput even
though the expected FSM machine has been optimized for a particular subset of
instruction mixes. For example, the mixes ‘rrl,rrdl,rrl’ and ‘ri,tohi,rrl’ achieve
single cycle throughput and are included in the best row. Of particular interest is
the ‘rrl,rrd,rrl’ mix with an A tight resource configuration. Due to the restricted
register file access, this mix only achieves single-cycle throughpatards exist
Because of the comprehensive exploration, a correct optimal sequence for this
particular control case which utilizes the speed-up of a bypass is found. Although a
single-issue MIPS pipelined processor is a well understood structure with expected
high performance for any manually implemented design, ABSS meets this same
level of expected performance yet does so automatically.

6.4.2 Priority Mix Set 2

Table 6.19 presents expected CPI data for a synthesized FSM controller which
prioritizes mix set 2. There is not much difference when compared to table 6.18.
This may be attributed to the original RISC philosophy of few, simple and similar
instructions. Four differences do occur for the B tight configuration and are shown
in bold. Since the mix ‘Ids,|ds,bt’ is at a higher priority in table 6.19, a solution
with CPI of 4.00 rather than 4.33 is found. By selecting this 4.00 CPI solution,
other control cases of less priority are impacted. The ‘Ids,lds,bnt’ mix is now
actually slightly worse, 3.67 versus 3.33 CPI. Also, the ‘rrl,r,bnt’ is slightly
worse, 2.33 versus 2.00 CPI. Yet, some of the worst case control paths benefit from
the choice to heavily optimize the ‘lds,lds,bt’ mix. Their CPI improves to 4.00
from 4.67. Even with tight resource constraints, ABSS helps find particular design
trade-offs and best-possible control sequences.

Required CPU times range from 3 minutes to 30 minutes. All results in tables
6.18 and 6.19 were produced on a 866 MHz Xeon PIIl processor with 2 GB of
memory and running under Linux. It was a choice, not a necessity, to use a 2 GB
memory model. As the memory is available, it is preferred to trade memory use for
time. The most computational resource demanding example, B tight with mix set
2, is solvable on a 733 MHz PIlll machine with 128 MB of memory and requires 80
minutes CPU time.
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Table 6.19: Expected CPI Given Mix Set 2

Prioritized Resource Configuratiofis
Mix Anone | Amoderate  Atight B none| B moderate B tight
Ids,Ids,bt 2.33 2.33 2.67 3.33 3.33 4.00
Ids,lds,bnt 2.00 2.00 2.00 2.67 2.67 3.67
rrl,ri,lds 1.33 1.33 2.00 2.3300 |2.332.00 |2.67
rrl,ri,bt 1.67 1.67 2.67 2.67 2.67 3.00
rrl,ri,bnt 1.33 1.33 2.00 2.00 2.00 2.33
no stall 3.00 3.00 3.33 4.00 4.00 4.00
stall 5.00 5.00 5.00 5.00 6.00 6.00
best 1.00 1.00 1.33/1.00f 2.00 2.00 2.00
CPU Seconds 184 867 1522 160 737 1795

a. Same as table 6.18.

6.4.3 Representation Growth

Peak exploration path set time-step state set sizes, typically the largest, as well
as transition relation sizes are shown for several configurations in figure 6.20.
Configurations with resource concurrency constraints are most costly to solve as
resource concurrency constraints make scheduling intractable. Consider a
scheduling problem with no resource concurrency constraints. An as-soon-as-
possible list scheduler will never have to choose execution of one task over another
as every task with satisfied dependencies may always begin execution. On the
other hand, contention for resources during scheduling force choices as to which
task executes and consequently makes this problem intractable. Still, scheduling
without resource concurrency constraints with this technique takes some
computational resources a6 schedules oéverylatency are represented.

6.4.4 A Cache Hit/Miss Model

Configurations A and B model relatively simple sequential memory access.
Configuration A assumes single time-step access while configuration B assumes
two time-step access. Configuration A was modified to include two behaviors for
each memory read. The cache hit behavior defaults to single time-step access
while the cache miss behavior requires three time-steps to complete access.
Furthermore, if a cache miss occurs, the memory subsystem is pipelined and may
continue processing other memory requests, regardless of whether they produce a
cache hit or miss. Nondeterministic control distinguishes between a cache hit or
miss. Three memory access tasks: speculative instruction fetch, nonspeculative
instruction fetch and memory read, were subject to cache hit or miss and
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individually required nondeterministic control values. With these additional
control points, the number of distinct care control cases in a three in-flight
instruction composition increases to 474,552.

Table 6.20 summarizes results given priority mix 1. Because of cache miss
penalties (one cache miss is assumed in each mix), all resource configurations
achieve the same CPI for the prioritized instruction mixes. This indicates that a
tight resource configuration is appropriate when cache miss probabilities are 20-
30%. Finally, because of the additional control cases, required computation time is
greater.

6.4.5 2, 3 and 4 lterates

Tests cases with 2, 3 and 4 iterates for resource configuration A were solved.
Solutions for the 2 iterate composition were impacted by capacity constraints.
Solution iteration latencies for the 4 iterate composition did not improve when
compared to the 3 iterate composition. For this particular model and configuration,
a 3 iterate composition contains sufficient state to represent most problem
freedoms. Computation times range from 44 to 806 to 19,435 seconds for 2, 3 and
4 iterates respectively. Complexity increases by a factor of roughly 20 for each
additional iterate.
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Table 6.20: Expected CPI For Model with Cache Hit/Miss

Prioritized Resource Configurations
Mix none moderate tight
rrl,ri,bt 2.67 2.67 2.67
rrd,ri,bnt 2.00 2.00 2.00
rrd,ri,lds 1.67 1.67 1.67
Ids,lds,bt 3.33 3.33 3.33
Ids,lds,bnt 2.67 2.67 2.67
worst (no stall) 4.00 4.00 4.00
worst (stall) 6.00 7.00 7.00
best 1.67 1.67 1.67
CPU Seconds 719 7291 13,369

6.4.6 Summary

This chapter presented applications of ABSS. First, data-flow examples, drawn
from academia and industry, were scheduled. These included the elliptic wave
filter, the fast discrete cosine transform, and a math library function for Intel’'s
Itanium processor. Growth and practicality issues were discussed in this setting.
Next, control-dependent examples, again drawn from academia and industry, were
scheduled. These included a rotation of coordinates algorithm, spherical to
rectangular coordinate conversion and a graphics processing subsystem. Local
register use, additional iterates and control case prioritization were discussed.
Finally, a RISC processor model, based on the MIPS architecture, was introduced.
A suite of common embedded benchmarks was used to guide and interpret results.
Although no pipeline direction existed in the original specification, ABSS found
such pipelined execution sequences for three ‘in-flight’ instructions that are
comparable to high-quality manual implementations.
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Chapter 7

Discussion

This chapter discusses the novelty and limitations of ABSS. Also, future ABSS
research directions are outlined. Finally, a brief conclusion summarizes the main
concepts presented in this dissertation.

7.1 ABSS Novelty

Chapter 1 expanded the scope of the scheduling problem to encompass
operand dependence, control dependence, sequential requirements, hardware
resource requirements, repetition and pipelining. Although prior work in
scheduling has addressed all these issues to some extent, ABSS makes substantial
advances regarding sequential constraints as well as repetition and pipelining with
control. Furthermore, ABSS accommodates all scheduling problem scope
constraints in concert while systematically determining high-quality practicable
solutions for problems of useful scale. The ability to represent and schedule
sequential models of repeating behavior with hundreds of tasks and over 500,000
control paths substantially raises the bar as to what is believed possible for exact
scheduling models.

7.1.1 Sequential Representation

The fundamental and pervasive structures in ABSS are nondeterministic finite
automata, NFA. These naturally represent any sort of sequential constraints or
requirements in a finite digital system design. This was most clearly demonstrated
with sequentially constrained IP blocks and external 1O protocols used in the EWF
case study (section 6.1.1), FDCT configurations (section 6.1.3), the control-
dependent industrial example (section 6.2.3), as well as the RISC example with
cache hit/miss protocols (section 6.4.4). ABSS lays a foundation for exact
scheduling of such sequential models. Future work in ABSS will build on this
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foundation to represent and schedule models with even greater sequential
complexity.

Notable prior work on scheduling automaton models is attributed to
Yen[140][141] and Yang[138]. The work by Yen used an explicit FSM model and
did not produce exact results. Furthermore, Yen’s technique had difficulties with
practical design constraints and problem scale. Yang’s technique was symbolic and
implicit but experienced severe difficulties with problem scale and did not
guarantee correct solutions for control-dependent problems. ABSS is unique in
that it represents and exactly schedules automaton models of practical scale given
hardware resource requirements, repeating behavior and control dependence.

7.1.2 Repeating Behavior with Control

Scheduling repeating behavior with control in the absence of sequential
constraints is itself a difficult problem as evidenced by the scarcity of prior work.
Lakshminarayana'dVavesched68] is perhaps the best recent attempt. This
heuristic targets control-flow intensive (limited control case) loop behaviors.
ABSS provides a theoretical advance because it represents and exactly schedules
repeating behavior with control. Moreover, as demonstrated by the RISC example
(section 6.1.1), ABSS can accommodate close to 500,000 control cases! This is
unparalleled in the literature. Furthermore, ABSS still supports some types of
speculation as demonstrated by the ROTOR examples (section 6.2.1). Finally,
ABSS does all this exactly --also unparalleled in the literature.

7.1.3 Quality

Perhaps the most novel aspect of ABSS is the quality of solutions. Quality may
be measured in terms of how completely all necessary design constraints are
accommodated. In this respect, ABSS is able to accommodate all design
constraints, except final explicit bindingy, concert Some demonstrations of this
are the FDCT configurations in section 6.1.3 that incorporate function unit and
register bounds as well as internal and external sequential constraints. Quality may
also be measured as exactness. ABSS exhaustively encapsulates and explores the
entire solution space and hence can guarantee exact solutions. Furthermore, since
all solutions are represented, ABSS provides a complete set of solutions that cover
potential odd-ball yet necessary control cases and constraints. The RISC examples
with bypass and potential stall for multiple hazards (section 6.3.6) demonstrate this
completeness. The constructive automata approach to scheduling produces
solutions with quality and completeness unmatched by any prior scheduling work.

7.1.4 Useful Scale

Although ABSS is exact and exhaustive, it still solves problems of useful scale.
This is evidenced by the two industrial examples (sections 6.1.7 and 6.2.3).
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Compared to exact schedulers, the largest problems presented (100, 127 and 132
tasks) substantially raise expectations regarding problem scale. Compared to
heuristic schedulers, the largest problems ABSS solves often exceed or equal the
scale of typically reported problems with resource contention. If control scale is
considered, the ABSS RISC examples (section 6.3) with over 50,000 control cases
or even the pipelined S2R example (section 6.2.2) with 256 control cases are
unrivaled. Finally, ABSS is able to solve problems of useful scale on reasonable
hardware and in reasonable time. The problems presented in this dissertation were
often solved on a modern PC (733 MHz) with 512 MB of memory or less.

ABSS does not overcome the intractable nature of resource-constrained
scheduling. ABSS does provide an exact and workable technique for many
problems. With respect to problems of very large scale, a novel aspect of ABSS is
its formulation forethought regarding abstraction. A composite task and associated
CMA are fundamentally the same as a task and its assoclfedHence, a
mechanism exists to create a hierarchy of refinement, as described in section 7.3.4,
that addresses such large problems.

7.2 Limitations and Complexity of ABSS

Scheduling with resource contention is an NP-complete problem[41][103].
Still, implicit ROBDD-based techniques have dramatically raised expectations
regarding what variations and scale of NP-complete problems are solvable.
Although ROBDD-based techniques are time-and-space exponential in the worst
and often typical case, they are often practicable for many problems of useful
scale. Through careful formulation, ABSS exploits this potential ROBDD
speedup. Unfortunately, this potential speedup makes it difficult to precisely
guantify the complexity of ABSS. This section examines where complexity occurs
in ABSS and identifies when problem limits are reached with conventional
computational resources.

7.2.1 Finite State

ABSS complexity is directly proportional to the number of state bits needed to
construct aCMA . To model a composite task, aMA is assigned to each task
within the composition. Hence, the amount of state inCRIA is directly
proportional to the number of tasks, BIA , in a composition. Furthermore, if the
low-level tasks within a composition exhibit complex sequential behavior,
additional state is required for eadhA which again leads to state growth in a
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CMA . The largest examples solved in chapter 6 are summarized in table 7.1. From

Table 7.1: Select Largest ABSS Examples

Example Tasks State Bits CPU Secongds
288 from section 6.1.6 100 133 26.6
Itanium from section 6.2.3 127 339 131
Configuration 2 from section 6.2.3 132 271 865
4 Iterate RISC from section 6.4.5 100 159 19,435

these experimental results, one may conclude that, given a current co?'nputer
present ABSS limits are roughly 100-135 tasks represented with 13@R/A
state bits. Required computation times range from a few minutes to a few hours.

An MA represents production and existence of system operands. MAan
contains finite state, the set of operands it represents is also finite. This bound is
particularly important for operands that are produced iteratively in loops and
pipelines. In fact, only one instance of an operand per cydic is allowed as
described in section 3.2. This bound may be relaxed in a controlled way, at the
expense of additional state, by adding iterates, section 4.4, or operand buffers,
section 4.5.4, to a composition. Finally, a finite set of operands is also maintained
at operand resolution points. Since only one postresolMiArexists, only one set
of operands may be produced with one set of preresolution input operands. This
state-related limit is fully described in section 4.3.1 and may be relaxed in a
controlled manner at the expense of additional state with task splitting,
section 4.5.3.

7.2.2 Composition Character

State requirement is not the only factor contributing to ABSS complexity. The
overall structure and number of operand dependencies in a composition, as well as
the imposed hardware concurrency bounds, significantly influences complexity.
For example, a fast discrete cosine transform contains highly symmetric operand
dependencies and two independent behavior subgraphs. Computational
requirements to solve this relatively ‘loose’ behavior are significantly higher than
for the ‘tight' behavior of the elliptic wave filter (section 6.1). In general, less
complexity is encountered if a composition contains many freedom-constraining
operand dependencies, ord®ta in a ROBDD to minimize operand dependency
length and overlap (section 4.6), and imposes either no or extremely constraining
hardware concurrency bounds. On the other hand, greater complexity is

1. A current computer is a 733 MHz Pentium Il with 512 MB of memory.
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encountered if a composition contains few operand dependencies organized to
allow significant freedom, ordeifdA in a ROBDD to maximize distance between
operand producers and accepters, and imposes hardware concurrency constraints
that interact with operand dependency constraints in a balanced way. In fact, the
ability for these techniques to solve very highly constrained problems offers the
complement to conventional techniques which typically are more efficient for
weakly constrained problems.

7.2.3 Exploration Complexity

The CMA exploration steps presented in chapter 5 are the greatest algorithmic
contributors to ABSS complexity. The discussion in section 6.1.3 indicates that
exploration often accounts for 80-90% of the computation CPU seconds. In
particular, exploration’s fixed-point algorithms are the prime sources of such
complexity.

To facilitate a summary of exploration complexity, two broad definitions of
fixed-point algorithms are defined. dreatest-fixed point GFP(), begins with a
larger state setS, and uses a series of preimage, image, existential
quantification, and/or universal quantification steps to reasinaller $ such that
S'=8"1 and S'0S°. Likewise, A least-fixed point LFP(), begins with asmaller
state set, and uses a series afpreimage, image, existential quantification, or
universal quantification steps to readamger S' such thag8'=S"! and°0S".

Table 7.2 summarizes exploration algorithms for the four classes of scheduling
problems: acyclic data-flow, acyclic control-dependent, cyclic data-flow and cyclic
control-dependent. From this summary, complexity conclusions may be made. The

Table 7.2: Summary of Exploration Algorithms

Data-Flow Control-Dependent
Acyclic Cyclic Acyclic Cyclic
Forward Exploration LFP() LFP() LFP() LFP()
Backward Pruning LFP()
Closure with GFP(LFP())
Backward Pruning
Backward Pruning with LFP(GFP())
Validation
Closure with Backward GFP(LFP(GFPF()))
Pruning and Validation

least complex exploration, requiring just two least-fixed points, is for acyclic data-
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flow scheduling problems. Closure adds a greatest fixed-point computation to
cyclic data-flow explorationGFP(LFP()). When written nested, each step of the
GFP() requires a completd.lFP() computation. Validation adds abFP()
computation for control-dependent exploration. Finally, exploration for cyclic
control-dependent problems requires the greatest complexity with three nested
fixed points. Complexity growth during exploration is clearly where ABSS
encounters limits.

Still, ABSS exploration complexity is justified. Chapter 6 demonstrates that
ABSS is practicable for problems of useful scale. Furthermore, no other known
techniques exist that produce exact results for cyclic control-dependent scheduling
problems.

7.3 Future ABSS Directions

ABSS lays a foundation for new approaches to scheduling and automated
design. As such, there are several directions to pursue. These include specification,
encoding, re-encoding, partitioning, hierarchy, binding, heuristics as well as direct
dynamic FSM and datapath synthesis.

7.3.1 Specification

Chapter 3 describes how low-lewdlA are manually specified using a handful
of states and transitions. Techniques and tools exist that simplify specification of
sequential behavior. In particular, SynopsyBrotocol Compiler [122] uses a
hierarchical specification of sequential behavior similar to regular expression
semantics that has proven useful and helpful for meaningful design. A technique
similar to this may facilitate specification of ABSS sequential behavior and
interaction for both low-levéflA and composit®A .

7.3.2 Encoding

ABSS uses a predominantly ‘one-hot’ encoding to represent operand existence
in a system. This encoding works fairly well. On the other hand, experiments with
an alternative encoding[51], which models physical function units and binds
logarithmically encoded operands to these units, performed relatively poor. Even
so, the ABSS ‘one-hot’ encoding perhaps errs on the side of sparsity. An improved
encoding might find a better balance between one-hot sparsity and pure
logarithmic state compactness when considering efficient ROBDD representation.

ABSS uses a static allocation of state to represent operand existence. In other
words, once a state bit is assigned to a particular task, it always models that
particular task. A dynamic interpretation of state encoding, where the
interpretation of some state depends on other state, may benefit ABSS. This is one
conceptual route to a more compact state encoding. Furthermore, the notion of
dynamic state may enable increased freedom in an ABSS model without the
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expense of additional state. For example, task splitting (section 4.5.3), iterates
(section 4.4.5) and operand buffers (section 4.5.4) are all ways to increase model
freedom by representing more operand instances at the expense of additional state.
In fact, these correspond to transformation of the original behavior graph or
composite task. As another example, algebraic transformations, where the
associative, distributive and commutative laws are used to generate equivalent
expressions, may also be expressed as graph transformations. A dynamic encoding
and use of nondeterminism may achieve some beneficial graph transformation
without the expense of additional state.

7.3.3 Partitioning

As demonstrated with time-zone partitioning (section 6.2.3), partitioning
techniques can benefit ABSS. Time is not the only way to partition an ABSS
problem. A composition task may be partitioned according to spatial placement of
function units [129]. In this way, specific binding considerations are
accommodated while potentially reducing computational complexity. Other
techniques, which partition ABSS problems in various ways, are almost certainly
beneficial, especially when faced with extremely large problems.

7.3.4 Hierarchy of Refinement

ABSS was carefully formulated so that aMA and a CMA are
interchangeable. They both exhibit sequential behaviors of accepting and
producing operands. This interchangeability provides the mechanism for a
hierarchy of refinement as shown in figure 7.1. NFA models are the vehicles for
refinement between hierarchy levels. ABSS performs the refinement process
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Figure 7.1Hierarchy of Refinement
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within each hierarchy level. For example, suppose a behavior is described
sequentially at the highest level. This description need not be precise but may be
relatively general. Even so, this top-level description is a collection of co-
executing tasks. Each of these tasks may also be described as a collection of tasks
and so on until base behaviors are reached. Thus, a hierarchy is created. Different
expected base sequential behaviors may be assigned to tasks within compositions.
Resulting composite tasks throughout the hierarchy may be scheduled until
constraints from the bottom filter up to the top. Likewise, top sequential behaviors,
such as protocols, may be imposed and propagated downward to influence base
behavior and implementation. Consequently, several such refinements of this
hierarchy produce specific and valid executions sequences and implementations at
each level.

To be truly beneficial for extremely large designs, complexity from lower
levels must be hidden from higher levels by abstraction. Suppose @idrafrom
a lower level encapsulates one million valid sequences representing all possible
implementations. It may be that only one hundred distinguishably different
sequences exist when only consideradernallyrequired and produced operand
events. At a higher level, there is often no need to know exactly how a lower-level
taskinternally processes information, but only a need to know how a lower-level
task may be interfaced to. Consequently, before being passed up in the hierarchy, a
CMA may be re-encoded to only represent the fewer externally distinguishable
sequences. In this way, complexity may be abstracted through an appropriate,
though as yet unknow&MA re-encoding step.

7.3.5 Heuristic Exploration

As presented in chapter 5, ABSS performs exact exploratiorCdflA . This is

the most computationally expensive step in ABSS. It may not be necessary to
determine all exact solutions but rather some solutions of acceptable quality. For
such cases, ABSS may benefit from new heuristic exploration techniques.
Symbolic traversal and reachability are well-studied problems[21][90] and
techniques exist for approximate solutions[95]. These techniques, developed
primarily for symbolic model checking, may be directly applicable to new, more
efficient, ABSS exploration.

7.3.6 Synthesis

As presented, ABSS may return a witness schedule that can be used for FSM
synthesis. This approach is rudimentary as it does not exploit thelyuhmic
nature of aCMA’s path sets. Work is needed to directly synthesize a FSM from
ABSS structures. Preferably, the synthesized FSM need not be minimum state but
best implementation quality (performance, area, etc.). It could potentially
encapsulate numerous execution sequences and implement a dynamic control
scheme. As shown in section 6.1.3, ABSS encapsulates schedules with best
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averagelatencies. For example, loop iterations legs with latencies of 2-3-2-3...
yield an average latency of 2.5. Work to find such best average latency
schedules[56] may lead to direct synthesis of FSMs from ABSS structures.

ABSS does not perform precise binding, although interconnect and binding
guide constraints may be formulated (section 6.2.3). Methods are needed to
precisely constrain or interprewhich function unit a task is physically
implemented on. This will most likely require additional state information as a
single witness schedule currently represents numerous possible bindings. One
attractive approach under investigation adds additional state by duplicating tasks
and operands according to spatial bindings yet does so in an efficient partitioned
manner[129]. With the ability to produce precise bindings, ABSS may be used to
synthesize not only FSM controllers but datapaths.

7.4 Conclusions

A set of techniques for representing the high-level behavior of a digital
subsystem as a collection of nondeterministic finite automata, NFA, were
presented. Sequential behaviors for base units, such as ALUs, multipliers, register-
file ports, etc. are represented as small NFA called modeling automataTasks
from a behavioral graph specification are each assignedlAnthat models
appropriate sequential behaviors. All such bisl#e are composed by a Cartesian
product step into a larger composkA or CMA . Behavior operand dependence,
control dependence and hardware resource requirements prGhMAauntil it
only encapsulates all valid execution sequences of the digital subsystem. Implicit
symbolic ROBDD-based techniques find shortest pathsGhMa& . These shortest
paths correspond to minimum latency schedules for the digital system. This
provides a very general, systematic mechanism to perform exact high-level
synthesis for cyclic, control-dominated behaviors constrained by arbitrary
sequential constraints. Viability and scalability of this technique is demonstrated
by constructing and then performing exact scheduling on problems of practical
sizes and complexities drawn from both academic and industrial sources. In
particular, a substantial RISC model that supports pipelining, data hazards, bypass,
stall and cache hit/miss protocols was scheduled exactly.
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