
optimality and is run-time efficient. The solution for the complex control case relies directly on having available
the totality of solutions for the scheduling problem. Future research includes formulation of operation pre-execu-
tion to allow concurrent execution of control branches to improve the performance of the schedules. Extensions to
enable limited forms of scheduling for backward loops are planned as well.

7. References:

1. R.E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation”,IEEE Transactions on Comput-
ers, Vol. C-35, No. 8, August 1986.

2. R.E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams”,ACM Computing
Surveys, Vol. 24, No. 3, September 1992.

3. R. Camposano and R.A. Bergamaschi, “Synthesis Using Path-Based Scheduling: Algorithms and Exercises”,
Proceedings of the 27th ACM/IEEE Design Automation Conference, 1990.

4. M. Fujita, H. Fujisawa and Y. Matsunaga, “Variable Ordering Algorithms for Ordered Binary Decision Dia-
grams and Their Evaluation”,IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, Vol. 12, No. 1, January 1993.

5. S. H. Huang et al. “A Tree-Based Scheduling Algorithm for Control Dominated Circuits”,Proceedings of the
30th ACM/IEEE Design Automation Conference, 1993, pp. 578-582.

6. C.-T. Hwang, Y.-C. Hsu, Y.-l. Lin, “Optimum and Heuristic Data Path Scheduling Under Resource Con-
straints”,Proceedings of the 27th ACM/IEEE Design Automation Conference, 1990.

7. R. Jacobi, N. Calazans and C. Trullemans, “Incremental Reduction of Binary Decision Diagrams”,Proceedings
of the IEEE International Conference on Computer-Aided Design, 1992.

8. T. Kim, J.W.S. Liu, C. L. Liu, “A Scheduling Algorithm for Conditional Resource Sharing”,Proceedings of the
IEEE International Conference on Computer-Aided Design, 1991, pp. 84-87.

9. H. Komi, S. Yamada, K. Fukunaga, “A Scheduling Method by Stepwise Expansion in High-Level Synthesis”,
Proceedings of the IEEE International Conference on Computer-Aided Design, 1992.

10. D. Landskov, S. Davidson, B. Shriver, P. Mallett, “Local Microcode Compaction Techniques”, COmputing
Surveys v. 12, n.3, Sept. 1980.

11. J.-H. Lee, Y.-C. Hsu and Y.-L. Lin, “A New Integer Linear Programming Formulation for the Scheduling
Problem in Data Path Synthesis”,Proceedings of the 26th ACM/IEEE Design Automation Conference, 1989.

12. S. Malik, A.R. Wang, R.K. Bryant, A. Sangiovanni-Vincentelli, “Logic Verification using Binary Decision
Diagrams in a Logic Synthesis Environment”,Proceedings of the IEEE International Conference on Com-
puter-Aided Design, 1988.

13. M. C. McFarland, A. C. Parker and R. Camposano, “The High-Level Synthesis of Digital Systems”, Proceed-
ings of the IEEE, Vol. 78, No. 2, February 1990.

14. A. C. Parker, J.T. Pizarro, M. Mliner, “MAHA: A Program for Datapath Synthesis”,Proceedings of the 23th
ACM/IEEE Design Automation Conference, 1986.

15. B. Pangrle D. Gajski, “Slicer-- A State Synthesizer for Intelligent Silicon Compilation”,Proceedings of the
IEEE International Conference on Computer-Aided Design, 1986.

16. C. Papadimitriou and K. Steiglitz, “Combinatorial Optimazation Algorithms and Complexity”, Prentice-Hall
Inc., New Jersey, 1982. pp. 132.

17. P.G. Paulin and J.P. Knight, “Force-Directed Scheduling for the Behavioral Synthesis of ASIC’s”,IEEE
Transactions on Computer-Aided Design, Vol. 8, No. 6, June 1989.

18. I. Radiovojevic, F. Brewer, “Symbolic Techniques for Optimal Scheduling”, UCSB Tech. Report #93-11, May
1993.

19. K. Wakabayashi, T. Yoshimura, “A Resource Sharing and Control Synthesis Method for Conditional
Branches”,Proceedings of the IEEE International Conference on Computer-Aided Design, 1989.

20. K. Wakabayashi, “Global Scheduling Independent of Control Dependencies Based on Condition Vectors”,
Proceedings of the 29th ACM/IEEE Design Automation Conference,1992, pp. 112-115.

21. L. Yang and J. Gu, “A BDD Model for Scheduling”,Proceedings of CCVLSI, 1991.

schedule ensemble is four traces (corresponding to all possible values of the guards). In these examples, therea re
no limitations on the possible scheduling allowed for the conditionals other than the data-dependencies derived
from the CDFG. More complicated problems (Examples G3 and G5) are introduced below as well. In these exam-
ples, there is a control correlation between two control fork-join structures running in parallel. This means that the
guard representing the path chosen for the correlated forks has the same value in both forks. Thus, an intersection
of the sets of conditionals of the two machines is non-empty and corelates to the shaded comparators. This
increases the freedom in the scheduling since a smaller number of traces form an ensemble solution. An optimal
schedule for these cases must include the correlation to not eliminate those traces which are invalid for an unco-
orelated set of forks. This requirement is trivial in the proposed formulation by simply assigning the same guard
variable to both forks. Potentially much more complex correlations are clearly possible as are arbitrarily complex
conventional control structures. Note that the complexity of the formulation grows with the number of guard vari-
ables, not the (possibly exponential) number of traces or control paths. Examples G3 and G5 have 6 and 18 possi-
ble control paths respectively, but only 3 and 5 guards respectively are needed. In Table 3, results for the
construction and validation of the presented examples is described. For these examples, all paths were scheduled
to complete within the time for the written longest cycle, leaving a great deal of freedom for the alternate (shorter)
paths. The posted number of traces correspond to the number ofall components from which valid ensemble
schedules can be constructed, the number of possible ensemble schedules is potentially much larger. The posted
CPU times are for a DEC Station 5000 machine and a custom C++ BDD package developed at UCSB.

6. Conclusions and Future Research

In this paper, we have presented a technique for exact scheduling applicable to a wide variety of constraints
including register, bus, and resource usage. These techniques are very time competitive with current exact tech-
niques, but also offer the availability of all possible solutions of the scheduling problem in a compact form. This
availability lead in a natural way to a technique for scheduling arbitrary forward branching control which retains

 Table 3. Control-Dependent Results

Kim G2 G3 G5

cycles (longest) 8 6 5 7
adders 2 1 1 1
subtractors 1 1 1 1
comparators 1 1 1 1
#control paths 3 4 6 18
#guards 2 2 3 5
#variables 76 27 46 71
#nodes 3934 175 488 2071
#valid traces 6863 35 46 652
CPU time [s] 10.9 1.1 2.9 19.8

G3 example

Guards: G1 G2 G3

T F

TF
T

T
F

F

G5 example

Guards: G1 G3 G2 G5 G4

T

F

T

F

T

T

F

F

F

FTT

G2 example

Guards: G2 G1

T F T F

G2,- G2,-

-,G1
-,G1

be completed for both values of G(ck). We wish to eliminate all traces from the complete set of schedules which
are not part of a valid ensemble schedule (valid for all control paths). This will leave a set of traces which can be
combined into all possible ensemble schedules for the instance. Note that the number of valid traces is possibly
far smaller than the number of ensemble schedules, since a trace may have several matching traces in the ensem-
ble, and the can be exponentially many traces forming an ensemble schedule.

To perform trace validation efficiently, we propose an iterative algorithm based on the OBDD formulation.
The idea is as follows: for a set of traces where a conditional ck is not resolved prior to control step i we have to
identify those traces corresponding to G(ck) andG(ck) that match in all preceding control steps, including the cur-
rent one. This can be done efficiently (since all the matches among all traces are found in parallel) by smoothing
out of the OBDD all the variables corresponding to operations in time steps > i, and then performing a universal
abstraction on the guard corresponding to the value of conditional ck. For a set of traces in which the conditional
ck is already known (executed prior toi) nothing need be done, and we continue to process the rest of the condi-
tionals in a same way. This process must be run on each conditional for each time step in which some conditional
can be executed since at that point, knowledge of the conditionals are changed for some traces. The process simul-
taneously performs the matching on all potential traces, and also ensures that a valid trace exists for each contol
point time step since a trace must exist to be matched. However, when trace matching is performed at the subse-
quent time steps, traces are discarded which potentially invalidate some of the schedules whose completeness was
validated during the previous cycles. For this reason, the algorithm is iteratively applied until no more traces are
removed. The code fragment below describes the validation algorithm. The following notation is used: S(0) - set
of traces generated by scheduler, S(i) - set of traces at iterationi, O(i) - set of variables corresponding to time steps
> i, S’ - matching paths, ck - conditional; G(ck) - guard associated with a conditional ck, ∃xf = fx +fx’ - existential
abstraction of a boolean function,∀xf = fxfx’ - universal abstraction of a boolean function, Rk(i) - function indi-
cating that a conditionalck was scheduled prior to time stepi

(Eq. 8)

iteration_counter = 0;
do {

iteration_counter++;
S(i) = S(i-1);
for each clock step where at least one conditional can be scheduled {

for each conditionalck {

if (S’==0) { S(i)=0; exit; }
}
S(i) = S(i)S’;
if (S(i)==0) exit;

}
} while (S(i)!=S(i-1));

The number of iterations is bounded in the worst case by the number of conditionals (same as the number of
guards). This corresponds to the case where control has a form of anif-else-if ladder. On tree-like structures, the
number of iterations is bounded by the hight of the tree. However, typically the algorithm converges after only
one iteration even on complex control stuctures described in the folowing section. This is due to the relative rarity
of trace removal propagating to earlier stages in the validation. It is interesting to note that, due to the very simple
control structure and very loose resource constraints, no invalid traces were present in the initial solution obtained
from symbolic scheduling of the Kim example.

5.2. APPLICATIONS TO PARALLEL CONTROL STRUCTURES
Our model is not limited to those CDFGs which have a conditional tree control structure. Example G2 on the

next page is a problem instance where two fork-join pairs are executed completely in parallel, thus complicating
the issue of resource availability among the operations. Notice, that the Gi functions implicitly include some
guards variables as ‘don’t cares’, indicating that there is no mutual exclusiveness among the operations belonging
to the parallel execution paths, but each path is exclusive with respect to operations on the guard of the opposite
sense. Validation of this case uses the same algorithm with convergence in one iteration. Note that a complete

Rk i() Cjk
j i<
∑=

S' S i()
O i()∃=

S' S'Rk i() S'Rk i()()G ck()∀+=

be simultaneously constructed using the same constraints as before. Only Eq.1 requires the following exstension:

(Eq. 1a)

whereGj is a boolean function (defined on the guard variables) that conditions (guards) the execution of oper-
ations corresponding to a given control arc. Eq. 1a states that if the condition is fulfilled an operationj can be
scheduled during one and only one control step -- if the condition is false then operationj is not scheduled at all.
Consequently, if two operations i and j are guarded byGi andGj whose intersection is empty, theni and j are
mutually exclusive. In general, our solution is a collection of product terms, each one including all the operations
and some (not necessarily all) guard variables, reperesenting a possible execution instance for a particular control
path. In the figure below is Kim’s example[8] in which we assume that one comparator, one subtractor (‘black’
operations) and two adders (‘white’ operations) are available. Indicated blocks correspond to operations that share
the same function G. Operations belonging to a control-independent portion of CDFG are not guarded and thus
belong to all execution paths. Consequently, they can be scheduled simultaneously under all control combina-
tions. Due to very loose resource constraints in this example, there is a large number of possible schedules (see
Table. 3), but we were able to find all valid execution traces in less than 11 seconds. It is obvious that the control
paths can be scheduled in 7, 8 and 6 steps respectively. However, the fastest possible execution of all the paths is
just one possible criterion for optimality of the schedule. For example, to simplify the control complexity it might
be advantageous to schedule the control-independent path uniquely in all possible control instances. We were able
to verify in just 12.2 seconds that the (7,8,6)-cycle schedule cannot fulfill such a requirement. If we add one con-
trol step to one execution path and accept (7,8,7) schedules, it is possible to find a solution (depicted in the exam-
ple figure) where not only the control-independent path is uniquely scheduled, but the resources used during steps
5 and 7 are same in all three control paths.

5.1. TRACE VALIDATION
After all possible execution traces (for individual paths) are generated, the must be validated, since some of

them could not be a part of a valid ensemble schedule. Such a schedule has to becausal andcomplete for all con-
trol paths. The causality requirement dictates that the controller cannot use the knowledge of aconditional (an
operation that generates a control signal) prior to the time step when it is executed. The figure above illustrates a
situation in which two traces corresponding to opposite values of the guard G cannot be chosen to form a valid
schedule unless conditional ck is evaluated prior to step j. This is because the knowledge of whether one should
execute a multiply or an add requires the knowledge of which path is being executed. Unless the conditional has
already been executed, a machine could not determine which operation to execute. The traces corresponding to
guard values G(ck) andG(ck) have to be exactly matching before the conditional is evaluated, otherwise pairing of
these two traces violates causality.

The completenessrequirement states that at any point in the schedule, there must be valid execution traces
which correspond to all currently unresolved conditionals. Once the conditional ck is executed, the causality
requirement is no longer required. The schedule simply bifurcates into two different execution traces. However, it
is possible that one (or both) execution traces do not exist or are removed when causality is checked for some con-
ditional cj that is scheduled after ck. In this case, the potential partial schedule is invalid since the schedule cannot

j Ckj Cij
i k≠() Rj∈

∏
k Rj∈
∑() Gj Cij

i Rj∈
∏() Gj+∀ 1=

Kim’ s example

T F

T F

Guards: G2 G1

G1
G1

G1G2
G1G2

G(ck) G(ck)T F

step: j

step: j+1

of the constraints. This approach makes it easy to ‘AND’ together BDDs of comparable sizes and simplifies gar-
bage collection. Since a construction strategy which minimized the run-time did not necessarily minimize the size
of the results, it was deemed more important to reduce the run-time and that technique was used in the presented
results. This construction starts with an interleaved dependency-based ordering and the BDD lists corresponding
to Eq. 3 and Eq. 7 are conjoined and then Eq. 1 and Eq. 2 are conjoined with the result sequentially by adding
medium sized conjunctions. Finally, Eq. 4 (register constraints) is applied to the result. This technique attempts to
reduce the size of the intermediate functions corresponding to partial products. It was found that constructing
intermediate sized conjunctions of Eq. 1 and Eq. 2 before ‘ANDing’ to the other equations increased efficiency.
Finally, variables for which all scheduling solutions have either a 1 or a 0 (unate variables) can be iteratively
removed resulting in a 40%-50% reduction in the size of the result. This is possible even early on in the construc-
tion since even for schedules in which there is a great deal of freedom, many of the spans set by ASAP/ALAP
analysis are too large-- leading to a large number of zero variables. Results of this construction for several bench-
mark examples are shown in the Tables below. HAL and WAVE are the differential equation and fifth-order wave
filter respectively. The percentage figures reported in the vars and nodes rows represent the size of the posted
value compared to the value without unate varaible extraction. In the figure, the size of the BDD is shown relative
to the number of variables squared. It can be seen that typically, the structures are far smaller than n2, where n is
the number of variables in the instance. The BDD is a very compessed format for representing these differing
schedules, for the 21 cycle case, a BDD with 237 nodes represents all possible 5,149 different schedules for this
example.

.

5. Guard Variables and Branches

The Boolean representation can be extended to allow control-dependent scheduling. This requires the intro-
duction of a set of‘guard’ variables. Each guard labels particular fork/join pair, where the guard is true for one
branch and false for the other. Every path through an arbitrary combination of fork/join pairs can be succintly
described by a product of the corresponding guard variables. Thus,all schedules forall forward control paths can

 Table 1. HAL (pipelined 2-cycle multiplier)

cycles 6 7 8
adders 1 1 1
multipliers 2 2 1
busses 3 2 2
registers 5 5 5
ordering PBO(I) PBO(I) PBO(I)
#var’s 4 (15%) 28 (74%) 28 (57%)
#nodes 7 (23%) 128 (80%) 81 (60%)
#paths 3 11 36
CPU [s] 0.39 0.82 1.04

 Table 2. WAVE (non-pipelined 2-cycle multiplier)

cycles 17 18 19 20 21
adders 3 2 2 2 2
multipliers 3 2 2 2 1
busses 6 5 4 4 4
registers 10 10 10 10 10
ordering PBO(I) PBO(I) DBO(I) DBO(I) DBO(I)
#var’s 9 (15%) 29 (30%) 97 (75%) 147 (90%) 47 (24%)
#nodes 19 (26%) 62 (32%) 1183 (83%) 11430 (94%) 237 (30%)
#paths 18 18 1,071 991,638 5,139
CPU [s] 0.57 3.02 14.48 310.54 40.30

#_variables
40 100 120 140 160 180 200

SQRT(#nodes)

20

40

60

80

100

120

140

160

180

200

*
*

*

*

*

o

o

o

o -> #_variables
* -> infinite_resources

OBBD nodes vs. number of variables
60 80

(17 cycles)

(18 cycles)

(19 cycles)

(20 cycles)

220

o

o

(21 cycles)

WAVE example (non-pipelined)

%-> finite_resources

%

%

%

%%

(Eq. 2a)

wheredi is the duration of operation i, andRi,j is [(ASAP)j ... (ALAP)i+(di-1)]. Resource constraints on the num-
ber of functional units can then be described by the following symbolic code:

foreachCij {
if (pipelined) {

insert function Cij into resource constraint for type j, time step i;
} else {

foreach k=[i .. (i+(dj-1))] {
insert function Cij into resource constraint for type j, time step k;

}
}

}
Notice that for a multi-cycle non-pipelined operationj, its variableCi,j is included indj type resource equa-

tions (Eq. 3). If the operation is pipelined, it affects only one equation (the one corresponding to the control step
when the operation starts its execution). Thus, the constraint complexity to describe pipelined functional units is
same as that of single-cycle units. Surprisingly, it is a simple process to allow operation chaining as well, even
though there is no direct representation of integer time bounds. This is possible since we can (as was done in[9])
augment the list with forward dependencies between operators which specify thatj (a successor toi) is the nearest
successor toi that cannot be chained into a control step withi given the current clock. This relation is written (i-
>>j) and has a particularly simple realization as shown in the modified Eq. 2b below.

(Eq. 2b)

This is a simpler constraint equation than Eq. 2 above because the data-flow precedence relation is transitive
resulting in a simpler constraint for these additional operation dependencies required by potentially chained oper-
ations.

This formulation allows encapsulation all the possible legal schedules satisfying specified resource constraints
into a single data-structure, and can iteratively be used to perform a minimization process (finding a representa-
tive optimal solution in terms of increasingly tight constraints). However, we believe that there are good reasons
for retainingall solutions meeting the constraints instead of finding one representative solution with respect to
some pre-specified cost function early in the design process. In this case, the choice of the scheduling solution is
determined before the operation binding, interconnection and placement decisions, which can interact greatly
with the schedule, have been made. Unless the scheduling is iteratively recalculated, the system makes a sub-opti-
mal choice of schedule. Alternatively, if the size of the data structure representing all solutions can be kept reason-
ably small, incremental changes consisting of additional resource or timing constraints can be inexpensively and
dynamically tested against the set of schedules. This interaction still admits optimal solution of the ensemble
problem since it merely removes schedules that have become infeasible with respect to the additional constraints.

4. BDD Ordering and Construction

Efficient OBDD variable ordering is a notoriously difficult problem[1][2][4][7][12] . An efficient strategy to opti-
mize the orders of all of the constraints is difficult since the optimal orderings for typical ensembles of Eq.1 and
those of Eq.3 conflict. Eq.1 tends to subdivide the problem at the boundaries of the operation’s span. On the other
hand, Eq.3 tends to subdivide the problem at time-step boundaries since all variables occur on the same time step
for each instance. For this reason, three simple variable ordering heuristics are proposed and implemented[18].
Dependency-based ordering (DBO) in which successor operations have higher indices than predecessor opera-
tions. Mobility-based ordering (MBO) in which BDD indices increase with mobility and Path-based ordering
(PBO) in which BDD indices increase with the length of the path an operation is on. Interleaving variables on
time steps tends to cluster variables belonging to the same clock cycles and can be expected to have a positive
effect on equations that describe resource constraints, but negative effects on the constraints Eq. 1. It was found
that DBO with interleaving was typically the most effective strategy in producing the smallest output representa-
tions.

Several different strategies for constructing the BDD were investigated. It was found that keeping lists of
BDD pointers ordered by the size of the fragment made an effective strategy for ordering the massive conjunction

i j→ CkjC l di− 1+() i
l k≥() Ri j,∈

∑()
k Ri j,∈
∑⇒ 0=

CkjCki
k Ri j,∈
∑ 0=

have good ordering and construction heuristics.

3.3. Register and Bus Resources
A bound on the number of available registers can be implemented using a slightly more complex resource

function and then simply plugging this new function into the constructor for Eq. 3. Eq. 5 indicates that if an oper-
ation i precedes the operations (j1...jn) at a particular control stepk, a register is required. This register is required
to keep the value of the output of operation i if the successor operations cannot use it immediately.

(Eq. 5)

(Eq. 6)

Notice that this formulation allows for possible chaining of operations since the constraint predicts that no reg-
ister is required if the operations are all assigned to the same control step. In practice, each Eq. 5 constraint can
simply be plugged into the typed resource constraint equation (Eq. 3). Note that in this casekr is the number of
registers allowed andnkr is set to the number of candidate Eq. 5 functions at thekth control step. The construction

of the register requirement for an example operation with 2 successors is shown in the figure. The initial operation
can be scheduled into one of 5 time steps, Fi is true if a register is required at time step i.

Busses can be treated in a similar fashion. If operationi precedes operations (j1...jn), Eq.7 indicates that at a
particular control stepk a bus may be needed to read an operand (upper part of Eq.7) or write a result (lower part
of Eq.7). Notice that the formulation allows a rather complicated situation (same operand used as an input to a
number of operations) to be modeled in a simple fashion.

(Eq. 7)

Given the Eq. 7 constraints, we can again treat them as generic resources and plug them into Eq.3 for each
time step, since onlykb out of thenb functions can be active at each particular phase of the time step. The bus con-
straints apply to for‘read’ and‘write’ phases separately, making no assumption that a number of writes is smaller
than the number of read operations at each control step. However, we do assume that read and write transfer
phases are interleaved. Similar constructions can be used to constrain the number of other typed resources. It is
important to note that this formulation of these constraints does not require the addition of more implementation
variables (as is the case for ILP formulations of Bus constraints[5][11]) and can be simply generalized to any Bool-
ean function of the variables as typed resources. The direct OBDD construction allows these resource constraints
to be efficiently constructed even for very complex constraints functions.

3.4. Chaining, Multi-cycle and Pipelined Function Units
This formulation can be extended to allow multi-cycle, pipelined and chained operations by making suitable

modifications to the constraint equations. If a multi-cycle/pipelined operationj can be scheduled at time stepi, a
variableCij is created. Eq.2. (data dependency) has to be modified:

i j 1…j n()→() Fki
r⇒ Aki Bkj

j j 1=

jn

∑ 
 =

Bkj blj
l ASAPj=

k

∑= Aki ali
l ASAPi=

k

∑=,

a1

a2

a3

a4

a5

b6

b7

b3

b4

b5

c4

c5

c6

step_1

step_2

step_3

step_4

step_5

step_6

step_7

Bi
0
0

b3
b3 b4+

b3 b4 b5+ +
b3 b4 b5 b6+ + +

1

Ai
a1

a1 a2+
a1 a2 a3+ +

a1 a2 a3 a4+ + +
1
1
1

Ci
0
0
0
c4

c4 c5+
1
1

Fi = Ai (Bi + Ci)

i j 1…jn() Fki
br⇒→ Ckjl

l 1=

n

∑=

i j 1…jn()→ Fki
bw⇒ Cki=

In Eq.1,Cij is true if operationj is scheduled in time stepi, Rj is the set of time steps for which operationj can
be scheduled based on the ASAP and ALAP bounds (i.e. [(ASAP)j ... (ALAP)j]). Eq.1 insures that only one
instance of a given operation is scheduled in any valid solution. Each operation in the instance requires this con-
straint. Eq.2 is written for every existing data dependencyi->j (operationi immediately precedes operationj) and
Ri,j is a closed segment of time steps [(ASAP)j, (ALAP)i]. This equation occurs for each data dependency and
insures that all successive dependent operations are either chained (l>=k) or are set in subsequent clock cycles
(l>k). Formally, the conjunction of all of the above constraints creates a function which is true for each input com-
bination of variables corresponding to a valid schedule. Since the OBDD is a graph based representation, each
path in the OBDD leading to 1 (the valid node) represents a valid schedule in the sense that all of the data-flow
dependencies are satisfied and that the operation in not scheduled redundantly.

3.2. Resource Constraints
Typed resource constraints can be easily formulated as well. Ifkl resources of a certain typerl (e.g. multipliers,

adders, ALUs, registers, busses) are available we can formulate a‘resource-constraint’ Eq.3:

(Eq. 3)

Fil is a function describing that a resourcerl may be needed during time stepi. Eq.3 is written for each time
stepi and each resourcerl. It indicates that at least (nil-kl) resources (amongnil potential operations in time stepi)
cannot be scheduled. For example, ifkm = 2, single-cycle multipliers are available and there are four potential
multiply operations at time stepi we can write:

(Eq. 4)

OBDD representations of the Eqs.1-3 are illustrated below. Each constraint has a simple and regular structure,

with a small number of nodes. Individual Eq.1 and Eq.3 constraints are symmetric on their support and their
OBDD representations are order insensitive (consisting of only(2n-1) and(k+1)(n-k) nodes respectively). Eq.2is
order sensitive - its optimal ordering is the interleaving depicted in Fig.1 (the number of nodes is equal to the
number of variables). An attractive property of all these equations (in particular Eq.1 and Eq.3) is that, since we
know their structure, OBDD representations can be builtdirectly from CDFG (control/data flow graph). Thus
instead of constructing the Boolean constraints as equations and then converting into OBBD format, the OBDD
structure is created directly from the input data-flow graph. This process is relatively very fast especially in case
of Eq.3 where the number of product terms in a sum-of-products representation is (n

k) and generates no construc-
tion garbage (temporary OBBD nodes that are not referenced in the final solution). It is important to note that
although individual equations have very nice spacial complexity, there can be no bound on the complexity of an
arbitrary instance os the scheduling problem for any pre-specified ordering since this problem is NP-complete.
However, we shall show results that indicate that typical instances, including conventional benchmarks do indeed

i r l Fil 1
Fil 2

…Fil nil kl−()1 lp lq≠() nil≤ ≤
∑∀,∀ 1=

Cim1
Cim2

Cim1
Cim3

Cim1
Cim4

Cim2
Cim3

Cim2
Cim4

Cim3
Cim4

++ ++ + 1=

0 1

A

B B

C C C

D D D

E E

F F

G

E

(n-k)

(k+1)
1

1 1

1 1 1

1 1 1

1 1 1

1 1

1

0

0 0

0 0 0

0 0 0

0 0 0

0 0

0

Eq. 3 (4 of 7 constraint)

A
B
C

D
E
F

opi opj

B

C

D

0

0

0 1

1

1

E

F

A

0

0

0

0

1 1

1

1

B

1 00

A A

B

CC

D
1

1 1

1 1

1 1

0

0 0

0 0

0 0

Eq. 2 (3 time step span)Eq. 1 (4 time step span)

mined easily by simple access to the set of solutions. Additionally, since the problem is cast in Boolean form, it
should be easy to add complex Boolean control and resource constraints which are difficult in other exact tech-
niques. Finally, knowledge of the type and scope of the constraints can lead to heuristics for their application
which potentially has much higher run time efficiency than solution as a general instance of ILP.

2. Previous Work

ILP can provide optimal solutions to the problem of linear scheduling as suggested by Papademitriou and Stei-
glitz [16], and has been implemented in several variants[6][11]. Komi et al.[9] keep ‘near’ optimality of solutions
but improve the run time by restricting the formulation to a sliding band which is incrementally solved. Finally, a
mixed ILP/BDD formulation[21] was proposed to increase the applicability of ILP formulations and simplify the
constraints to improve runtime and reduce the number of variables. A prime difficulty of these approaches is the
inability to optimally schedule for complex control cases.

Most current scheduling algorithms are based on variations of list scheduling[10]. These are priority based heu-
ristic algorithms which keep a dynamic ready list of operations to be scheduled and using the priority, choose ele-
ments from the list to sequentially schedule. The advantages of this technique are simplicity and speed, especially
for management of resources. Examples of list scheduling variants are Force-Directed Scheduling[17], Maha[14],
and Slicer[15].

Path based scheduling[3] is a heuristic which evaluates all of the possible paths available to a complex sched-
ule through each control branch. Each such path is scheduled as fast as possible, with limitations based on com-
patibility. This technique has the advantage of providing high performance schedules even in cases when the
control overhead is large. However, although the technique is exponential time in the number of paths, it is still a
heuristic and cannot determine hard feasibility bounds.

Recently, there has been substantial work on control based scheduling[5][8][19][20]. All of these algorithms are
based on heuristic techniques although approaches differ. Wakabayashi introduced the notion of condition vectors
qhich allows characterazion of the possible resource sharing consequences in a schedule. Operation pre-execution
was utilized to obtain high quality results. Most research is based on the restriction to forward tree-based control
structures, although restricted parallel control paths have been described.

3. Linear (Non-Branching) Formulation

In order to develop the general techniques presented later for control path dependent scheduling, we shall first
present techniques for the simpler non-branching case of linear scheduling. We shall initially make the simplify-
ing assumption of simple non-pipelined unit time delay for the operations although these restrictions will be
removed later. The essential idea is to represent all of the scheduling constraints as boolean equations and build an
OBDD corresponding to their intersection. Each variable in the OBDD describes a particular operation occurring
at a particular time step, over a finite set of time steps. A variable is true if the corresponding operation is sched-
uled during the corresponding time step in a particular solution. Each valid linear schedule is then aminterm of
the variables which satisfy all of the constraints. The OBDD represents the logic function of the operation assign-
ment variables and is true for each valid schedule. Since the OBDD is a compressed canonical representation,
potentially exponential numbers of schedules (represented by minterms) can be represented in relatively small
space. In fact, we shall show that the typical size of the representation (in BDD nodes) is smaller than the square
of the number of variables. Since the time complexity of OBDD operations are proportional to their size, these
algorithms lead to efficient techniques for scheduling. Eq.1 and Eq.2. below, describe the scheduling constraints
when no resource constraints are specified (infinite resources). In this formulation, we make use of the ASAP (as
soon as possible) and ALAP (as late as possible) bounds[11] which can be derived by conventional list schedul-
ing[17] to determine the time step spans over which an operation can be scheduled for every feasible schedule.
These bounds are not required for correctness, but improve the efficiency of the algorithm by eliminating those
variables which cannot be true in any feasible schedule.

3.1. Precedence Constraints

(Eq. 1)

(Eq. 2)

j Ckj Cij
i k≠() Rj∈

∏
k Rj∈
∑∀ 1=

i j→ CkjCli
l k≥() Ri j,∈

∑()
k Ri j,∈
∑⇒ 0=

Symbolic Techniques for Optimal Scheduling1

Ivan Radivojević , Forrest Brewer
Department of Electrical and Computer Engineering

University of California, Santa Barbara
Santa Barbara, CA 93106, U.S.A.

e-mail: ivan@later.ece.ucsb.edu, forrest@ece.ucsb.edu

ABSTRACT: This paper describes a new optimal formulation of the control/data-flow scheduling problem in
which data-flow operations are assigned appropriate time steps subject to resource and timing constraints and data
and control dependencies. Current solutions to this NP-complete problem involve either heuristic techniques or ILP
based optimizations. A property of all of these methods is that once the initial constraints and a cost function are for-
mulated, only a single representative solution is produced. The new formulation instead, generates a closed form
solution of the scheduling problem in which all satisfying schedules are encapsulated in a concise BDD representa-
tion. This is obviously advantageous for synthesis systems in which certain constraints are not known until subse-
quent steps of the synthesis are completed. The presented formulation can provide all optimal schedules for arbitrary
forward branching (non-looping) control/data paths.

1. Introduction

Operation Scheduling is the process of determining the assignment of operations to time slots of a synchro-
nous system. Each operation is subject to data-flow dependencies, control-flow dependencies and resource depen-
dencies. Data-flow dependencies ensure that the input operands for the scheduled operation are available when
the operation is scheduled. Control-flow dependencies allow for removal of some operations when it is known
that an alternate control path has been chosen. Finally, resource dependencies restrict the use of operator resources
(which are necessary to perform the operations) via implementation constraints. Simple resource dependencies
are limits to the numbers of parallel operations which can be performed, although implementations can create
much more complex constraints. An additional constraint on the total number of allowed time slots is required to
make a finite instance of the problem. A solution is a valid assignmet of the operators to time slots obeying all of
the constraints and completely mapping all operations in the instance.

The operation scheduling problem plays a central role in most current high level synthesis methods since it is
during scheduling that the performance characteristics of the system are determined.[13] Typically, a set of
resource and timing constraints are chosen and the scheduler determines the fastest schedule meeting those
requirements. Using a selection of differing resource sets leads to several scheduling solutions from which it is
possible to determine the nature of resource/performance tradeoffs for the target system. Practical use of schedul-
ing in commercial design has been almost exclusively limited to hardware implementation of DSP algorithms.
This is due to the relative simplicity of the control structure and the use of large numbers of a small set of oper-
ands (adds and multiplies) in the data flow. For more general cases, conventional scheduling becomes much more
difficult due to control flow complexity and complex external timing and implementation constraints. Current
techniques for scheduling are inadequate for this task for three reasons: 1. Although heuristic scheduling (such as
path-based[3] or list[17] scheduling) can meet certain kinds of control complexity, it can fail to find solutions in
very tightly constrained problems even when such solutions exist. 2. ILP based scheduling[5] is an exact technique
but current methods severely limit the kinds of control dependencies which can be accommodated using this tech-
nique. 3. Neither technique is useful in cases where the design methodology is iterative and the full set of con-
straints is not known prior to the scheduling run.

For these reasons, we chose to formulate the scheduling problem using a simple representation based on an
OBDD[1][2] which could address all of these issues. Consider a typical ILP formulation of the scheduling prob-
lem; There are sets of integer constraints which realize each of the dependency constraints for the scheduling
problem. In a typical instance, the overwhelming preponderance of variables are constrained to {0,1}. It seems
logical to recast this problem into a Boolean space and to reformulate the actual integer constraints as combina-
tions of Boolean constraints. This is reasonable since typical instances of problems use relatively small integer
bounds in problems which are feasible to implement. Using a BDD representation also has the advantage that
complex Boolean functions representingall possible solutions to a given scheduling problem might be represent-
able in relatively small space. This has several advantages since if all solutions can be represented, the inclusion
of an additional constraint is incrementally computable. Thus, the effects of later derived constraints can be deter-

1. This work was sponsored in part by fellowship donation from Mentor Graphics Corp.

