
Symbolic Scheduling Techniques1

Ivan Radivojević, Forrest Brewer

Department of Electrical and Computer Engineering

University of California

Santa Barbara, CA 93106, U.S.A.

E-mail: ivan@aurora.ece.ucsb.edu, forrest@ece.ucsb.edu

Phone: (805) 893-8043 Fax: (805) 893-3262

Index terms: Computer Hardware and Design (Special Issue on SASIMI’93)

October 1994.

1 This work was sponsored in part by fellowship donation from Mentor Graphics Corp. and UC-MICRO under
project No.92-019.

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

1

ABSTRACT -- This paper describes an exact symbolic formulation of resource-

constrained scheduling which allows speculative operation execution in arbitrary

forward-branching control/data paths. The technique provides a closed-form solu-

tion set in which all satisfying schedules are encapsulated in a compressed OBDD-

based representation. An iterative construction method is presented along with

benchmark results. The experiments demonstrate the ability of the proposed tech-

nique to efficiently extract parallelism not explicitly specified in the input description.

1. INTRODUCTION
Operation scheduling is the process of determining the assignment of operations to time slots of

a synchronous system subject to data/control-flow dependencies and resource constraints. Priority-

based heuristic scheduling [1][2][3] accommodates a variety of control-dependent behaviors, but

can fail to find an optimal solution in tightly constrained problems. Applicability of exact ILP

methods [4] has been improved by complex remapping of the constraints [5], but current ILP for-

mulations cannot handle complex control-dependent behavior. In a mixed ILP/BDD method [6]

data dependencies are captured in anOBDD (Ordered Binary-Decision Diagram [7]) form to sim-

plify the ILP execution, but the question of control is not addressed.

Since operation parallelism may not be explicit in the input description, many synthesis systems

focus on detection ofmutual exclusiveness in control/data-flow graphs (CDFGs). Tree scheduling

(TS) [8] uses a tree-representation of the execution paths to enable movement of operations. Con-

ditional vector list scheduling (CVLS) [9] usescondition vectors [10] to dynamically track mutual

exclusiveness of the operations that can be executed in a speculative fashion (i.e. pre-executed).

Transformation of a CDFG with conditional branches into one without conditional branches is per-

formed in [11], but there is no support for speculative execution. These heuristics are restricted to

nested conditional branches (conditional tree control structure). Multiple conditional trees are

addressed by Wakabayashi [9], but the trees are either scheduled sequentially (using a priority

scheme) or conditional tree duplication is performed.

An exactsymbolic formulation of the resource-constrained scheduling problem was introduced

in [12]. Unlike other techniques in which a single representative solution is generated, in this tech-

nique all feasible schedules are encapsulated in a compressed OBDD form. This is advantageous

since the exact effect of additional constraints derived during subsequent synthesis steps isincre-

mentally computable. An alternative symbolic formulation using finite automata to capture

resource/timing/synchronization constraints is presented in [13].

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

2

In this paper, we describe a technique for exact scheduling of arbitrary forward-branching con-

trol structures. The technique provides support for speculative operation execution and global

treatment of parallel control structures. The paper is organized as follows. In Section 2, we

describe several features desirable to improve scheduling quality. The formulation is presented in

Section 3. Aspects related to the OBDD construction process are considered in Section 4. Experi-

mental results are discussed in Section 5.

2. ADVANCED SCHEDULING FEATURES
Speculative operation execution -- It is often beneficial to determine the control value simulta-

neously with branch execution. If sufficient resources are available, operations from both ‘true’ (T)

and ‘false’ (F) branch paths may be scheduled for execution (pre-executed) before the correspond-

ing conditional value is actually evaluated. Aconditional is a scheduled operation that generates a

control value. Fig. 1(a) shows a CDFG where the control dependencies between the conditionals

(comparators1 and2) and the corresponding fork/join pairs are explicitly indicated. Speculative

operation execution is not possible if the control precedence between the conditional and the fork

node is enforced. In this case, at least five time steps are necessary to execute the CDFG, since the

longest dependency chain includes five operations. However, if precedence between the condi-

tional and the fork node is removed, operations from the branch arcs can be pre-executed2.

Fig.1(b) shows a schedule executing in three cycles using the indicated resources.

Out-of-order execution of conditionals -- It can happen that a faster schedule is obtained if the

top-level conditional (in the input specification) is resolvedafter some other nested conditional. A

simple example of this behavior is shown in Fig.1(b). The schedule executes in three cycles with

the conditional1 left unresolved until the end of the very last cycle. The knowledge that condi-

tional 2 is resolved during the first cycle is essential to properly interpret resource usage. BothTS

[8] andCVLS [9] rely on a conditional-tree representation of the control and cannot accommodate

out-of-order execution of the conditionals without dynamically modifying the tree structure. How-

ever, we observe that none of the standard benchmarks (solved in Section 5) need out-of-order exe-

cution of the conditionals in minimum-latency solutions.

Irredundant operation scheduling-- Another way to improve scheduling quality is to identify

operations that are not redundant in the input description, yet are redundant for some control paths.

The importance of such information has been observed and discussed in the literature [8][10].

2 In general, precedence between a conditional and join node need not be enforced either. In this case, the exe-
cution time is bounded only by data dependencies (given sufficient resources). Unfortunately, this can lead to
an explosion of operator instances for nested complex control.

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

3

Applications to parallel control structures -- Control structures that are either fully parallel or

have correlated control introduce additional scheduling challenges. As the number of control paths

increases, it becomes difficult to keep track of the mutual exclusiveness among the operations. Ide-

ally, the scheduler should evaluate and maintain this information for all control paths. In Fig.2, a

CDFG is shown in which two parallel trees have a correlated control (shaded comparator). The

enthusiastic reader can verify that given one adder (‘white’ operation), one subtracter and one

comparator (single-cycle units assumed) a 6-cycle schedule can be found only if the control corre-

lation is properly interpreted (i.e. ‘false’ paths are not scheduled). As indicated in Fig.2, specula-

tive execution (and additional or more versatile resources) can further improve the execution time.

3. FORMULATION
In this section, an exact scheduling technique supporting all the behaviors described above is

formulated. Scheduling constraints are represented as Boolean functions and an OBDD corre-

sponding to the intersection is built. Each variableCsj describes operationj occurring at time step

s. Csj is true iff operation j is scheduled at time steps in a particular solution. To represent control-

dependent behavior, a set of‘guard’ variables is introduced. Each guardG represents a control-

flow decision by a particular conditional-- the guard is true for one branch and false for the other.

Every control path through an arbitrary combination of fork/join pairs is described by a product of

the corresponding guard variables. For each operationj, a Boolean functionΓj (defined on the

guard variables) encodes all the control paths on whichj must be scheduled.

Shown in Fig.3 is Kim’s example [11] in which two guards (G1, G2) encode the conditional

behavior. There are three possible execution paths: . Indicated blocks

 correspond to operations that share the same guard functionΓ. Opera-

tions which must be scheduled on all control paths haveΓ=1. Note that the number of guard vari-

ables is not proportional to the number of control paths. In Fig.2, only five guard variables encode

18 control paths.

A solution is a collection oftraces. A trace is a possible execution instance for a particular con-

trol path. In OBDD form, traces correspond to product terms of the Boolean function. Each trace

includes both the guard variables (identifying a control path) and operation variables (indicating a

schedule for the path). For example, in Fig.3, each trace corresponding to the ‘false’ branch of con-

ditionalC1 contains , as well as 0/1 assignment ofCsj variables. Operations withΓ= or Γ=1

must be scheduled on that trace. If other operations are scheduled on this trace, they are pre-exe-

cuted. The ensemble scheduleis a set of traces forming a complete deterministic schedule. Condi-

G1G2 G1G2 G1, ,()

1 G, 1 G1G2 G1G2 G1, , ,()

G1 G1

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

4

tions for the existence of such a schedule are discussed in Section 3.3. Here we just state that the

solution OBDD includes only traces belonging to at least one ensemble schedule. Note that the

number of ensemble schedules can be much larger than the number of traces.

3.1. Speculative execution model

To incorporate pre-execution, only the control precedence between the conditional and join

node is enforced [14]. CDFG operations can be scheduled at different time steps on distinct control

paths, but cannot be scheduled more than once per trace. Each operation from the CDFG can be

executed at most once regardless of the actual control decisions made when a schedule is executed.

Fig.1(b) shows an example where precedences between the conditionals and forks are removed.

The critical path length of 5 in the original CDFG is reduced to just 3. All four possible control

paths may start executing simultaneously.

3.2. Derivation of constraints

For brevity, we assume non-pipelined, unit-time operations. Pipelined and multicycle functional

units can be accommodated by incorporating execution delay in the equations presented in Sec-

tions 3.2 and 3.3 [12]. To model operation chaining, a precedence relation can be added between

operations that cannot be chained [4].(ASAP)j (as soon as possible) and(ALAP)j (as late as possi-

ble) bounds are constructed to limit the time spans over which an operation j can be scheduled.

These bounds are not required for correctness, but improve the efficiency of the construction.Csj

denotes operationj’s instance at time steps. Symbols “Σ” and “+” correspond to BooleanOr func-

tion, and “Π” stands for BooleanAnd. Product “ab” implies “a And b”.

1. Uniqueness: Eqs.1 enforce unique scheduling of operations from the CDFG at time steps. If

(ASAP)j ≤ s< (ALAP)j:

 (1.a)

whereRsj is the range [(ASAP)j ... s]. If time step s = (ALAP)j:

 (1.b)

Eq.1.a states that prior to step (ALAP)j, operationj is not scheduled more than once. On step

(ALAP)j Eq.1.b ensures that operationj has been executed on all paths covered byΓj. On paths not

covered byΓj, operationj can be either uniquely scheduled (pre-executed) or not scheduled at all.

2. Precedence relations: If operationi precedes operationj (i.e. there is a dependency arc fromi

to j in the CDFG) andΓi⊇Γj (Γi coversΓj) then for every steps in the range [(ASAP)j ... (ALAP)i]

Ckj Cij
i k≠ Rsj∈

∏ 
 

k Rsj∈
∑ Cij

i Rsj∈
∏+ 1=

Ckj Cij
i k≠ Rsj∈

∏ 
 

k Rsj∈
∑ Cij

i Rsj∈
∏ 

  Γj+ 1=

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

5

the following must hold:

 (2.a)

Eq.2.a states that either operationi has to be scheduled before steps, or operationj cannot be

scheduled at step s. The case “Γi covers (but is not equal to)Γj” (Γi⊃Γj) occurs when the depen-

dency fromi to j goes through a fork node. WhenΓi /⊇ Γj (Γj not contained inΓi -- e.g. the depen-

dency fromi to j goes through a join node), the precedence relation is enforced only on the paths

covered byΓi:

 (2.b)

Effectively, Eq.2.a ensures that the operation can be pre-executed only if all of its predecessors

have already been executed. An operation after the join node cannot be pre-executed in our model.

Thus (Eq.2.b), the dependencies to its predecessors are enforced only conditionally.

3. Termination: A single sink variable is used in the OBDD representation to indicate that a par-

ticular trace has concluded. It is initialized to ‘0’, and is set to ‘1’ when the terminating condition

for the trace is met. Eq.3 is used as a terminating condition for all traces in parallel. The scheduling

process can be terminated whensink assumes the value ‘1’ on all paths of an ensemble schedule. In

these equations, operations (j1...jn) are immediate predecessors of the sink node in the CDFG.

 , where (3)

Function is true if operationjl is scheduled prior to or at steps. The fact that execution ofjl

is mandatory only on paths covered by is reflected by Eq.3.

4. Resource constraints: If kl resources of a certain typerl (e.g. multipliers, adders, ALUs, reg-

isters, buses) are available, we formulate a‘generalized resource bound’ Eq. 4:

 (4)

Fsl is a Boolean function describing that resourcerl is needed during time steps. Eq.4 is applied

at each steps for each resourcerl. It ensures that at least (nsl-kl) resources (amongnsl potential can-

didates at steps) cannot be scheduled. For functional units,Fsl functions reduce to operation vari-

ables. For example, if at steps operation instancesCsm1, Csm2, Csm3 andCsm4 are candidate

multiplications and there are onlykm = 2 multipliers available, Eq.4 becomes:

Csj Cli
ASAPi l≤ s<

∑+
 
  1=

Csj Cli
ASAPi l≤ s<

∑+
 
  Γi+ 1=

Rsjl
Γj l

+()
l 1=

n

∏ 1= Rsjl
ckjl

k ASAP() j=

s

∑=

Rsjl

Γj l

Fsl1
Fsl2

…Fsl nsl kl−()
1 lp lq≠() nsl≤ ≤

∑ 1=

Csm1
Csm2

Csm1
Csm3

Csm1
Csm4

Csm2
Csm3

Csm2
Csm4

Csm3
Csm4

++ ++ + 1=

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

6

Eq.4 has (
nsl
kl

) product terms, but its OBDD form is compact (O(nslkl) nodes) and can be built

efficiently [12]. Eq.4 applies the resource constraint to all traces simultaneously.Trace validation

(Section 3.3) ensures that there are no resource violations in any ensemble schedule. Bus and regis-

ter constraints are generated for linear schedules by suitable choice ofFsl [12].

5. Removal of redundantly scheduled operations: Assume that a conditional has executed and

the ‘true’ branch is selected. Operations from the ‘false’ branch may still be scheduled on the trace

corresponding to the ‘true’ branch if there are available resources. Such traces are identified and

removed. Assume conditionalck (whose corresponding guard isGk) is resolved prior to time step

s. Then all the variables that correspond to operationj’s instances scheduled for time steps≥ s have

to assume value ‘0’ on traces whereGk is true if:

 (5.a)

Similarly, on traces whereGk is false, all the variables that correspond to operationj’s instances

scheduled for time steps≥ s have to assume value ‘0’ if:

 (5.b)

3.3. Trace validation

A valid ensemble schedule is a set of traces which is bothcausal andcomplete. The causality

requirement dictates that the schedule cannot use knowledge of the value of a conditional prior to

the time when the conditional is executed (resolved).Completenessrequires that a trace must exist

for every possible control combination. Assume that the conditionalck (with a corresponding

guardGk) is resolved at step j. Causality requires that the traces corresponding to guard valuesGk

andGk must match (be identical) for all time steps prior to (and including)j. Completeness ensures

that the ensemble schedule includes traces for bothGk andGk.

A trace satisfying all of the constraints introduced in Section 3.2 may still not be valid in the

sense that it cannot be a member of any set of traces forming an ensemble schedule.Trace Valida-

tion ensures that each validated trace is part of some executable ensemble schedule. The validation

is efficiently preformed by the iterative algorithm shown in Fig.4. The following notation is used:

- fx (fx) - positive(negative) cofactorof a Boolean functionf with respect to a variable x

- ∃xf = fx+fx - existential abstraction; ∀xf = fxfx - universal abstraction

- S - set of all traces; S(0) - initial set of non-validated traces; S(i) - set of traces at iterationi

- V - set of all variables not including guard variables

- V’(j) - subset ofV corresponding to time steps≤ j

ΓjGk 0=

ΓjGk 0=

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

7

- S’ - set of traces from which all variables (V-V’(j)) are removed:

- C = [c1, c2 ... cn] - set of all conditionals

- G = [G1, G2 ... Gn] - set of guards corresponding to the conditionals

- R(j) = [R1(j), R2(j) ... Rn(j)] - resolution vector

Theresolution vectorR(j) is a set ofn Boolean functions (one for each conditional), where each

function Rk(j) indicates whether a conditionalck was scheduled prior to time stepj:

, for (l < j). S’ is partitioned byR(j) into a disjoint set of as many as2n families, cor-

responding to the subset of guards that are resolved prior to time stepj (Gres). The guards from (G-

Gres) (i.e. the unresolved guards) have to bedon’t careswithin the family since at time stepj there

is no knowledge about the future values of the unresolved guards. Traces must bothmatch and

exist for all possible combinations from (G-Gres), to ensure causality and completeness of the

ensemble schedule. The algorithm checks for partial matching up to stepj for all traces in parallel.

However, it is possible that a trace which matched up to time stepj is invalidated in subsequent

steps. Thus its set of matching traces may no longer be complete. The Trace Validation algorithm

iterates until a fixed point is reached. In the worst case, the number of iterations cannot exceed the

number of conditionals. The algorithm generates a polynomial number of constraints regardless of

the number of traces.

The intuition behind the Trace Validation algorithm can be provided by means of the schedule

from Fig.1(a). Assume that the guardsG1 andG2 correspond to the conditionals1 and2. There are

four possible control paths: . At the first step resolution vector com-

ponents R1(1) and R2(1) are both zero (since neither conditional is scheduled prior to step 1). To

have a causal ensemble schedule, traces for all four control paths must match at the first step. At

the next step, R1(2) is still zero (since conditional1 is not scheduled prior to step 2), but R2(2) =

c12= 1 (i.e. conditional2 is scheduled at step 1). Thus, matching of traces has to be performed only

with respect to still unresolved conditional1 (i.e. traces for paths must match for

the first two steps, as well as the traces for). The same argument holds for step 3.

Trace Validation implicitly verifies that the ensemble schedules do not violate resource con-

straints. We indicated in Section 3.2 that Eq.4 prevents such violations from occurring on individ-

ual traces. Since traces match before the conditional is resolved, resource bounds are met. After the

conditional is resolved, the traces are mutually exclusive (with respect to that particular condi-

tional) and no verification is necessary.

S' S i()
V V' (j)−()∃=

Rk j() Clk∑=

G1G2 G1G2 G1G2 G1G2, , ,()

G1G2 G1G2,()

G1G2 G1G2,()

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

8

4. CONSTRUCTION
The constraints described in Section 3 each have a simple and regular structure [12]. This

allows OBDD representations to be constructeddirectly from the CDFG without reference to an

intermediate equation form. Although individual equations have efficient orderings, optimal order-

ings for different equations frequently contradict. However, experimental results indicate that typi-

cal instances do have good orderings. The results presented in this paper are generated using the

variable ordering where non-guard variables are ordered by increasing time and guard variables

are placed on top (i.e. closest to the root of OBDD).

Using iterative construction, the solution is built on a time-step by time-step basis: only those

constraints relevant to a particular time step s are generated and applied to the OBDD representing

a valid partial solution for the previous (s-1) steps. This prevents the construction of large sets of

spurious intermediate solutions. It also has the advantage that schedule completion can be easily

detected, obviating the need to accurately pre-specify the number of control steps.

5. EXPERIMENTAL RESULTS
The technique described in the paper was implemented in C++ and executed on a Sun SPARC-

station10. Reported CPU times correspond to the complete procedure: CDFG analysis, constraint

construction, and all OBDD manipulations leading to the reported results. Table 1 summarizes the

elliptic wave filter (EWF) benchmark experiments. We foundall optimal solutions of each

instance using OBDDs whose size was significantly smaller than (#variables)2. To reduce the size

of partial solutions, an auxiliary set ofinterior constraints was generated. The basic strategy is as

follows: Assume that at the beginning of steps there aren addition operations that have ALAP

bounds in the range [s... (s+k-1)] and that there are onlym single-cycle adders available. Clearly, at

least (n - km) of these addition operations must be completed prior to step s in a feasible solution.

This observation enables an early detection of many (not necessarily all) partial schedules that are

destined to be discarded within the nextk steps. Similar constraints can be applied for each func-

tional unit type (including multicycle and pipelined units).

Table 2 and Table 3 show experimental results for benchmarks exhibiting conditional behavior.

The rows#cycles(spec) and#cycles(non_spec) correspond to schedules with and without specula-

tive execution (using the same set of resources). The scheduler terminates when all minimum-

latency ensemble schedules are found (the number of cycles for the longest control path is indi-

cated as“longest”). To compare our results with the schedulers which minimize average path

length, a subset of solutions with small average path length is generated in a “greedy” fashion.

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

9

Benchmarks Maha[15], Kim [11] andWaka [10] are conditional trees, and MulT [9] has two paral-

lel trees.Parker is Maha with additionA6 converted into a subtraction. The Maha solution with

one adder and one subtracter is the same as in [8][9]. Allowing more resources (2 adders, 3 sub-

tracters) an improvement of 0.125 (average path length) is made over the best previous result. In

Parker, this improvement was 0.25. In some previous work, it is assumed that the comparators

incur a small delay within a clock cycle and that the operations following the branch on ‘true’ and

‘false’ paths are mutually exclusive during thesame cycle. This treatment of the conditionals

requires increased cycle time, additional multiplexing, and restricts pipelining of the control. Our

results reflect this model inMaha andParker only, but this assumption completely eliminates the

need for speculative execution in theKim andWaka benchmarks. As a default, in our system we

assume that a single-cycle comparator is used and that its output becomes available only in the suc-

cessive cycle. This assumption is used in those benchmarks where the number of comparators is

indicated in Table 2. Even with this assumption, our technique still derives the same result forKim

as in [9]. InWaka one path is a cycle longer than that reported in [8]. InMulT a one cycle shorter

minimum-latency solution was found by exploiting dynamic scheduling of operations belonging to

parallel trees.

6. CONCLUSIONS AND FUTURE WORK
We describe a symbolic formulation that allows speculative operation execution and exact

scheduling of arbitrary forward-branching control/data paths. The execution order of conditionals

is not pre-determined and is dynamically resolved allowing gains in scheduling quality. A trace

validation algorithm is introduced which ensures consistency for families of ensemble schedules.

An iterative construction method is presented along with benchmark results. In future work, sev-

eral issues should be addressed: incorporation of control/interconnect costs and extensions to

restricted forms of cyclic control. An efficient approach to remove the restriction on our specula-

tive execution model will be considered as well.

Some problems may have extremely large solution sets, decreasing the efficiency of OBDD

manipulations. Nevertheless, since valid partial schedules are available after each construction

step, runtime-efficient heuristicsbased on sets can be devised. For example, we can propagate only

the subset of schedules with maximum utilization of resources at each step. Sinceall such sched-

ules are propagated, this heuristic has good behavior and is applicable to problems with thousands

of formulation variables. Moreover, if the exact scheduler is based onZero-Suppressed BDDs [16]

significant improvements in terms of both CPU time and memory usage are observed. The inter-

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

10

ested reader is referred to the experimental study [17] where larger DFGs are solved.

ACKNOWLEDGMENT
We would like to gratefully acknowledge contributions from Dr. A. Seawright who took part in

early discussions and developed the C++ OBDD package extensively used throughout this project.

Furthermore, we wish to thank the reviewers for helpful suggestions and comments.

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

11

REFERENCES:
[1] R. Camposano, “Path-Based Scheduling for Synthesis”,IEEE Trans. CAD/ICAS, vol. 10, no.

1, pp. 85-93, Jan. 1991.

[2] S. Davidsonet al., “Some Experiments in Local Microcode Compaction for Horizontal
Machines”,IEEE Trans. Computers, vol. c-30, no. 7, pp. 460-477, July 1981.

[3] P.G. Paulin and J.P. Knight, “Force-Directed Scheduling for the Behavioral Synthesis of
ASIC’s”, IEEE Trans. CAD/ICAS, vol. 8, no. 6, pp. 661-679, June 1989.

[4] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A Formal Approach to the Scheduling Problem in
High Level Synthesis”,IEEE Trans. CAD/ICAS, vol. 10, no. 4, pp. 464-475, Apr. 1991.

[5] C.H. Gebotys and M.I. Elmasry, “Global Optimization Approach for Architectural Synthe-
sis”, IEEE Trans. CAD/ICAS, vol. 12, no. 9, pp. 1266-1278, Sep. 1993.

[6] L. Yang and J. Gu, “A BDD Model for Scheduling”,Proc. CCVLSI, 1991.

[7] R.E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation”,IEEE Trans.
Computers, vol. C-35, no. 8, pp. 677-691, Aug. 1986.

[8] S. H. Huang et al. “A Tree-Based Scheduling Algorithm for Control Dominated Circuits”,
Proc. 30th ACM/IEEE Design Automation Conference, pp. 578-582, 1993.

[9] K. Wakabayashi and H. Tanaka, “Global Scheduling Independent of Control Dependencies
Based on Condition Vectors”,Proc. 29th ACM/IEEE Design Automation Conference,pp.
112-115, 1992.

[10] K. Wakabayashi and T. Yoshimura, “A Resource Sharing and Control Synthesis Method for
Conditional Branches”,Proc. 26th ACM/IEEE Design Automation Conference, pp. 62-65,
1989.

[11] T. Kim, J.W.S. Liu, and C. L. Liu, “A Scheduling Algorithm for Conditional Resource Shar-
ing”, Proc. IEEE International Conference on Computer-Aided Design, pp. 84-87, 1991.

[12] I. Radivojevi′c and F. Brewer, “Symbolic Techniques for Optimal Scheduling”, Proc. 4th
SASIMI Workshop,pp. 145-154, Nara, Japan, 1993.

[13] J. Yang, G. De Micheli, and M. Damiani, “Scheduling with Environmental Constraints based
on Automata Representations”,Proc. EDAC, 1994.

[14] I. Radivojevi′c and F. Brewer, “Incorporating Speculative Execution In Exact Control-Depen-
dent Scheduling”,Proc. 31th ACM/IEEE Design Automation Conference, pp. 479-484, 1994.

[15] A. C. Parker, J.T. Pizarro, and M. Mliner, “MAHA: A Program for Datapath Synthesis”,Proc.
23th ACM/IEEE Design Automation Conference, pp. 461-465, 1986.

[16] S.-I. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems”,
Proc. 30th ACM/IEEE Design Automation Conference, pp. 272-277, 1993.

[17] I. Radivojevi′c and F. Brewer, “On Applicability of Symbolic Techniques to Larger Schedul-
ing Problems”,ECE Tech. Report #94-22, University of California, Santa Barbara, Sep. 1994.

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

12

1
2

Fig. 1. Example CDFG and its schedule

resources:
- 2 adders (white)
- 1 subtracter (black)
- 1 comparator

execution time:
- 3 cycles (2 before1)
- 4 cycles (1 before2)

1

2

(a)

(b)

T

T
T

F

F

F

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

13

T

F

T

F

T

F

F

F

FTT

T

Fig. 2. CDFG with correlated control

no speculative execution:
- 6 cycles (1 add/1sub/1comp or 3 ALU)

speculative execution:
- 5 cycles (3ALU or 2add/1sub/1comp)
- 4 cycles (5 ALU or 3add/2sub/2comp)

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

14

Guards: G2 G1

Γ=G1Γ=G1

Γ=G1G2 Γ=G1G2

Fig. 3. Kim’s example

T F

FT

C2

C1 Γ=1

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

15

i = 0;

do {

i++;

S(i) = S(i-1);

for each time stepj {

for each conditionalck {

if (S’==0) { S(i)=0; exit; }
}

S(i) = S(i)S’;

}

} while (S(i)!=S(i-1));

S' S i()
V V'(j)−()∃=

S' S'Rk j() S'Rk j()()
Gk

∀+=

Fig. 4. Trace validation algorithm

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

16

Table 1: EWF experiments

#cycles 17 17 18 18 19 20 20 21 28 28
#adders 3 3 3 2 2 2 2 2 1 1
#multipliers 2(*) 3 1(*) 2 1(*) 2 1(*) 1 1(*) 1
#buses 6 6 6 6 6 4 4 4 4 4
#registers 10 10 10 10 10 10 10 10 10 10
#variables 63 63 97 97 131 165 165 199 437 437
#nodes 82 82 194 209 2,237 2,760 1,905 704 4.9e4 3.2e4
#schedules 18 18 336 18 1.1e4 5.3e4 5,142 2,355 4.3e9 2.6e8
CPU time [s] 0.2 0.2 0.5 0.6 3.8 17.1 12.5 3.9 970.1 587.6
2-cycle multiplier and single-cycle adder except: (*) 2-cycle pipelined multiplier.

I. Radivojevic′ , F. Brewer, “Symbolic Scheduling Techniques”

17

Table 2: Benchmarks with branching

Maha Parker Kim Waka MulT

#cycles(spec) longest 5 4 4 6 7 3
average 3.31 2.25 2.13 5.75 5.0 3.0

#cycles(non_spec) 8 8 8 7 7 4
#adders 1 2 2 2 1 2
#subtracters 1 3 3 1 1 1
#comparators - - - 1 2 1
#variables 65 49 49 71 55 26
#nodes 428 325 220 543 271 116
#traces 15 43 12 124 21 15
CPU time [s] 7.41 4.32 5.68 5.18 2.27 3.52
single-cycle adders, subtracters and comparators assumed

Table 3: Comparison with others: average (longest) path

Maha Parker Kim Waka MulT

our 3.31 (5) 2.25 (4) 2.13 (4) 5.75 (6) 5 (7) 3 (3)

TS [8] 3.31 (5) - - - 4.75 (7) -

CVLS [9] 3.31 (5) 2.38 (4) 2.38 (4) 5.75 (6) - 2.88 (4)

Kim et al. [11] 4.62 (8) - - 6.25 (7) 4.75 (7) -

BIOGRAPHY

 Ivan P. Radivojevic′ received the B.S.E.E. degree from the University of Belgrade, Yugosla-

via, in 1987 and the M.S.E.E. degree from Drexel University, Philadelphia, PA, in 1990. From

1987 to 1989 he worked as a Research Engineer at the Faculty of Electrical Engineering, Univer-

sity of Belgrade, where he contributed to the design of numerous microprocessor and DSP-based

real-time systems. During the 1990-91 academic year he was a Teaching Fellow at the ECE

Department, Drexel University, Philadelphia. Currently he is a Ph.D. Candidate at the ECE Depart-

ment, University of California, Santa Barbara. His research interests include high-level synthesis,

logic design and VLSI computer architectures.

Forrest Brewer received the Bachelor of Science degree with honors in physics from Califor-

nia Institute of Technology, Pasadena, in 1980 and the M.S. and Ph.D. degrees in computer science

in 1985 and 1988, respectively, from the University of Illinois, Urbana-Champaign. Since 1988, he

has served as an Assistant Professor with the University of California, Santa Barbara. From 1981

to 1983, he was a Senior Engineer at Northrop Corp. and consulted there until 1985. He co-

authored Chippe, which was the first closed loop high level synthesis system. Recently, his

research work has been in the application of logic synthesis techniques to high level synthesis,

specification and scheduling of control dominated designs.

