Analysis of Conditional Resource Sharing
using a Guard-based Control Representation *

lvan P. Radivojev Forrest Brewer

Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA, U.S.A.

Abstract none of these approaches discusses conditional resource
sharing in cyclic control/data flow graphs (CDFGs) with
loop pipelining.

Numerous techniques for cyclic data-flow graph
(DFG) optimizations have been proposed, ranging from
heuristics [6][7][8] to ILP methods [9][10]. However, none
of them discusses cases in which conditional behavior oc-
curs within the loop body. Semantics-preserving techniques
and the BFSM-based approaches are applicable to cyclic
CDFGs, but they either lack a formal treatment of condi-
tional resource sharing [11][12] or introduce an excessive
number of 0/1 variables to model resource and exclusivity
1. Introduction constraints [13’_]. R_epentl;otation schedulinq_6] has b_een _

) i o extended to pipelining of CDFGs [14]. This technique is

Resource constraints play a crucial role in high-level paseq on gondition flagrepresentation restricted to cases
synthesis of digital system€onditional resource sharing \yhere execution conditions can be represented as a Bool-
enhances resource usage by enabling simultaneous operiegn cube. Conditional resource sharing analysis is per-
tions on different control paths to share physical resourcesyrmed usingusage flagsssigned to individual functional
For example, operations belonging to “then” and “else” \pits. Support fonode dividing[1] is not discussed.
branches of aif-then-elsestatement are mutually exclusive Guard-based control representation is a foundation for
when the choice of branch to execute is made prior to thegyact symbolic techniques for resource-constrained sched-
execution of the branches. However, it has been shown muling [15][16]. In many aspects, the guard-based model is
that superior scheduling results are possible if operationsgjmijar to execution conditions fromath analysis[17],
belonging to branch arcs are executed before the branchiny,here Boolean conditions are used in the hardware alloca-
decision is madespeculativeexecution). In this case, static o phase (after AFAP scheduling). That research demon-
exc!u_sivity analysis (performed before scheduling) is not girated that OBDDs (Ordered Binary Decision Diagrams
sufficient for optimal use of resources. [18]) efficiently represent control signals in large scale

~ Arecent approach [2] successfully detects a static pair-proplems. Guard-like models are used in several recent ex-
wise mutual exclusiveness. tree schedulind3], a tree 4t techniques [19][20]. There, conditional branches are la-
representation allows code motion and sub-trta_gs induced byyg|eq by Boolean functions and a proper interpretation of
a branch can share resourd@¥LS[1] usescondition vec- ytyal exclusion is guaranteed by construction. However,
tors [4] to dynamically track exclusiveness of pre-executed gpecification-level formalism restricts code motion beyond
operations. However, a case was reported wherein condithe code-block boundaries (e.g. speculative execution).
tion vector analysis can lead to an erroneous conclusion of | this paper, we present an exact technique for condi-
mutual exclusion between the operations [S]. The represen+iona resource sharing analysis. We do not discuss a sched-
tation from [5] handles nestetithen-elsestructures cor- jer implementation. However, the analysis in this paper is
rectly, but is not applicable to some other forms of jnplementation transparent. In Section 2 we present an
conditional behavior (e.gjotg). These representations are gyerview of a guard-based control representation. In Sec-
all restricted tawonditional treestructures. Parallel trees are g 3 this control model is directly linked to evaluation of
addressed in [1], but the trees are either scheduled sequelesoyrce constraints. First, we describe the simple case of
tially or tree duplication is performed. Most importantly, acyclic CDFGs. The discussion is then extended to the
more general case of pipelining of cyclic CDFGs. Finally,
experimental results are presented in Section 4.

Optimization of hardware resources for conditional
data-flow graph behavior is particularly important when
conditional behavior occurs in cyclic loops and maximiza-
tion of throughput is desired. In this paper, an exact and ef-
ficient conditional resource sharing analysis using a guard-
based control representation is presented. The analysis is
transparent to a scheduler implementation. The proposed
technique systematically handles complex conditional re-
source sharing for cases when folded (software pipelined)
loops include conditional behavior within the loop body.

* Supported in part by a fellowship donation from Mentor Graphics Corp.

source

Guards:
G1 (Cldecisions)
G2 (C2decisions)

Figure 3. At-most-k-of-n constraint (k=4, n=7)

sink goto, exit, casg. In the pseudo-code fragment shown in
Figure 1. Kim's example Fig.2, the execution condition for statemens¢ described

2. Control representation as:lF =G +G G = G +G . Guard-based represen-

o o tation also’ applies ‘to parlallel or correlated control struc-
We assume a CDFG specification describing both datayres If two copies of Fig.1 are executed in parallel, only

flow and control dependencies between operations (similayyo more guard variables are introduced, while the number

to the one used in [4]). Operation nodes are atomic actioniot control combinations (9) grows much faster. The number
potentially requiring the use of hardware resources (€.9.f guards is not proportional to the number of control paths,
arlthmetl_cllqglcal o_peratlons, read/v.vrllte cycles). Condltlo_n— but is determined by the number of conditionals.
al behavior is specified by fork and join nodes. An operation
node generating a control signal for a fork/join pair is called 3. Conditional resource sharing analysis
a condVﬂonal Directed arcs e§t§bllsh a link .petween the First we briefly review the OBDD form of thg-most-
conFJ|_t|onaI and a related fork/join pair. Conditionals make _st_n constraint [15]. We refer to aAt-most-k-of-ncon-
decisions on the flow of control (whethtene (T) or false
(F) branches provide operands for successor operations). .
To represent conditional behavior, a segoérd vari- B n(fufo i fy) = 12l ;)<nf|1f|2---f| (b)
ablesis introduced. Each guaf@ represents a control-flow optalt
decision by a particular conditional-- the guard is true for Weref are Booleanfunctions. Fig.3 shows the OBDD
one branch and false for the other. Every control pathfor™ Of Binin whichf's are simple Boolean variables. The
through a combination of fork/join pairs is described by a NUMber of product terms in tig , is (). However, the
product of the corresponding guards. For each opetigion ©BDPD form is compact and can be built efficiently using
Booleanguard functionl; (defined on the guard variables) ite (if-then-else) calls. The vertices in this symmetric tem-
encodes all the control paths on whichustbe scheduled. plate_need not be _restrlcteq to variables -- arbitrary _I300_Iean
Computation of” functions-- Assume that operatidan functionst; can be mserteq into the template sh_own in Fig.3
hasn successorg, j, .. ,j,) and that none of the succes- (e.g. bus/register scheduling constraints described in [15]).

sors is a join node. Then a guard funcfigrran be simply 4 ¢ Acyclic CDFGs

computed as a Booleddr of the successors’ guard func- _ .

tions T, (k=1,2, ..., n). This means that operatidmhas to Guard functions may be used to perform conditional
provide'an operand to all of its successors. If a successor (féSource sharing analysis foranbitrary number of CDFG

i is a join node, then its contributionfpis equal tdj4inGy operations. We illustrate the idea using a CDFG fragment
or rjoinék (depending on whethébelongs to the ‘T or ‘F’ shown in Fig.4. Assume that the .schedullng has been com-
branch). All operation guard functions are computed by aPléted forstep_land that operations and2 have been
one-pass traversal of the CDFG that starts from a sink nodScheduled in thetep_2 We want to analyze scheduling op-

straint asBy ,,, The Boolean equation form Bf ,is:

whose guard function is initialized to ‘1’ (tautology). eration3 in step_2assuming that only one “white” resource
In Fig.1 (Kim's example [21]), two guards$S{, G,) is available. Evaluating aB; 3 using guard functionk; (i
corresponding to the conditional8X C2) encode the con- = 1, 2, 3) as arguments we obtain:

ditional behavior. There are three possible execution B, 4(I,, [, [,) =T, [+ T, +F,[, =0 (2
paths(G,G,, G,G,, G,) . Indicated blocks correspond to
operations that share the same guard function
(1,G,, G,G,, G,G,, G,) . We note thaF’s are not restricted
to product terms (thus, they can handle constructs such a: step_1 <> | ,

if (Cl)a,;
else if(C2) b; . S _

g else gotd; step_ r=G r,=G re=1
C, d,

| | |
Figure 2. Pseudo-code fragment Figure 4. Example CDFG fragment

Since the constraint evaluates to ‘0’, we conclude that
the schedule is infeasible on all paths. If two resources are

available, the constraili, ; evaluates to ‘1" LOOP K 3 5 1

BZ’ 3(F1, r2’ r3) - F]_ + Fz + F3 =1 (3) ITERATION: <tage ‘|
indicating that operatiof can be scheduled on all paths stage &\ d
Let us assume now that operatibhas been scheduled . (e &\ stage
for execution in a speculative fashiorstep_1 and that op- . ° &\ stage
eration2 is scheduled istep_2 Can operatio3 be sched- stage o \eiage
uled in step_2 with only one resource? We evalitg o x% L °
constraint using; (=23 a'ld obiam. ° Stage | - latency (iteration interval)
B 2(T, M) =T+ =G “) o ° - Tronr of pipeline btagek

S

This result indicates that the resource bound is met only ol
path G. In general, the following theorem holds

Assume that n operation instances are candidates for The proposed approach is computationally efficient.
scheduling at a particular time step and that there are onlyWe observe that the number of operations in a typical

Figure 5. Overlapping of loop iterations

k resources available. Then the evaluation of(B;, 'y, ... CDFG is much larger than the number of potentially dis-
, T returns all paths where the resource constraint is nottinct guard functions. Only one pointer to a guard function
violated. need be stored for each operation instance during the sched-

The proof is straightforward since every individual uling process. Furthermore, memory overhead for storing
control path is represented as a product of guard variablegguard functions is expected to be very low due to the shar-
We can evaluatBy Iy, 5, ... ,[') for every possible com- ing property of the OBDD data structure [18]. Compared to
bination (minterm) of guard variables and obtain ‘1’ (if the the method proposed here, condition vectors [1] are less ef-
minterm is covered by at mdsf; functions) or ‘0’ (if the ficient and have smaller expressive power since in that ap-
minterm is covered by more th&runctions). Note that al- proach: {) control paths are “one-hot” encoded,) (o
though the conceptual complexity of the test is very high, itsharing is possible between the vectors, &indexecution
can be performed efficiently sindég functions are repre- order of conditionals is pre-specified.
sented by OBDDs -- the computation amounts to insertior ~ Guard-based analysis is not restricted to physical hard-

of guard functions into the templag , (Fig.3). ware resources, but can be applied to modelling more gen-
We define an operatigis split-function $as a Boolean eral constraints. For examphautual exclusion of n signals
intersection: is tested by using; ("1, [, ... ,[y). A condition forsyn-
- chronization of n signalis evaluated using the complement
S =By n(Ty T Moo T (5) 9 9 p

oo of Bin.1),{l"1, M2, ... ,['p) - this identifies all control paths
Remember théff; indicates all control paths where op- \yhere all signals occur simultaneously.

erationj must be scheduled. Thi® indicates all paths
where operatiofi can be scheduled at a particular time step3.2 Pipelining of cyclic CDFGs
whenB, ,is evaluated. I§ is equal td"j, operatiorj can be
completely scheduled at that time ste§ is a proper sub-
set off (ijﬁ), node splitting (dividing) may be consid-
ered. In the previous exampl§;=G and ('3DS3). Thus,
operation3 can be scheduled on path Gstap_2 On paths:

In a pipelined hardware implementation of a datapath,
multiple loop iterations can be executed concurrently. The
latencyis the period of timé between initiations of two
consecutive iterations. Loop pipelining optimizations have
- RE the goal of increasing the throughput by overlapping the ex-

M\S;=r1;5=06 (6) ecution of loop iterations. In the casefarfictional pipelin-
operatior8 has yet to be scheduled in the subsequentsteps INg: the assumption is that no inter-iteration data

To support code motion across the basic code blfgks, dependencies exist. _G|ven sgfﬂqent hardware resources,
functions may have to be modified during the scheduling.he latency of functionally pipelined data-paths can be

For example, if operatioh (Fig.4) is executed speculatively made arbitrarily small. Ifoop winding this cannot be done
in step_1 variable G has to be factored out from(i.e. Ty since inter-iteration data dependencies do exist.dEtey

becomes ‘1’), since the corresponding conditional (shadedS the number of cyclegrequired to complete one iteration.
comparator) is unknown at that time. This reflects the fact! & number of overlapping iterations is usually referred to

that duringstep_1 paths G an& are indistinguishable. as the number gfipeline stages _
Fig.5 shows an example of overlapped execution of a
1. This reduces to a pair-wise mutual exclusion t€$t%0) as a previ- loop usingn pipeline stages. Assume that the loop body

ously observed special case (e.g.[2][15][17]). s o :
2. The scheduler, however, has to ensure that node dividing is done in exhibits np distinct control paths. In Fig.5, the number of

stepl) /1G3-1 ;
causal manner (e.g. not to allow dividing of nodes with respect to a con-Paths may grow as\() (tstepd)). For example, for time
ditional whose value is still unknown at a particular time step). stepsl <step< 2l , the number of paths is potentiaﬂf})?(,

loop_iterations_(2k) loop_iterations_(2k-1)

F
T<S\F (ﬁ ?
O| [TT, F-]
/ |O[[TFI]
stage_
TNF
T<F

£C)
@
> a Figure 7. Example CDFG to be folded
2 " lastn; iterations is preserved and used in decision making.
{Il] F] Assume that the CDFG to be scheduled hagontrol
. i) paths. Clearly, the bound on the number of distinct control
Figure 6. Unfolded execution pattern for Kim paths grows as Qf) ']. To accommodate all possible sce-

since two iterations co-execute. Clearly, to have a finitenarios, guard variables are doubly-index@g; stands for
state controller, the number of execution paths must be‘guard corresponding to conditionalin pipeline stagé”’,
bounded. This implies limiting state information available where (1<i <n). Indexi is called the pipe index'. Values
to the controller implementing the schedule. At minimum, of i larger thamg correspond to loop iterations that left the
the state depends on aflloop iterations in the pipelife pipeline. Operations at different pipeline stages correspond
The unfolded execution of a functionally pipelined ver- to distinct loop iterations. Thus, G corresponds tany
sion of Kim (Fig.1) is shown in Fig.6. We assume two loop iteration currently present at stagédditionally, op-
adders (“white” operation), one subtracter (“black” opera- erationj is guarded by ; (the guard function for operation
tion) and one comparator (single-cycle units assumed). Thj at pipeline stagg. The complexity of control representa-
example requires 8 cycles on these resources if loop pipelirtion grows asyn, (n; is the number of conditionals).
ing is not performed. With loop pipelining, a schedule us- The overlapping iterations are treated as parallel
ing 2 stages and having latency of 4 (using the samehreads of computation, leading to the following resource
resources) can be found as indicated in the Fig.6 (delay reanalysis procedur%
mains 8 cycles). One operation is divided as indicated by 1. For the original CDFG, assign guard variablgeds
the values of the guards corresponding to conditioi@ls (the corresponding conditionals and for each opergtion
C2). The indicated block in the middle of the figure shows acompute its guard functidn,
pipelined loop pattern. Although there are nine control 2. Computel; 1 by substituting G, for each G inT;.
paths, the control is simple since the schedules for the twiResource constraints are evaluated as described for a
iterations are independent. In general, this need not be thCDFG without loop folding (Section 3.1).
case: superior schedules may be achieved when a contr 3.a. If, during scheduling, operatignis moved from
correlation is introduced among the overlapping iterations. pipeline stage to pipeline stagei€1), compute’j +1) by
We now extend conditional resource sharing analysis tcincrementing the pipe indices by 1 for all guard variables in
the more general case of pipelining of cyclic CDFGs. Con-T;;. Movement of operations that increase the pipe index
sider the CDFG shown in Fig.7. Assuming that only onebeyondn; is not allowed, since this would violate the pre-
single-cycle resource of each type (comparator, “white”, defined bound;.
“black”) is available, the CDFG from Fig.7 can be sched- 3.b. If, during scheduling, operatignis moved from
uled in 4 time steps without loop pipelining. However, la- pipeline stage to stage if1), computerl; .1y by decre-
tency can be reduced to 2 time steps using three pipelinmenting the pipe indices by 1 for all guard variables;jn
stages. For simplicity, we assume that the CDFG has to bOperation movement decreasing the pipe index below 1 is
executed an infinite number of times and that no inter-iteraiillegal, since it would imply non-causal solutions (i.e. con-
tion data dependencies exist. These assumptions do not &trol depends on iterations yet to be initiated).
fect the generality of the approéch 4. Repeat steps 3.a and 3.b for each time step and each
Assume that the schedule is to be found usgpe- pipeline stage. Conditional resource availability is comput-
line stages. We specify a bound on the information availableed as described in Section 3.1.
to the controllem; (nj=ny), indicating that the state of the Steps 3.a and 3.b preserve all inter-iteration and intra-
3. Increasing the amount of state available for control generation mayit(:"r""tion control dependencies. They reflect the fact that
improve a schedule, but is likely to lead to more complex controllers. 6. Some schedulers first generate a feasible pipelined schedule (in terms of
4. Assuming no speculative execution, 8-cycle schedule can be found eve dataflow dependencies) and subsequently resolve resource violations by
using only one single-cycle adder. incremental partial rescheduling [7][11]. Alternatively, the initial non-

5. In the general case, a loop test must be explicit in the CDFG specifica pipelined schedule can be free of resource violations and the latency is
tion and the scheduler has to enforce inter-iteration precedences. then reduced through incremental operation rotation [6][14].

pipeline_stage_1 | pipeline_stage 2 pipeline_stage_3 indicating that the resource constraint is satisfied on all
® ® > paths. Computation d§ for j=(5, 6, 7”) indicates that all
step_1 ?:1 GyGos G, Css Gy 015 operations (5, 6, and 7") can be schedulesteyi_1(stage
= e 3) and that a feasible schedule has been found.

wl & T &
Ll L1 L2 DLt 3.3 Probabilistic interpretation

Figure 8. Folded CDFG from Fig.7 In a CDFG withn,, conditionals, up t@" control sce-
overlapping loop iterations flow through the pipeline stagesnarios may occur. Each of these distinct control paths can
in a synchronous fashion. be represented using a minterm of guard variables. Since

We now apply the procedure to the CDFG in Fig.7. A the number of minterms covering a Boolean funcfigs
feasible schedule using three pipeline stages, achieving latypically referred to asn-set sizef f, we define:
tency of 2 is shown in Fig.8. Assumg= ng = 3 and that OnSetSizd) = 2 (14)
stage 1 has been scheduled as shown in Fig.8. Since oper Assuming that all True/False decisions are equally
tion 4 is pushed from the first pipeline stage into the secongjikely, we offer a probabilistic interpretation Bffunctions:

pipeline stage, its new guard function becomes: OnSetSizér,)

r,, = G; ,. IftheB, ,constraint at step 1 is evaluated us- 1 =P (15)
4,2 1,2 1,2 j

ing 'y ; andl"y ,we obtain: OnSetSizél)

B — whereP(j) indicates the probability that operatipwill be
By 2 (rl, vl) =1+G12=Gy;) conditionally executed. ProbabiliB(j) or its variations are

indicating the paths where the resource constraint is not viofrequently used in resource-constrained schedulers to de-
lated. However, the intersection Bf , andl", ,is empty fine heuristic priority functions (e.g. [4]). We observe that
(i.e. $4=0), indicating that operation 4 cannot be scheduledthe computation 0OnSetSize(famounts to a simple one-
in step_1 It is possible to schedule operation 4stap_2 pass traversal of an OBDD representatiord. &vhen the
however, since no other comparison is scheduled in thaprobability of a conditional’s outcome is not uniform, be-
step in pipeline stage 1. 7 havioral description analysis/simulation can be performed

Similarly, operation 7 is guarded by, , = G; , when to determine probability values. In such cases, the OBDD
pushed into stage 2. Although sufficient resources are availtraversal algorithm foOnSetSizg) can be easily modified
able, it is clear that operation 7 cannot be scheduled at steto take into account individual probabilitiB$G,) .
1 if an overall latency of 2 is to be achieved. (Since compu- It is also possible to assess the global effects of re-
tation in the first and second pipeline stage are subject to ursource violations using the complemenBf(I"y,...1):
correlated decisions, it can happen that no “white” __
resources are available for pipeline stage 3 where additione OnSetSizé B,)
“white” operations have to be scheduled). At step 2: OnSetSizél)

B, ,(F, ,T..) =G, ,+(G,.) =G, ,+G 8) This ratio indicates the probability of a violation occur-
L2t 21772 oy L2 Lo rence. Such information is useful for schedulers that re-
solve resource violations through partial rescheduling.

(16)

indicating the paths free of resource violations. Since:

S = Pialon) 26iiGiz O 4. Experimental results
operation 7 cannot be scheduled at step 2 if the ‘T’ path is ™~ p])
simultaneously taken in the CDFG being executed in the ~ TWO types of experiments are performed. First, we
first pipeline stagéG, ,G, ,) . However, operation 7 can wish to investigate the benefits of exploiting conditional re-

be split (see Fig.8). The guard function of 7’ can be set to: Source sharing. Table 1 we summarizes results for three ex-
amples: thé/erySmall(Fig.7), Kim (Fig.1), andSC (Fig.9,

72757 G116y (10) " [14]). As assumed in the previous sectioverySmalluses
Operation 7 has yet to be scheduled on paths: 1 resource of each type (add, subtract, compareKand
M,,=T, A\, =G 1@ (11) uses 2 adders, 1 subtracter and 1 compaf@schedule

(using 1 multiplier and 2 ALUS) is shown in Fig.9. Cycles 3
through 8 form a repetitive pattern that can be pipeﬁ‘ned
R For all examples, we present three results for the same
I CIIP I (12) resource bound®riginal corresponds to CDFGs without
During the first step of pipeline stage 3, three candidatenrolling and pipeliningUnrolled corresponds to the un-
operations exist: 5, 6 and 7”. If th& , constraint is evalu- ~ rolled versions of a CDFG (no pipelining), while loop pipe-

ated at step 1 usirg; 3 e 3 andr7",3_’ we obtain: 7. We still assume these probabilities correspond to independent events.
BL 3 (r5, 3 rey 3 r7ny 3) =1 (13) 8. Solution in [14] has latency of 6 as well, but uses 4 pipeline stages.

Since this part of operation 7 (7”) has to be pushed into
pipeline stage 3, its guard function is modified to:

cycle: 1

1

2

3

4

5

6

7 1

8 21 21 21 | 2,14
path [3,4,14){| [F-F] [T.FF] [T TF] [F-T] [TET] [TT,T] [---]

Figure 9. SC example and its schedule
lining is allowed inpipelined The original and unrolled

Table 1. Throughput comparisons

#overlapped latenc dela throughput

example iteratic?nps [cycles); [cycleys] [1/cy?:|eps]
original 1 4 4 0.250
VerySmall unrolled 3 7 7 0.429
pipelined 3 2 5 0.500
original 1 8 8 0.125

Kim unrolled 2 11 11 0.182
pipelined 2 4 8 0.250
original 1 8 8 0.125

sc unrolled 2 14 14 0.143
pipelined 2 6 8 0.167

3. S.H. Huanget al. “A Tree-Based Scheduling Algorithm for
Control Dominated Circuits’Proc. 30th DAC 1993.

4. K. Wakabayashi and T. Yoshimura, “A Resource Sharing and
Control Synthesis Method for Conditional Branche2foc.
26th DAG 1989.

5. M. Rim and R. Jain, “Representing Conditional Branches for
High-Level Synthesis ApplicationsProc. 29th DAC1992.

6. L.-F. Chao, A. LaPaugh, and E.H.-M. Sha, “Rotation Schedul-
ing: A Loop Pipelining Algorithm”Proc. 30th DAC1993.

7. T.-F. Leeet al, “An Effective Methodology for Functional

results are obtained using exact symbolic techniques

[15][16]. Thepipelinedresults were generated in a semi-au-
tomated fashiod. Table 1 shows that systematic treatment
of resource sharing can increase throughput even in case

when the loop body exhibits conditional behavior.

Pipelining”, IEEE Trans. CAD/ICASvol.13, no.34, Apr.
1994.
M. Potkonjak and J. Rabaey, “Optimizing Resource Utiliza-

tion Using TransformationsTEEE Trans. CAD/ICAS/0l.13,

9.

To investigate the computational and storage overhear

of the approacHtpipelined” results were verified for poten-

tial resource constraint violations. The overhead due tct?:
guard variables and functions is very small: 14 OBDD ;.

nodes Kim, Fig.6), 18 nodesVerySmall Fig.8), and 24

nodes §C Fig.9). In all examples, verification of the re- 12.

source bounds took less than 0.03 CPU seconds.

5. Summary

An approach to conditional resource sharing analysisi4.

13.

using a guard-based control representation was describe:

To our knowledge, this is the first method to systematically
handle conditional resource sharing for pipelined loops thal>
exhibit conditional behavior within the loop body. In the fu- ;¢

ture, we plan to implement a scheduler based on the pre
sented concepts. This requires that several additional issue

be addressed (e.g. node unification, incremental recalculel?-
tion of ' functions when conditionals are rescheduled, tim-

ing model for operation chaining, etc.).

References:

1. K. Wakabayashi and H. Tanaka, “Global Scheduling Indepen-19.
dent of Control Dependencies Based on Condition Vectors”,

Proc. 29th DAC1992.

2. H.-P. Juan, V. Chaiyakul, and D.D. Gajski, “Condition Graphs 2(.

for High-Quality Behavioral SynthesisProc. ICCAD 1994.

conditional pipelining by adding some necessary conditions for exist-
ence of a repetitive pattern in a schedule of the unrolled loop. All of the
presented results were generated using such an approach, but they we
manually verified for potential inter-iteration dependency violations.

18.

9. Symbolic techniques can be extended to solve a relaxed version of th2q .

no.3, March 1994,

C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A Formal Approach
to the Scheduling Problem in High Level SynthesiEEE
Trans. CAD/ICASvol.10, no.4, Apr. 1991.

C.H. Gebotys, “Throughput Optimized Architectural Synthe-
sis”, IEEE Trans. VLSI Systemsl.1, no.3, Sep. 1993.

R. Potasman, J. Lis, A. Nicolau, and D. Gajski, “Percolation
Based SynthesisRroc. 27th DAC,1990.

T.-Y. Yen and W. Wolf, “Optimal Scheduling of Finite-State
Machines”,Proc. ICCD 1993.

A. Takach and W. Wolf, “Scheduling Constraint Generation
for Communicating ProcessedEEE Trans. VLS| Systems
vol.3, no.2, June 1995.

J. Siddhiwala and L.-F. Chao, “Scheduling Conditional Data-
Flow Graphs with Resource Sharin@roc. 5th Great Lakes
Symp. VLSI1995.

I. Radivojevé and F. Brewer, “Symbolic Techniques for Opti-
mal Scheduling’Proc. 4th SASIMI Workshop993.

I. Radivojevt and F. Brewer, “Incorporating Speculative Exe-
cution in Exact Control-Dependent Schedulingtpc. 31st
DAC, 1994.

R.A. Bergamaschi, R. Camposano, and M. Payer, “Allocation
Algorithms Based on Path Analysidhtegration, the VLSI
Journal vol.13, no.3, Sept. 1992.

R.E. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation”,IEEE Trans. Computersol.C-35, no.8, Aug.
1986.

J. Yang, G. De Micheli, and M. Damiani, “Scheduling with
Environmental Constraints based on Automata Representa-
tions”, Proc. EDAG 1994.

C.N. Coelho Jr. and G. De Micheli, “Dynamic Scheduling and
Synchronization Synthesis of Concurrent Digital Systems un-
der System-Level Constraint$?roc. ICCAD 1994.

T. Kim, JJW.S. Liu, and C. L. Liu, “A Scheduling Algorithm
for Conditional Resource Sharing?roc. ICCADQ 1991.

