
1 Introduction
The goal of this work is to provide an accurate and con-

cise executable representation of a data-path for synthesis
and scheduling applications. Although extensive work
exists in synthesis of behavior, relatively little work exists
for resynthesizing designs where large portions are already
constructed and an upgrade or engineering change is
required. These tasks require the ability to rapidly deter-
mine the capabilities of the existing designs. For complex
data-path networks, efficient exploitation of the resources
offers many challenges. In particular, assignment of oper-
ands into memory elements and the scheduling of opera-
tions may have greater dependence on the limitations of
the data-path interconnection network than on the algo-
rithm’s critical path.

To provide support for these synthesis and scheduling
applications, the model must meet several requirements.
The model must correctly restrict communications to those
that are simultaneously feasible on the defined intercon-
nection network. It must model the behavior of the storage
elements including the limited capacity of register file. It
must model the behavior and exclusive use of function

units in the network. Finally it must model the effects of
the control encoding on the execution of the datapath.

We choose to formulate this model as a symbolic
Boolean relation [3][13]. This relation represents a state
machine whose states encompass all possible activities of
the data path constrained by a DFG (data flow graph) of
operations to preform. Recent advances in Boolean repre-
sentations (BDD’s) have made the canonical representa-
tion of Boolean relations in a compressed, executable
form feasible. This allows the rapid determination of sets
of solutions meeting predefined constraints. For example,
it allows us to rapidly determine all simultaneously feasi-
ble communications on a pre-defined data-path. Note that
this task is much more complex than simply determining
feasible paths for operand transfers. We must provide
simultaneous paths for several operands potentially com-
peting for limited connectivity resources.

Previous efforts in data-path synthesis used models
that can be divided into two major types: In the first type,
a register and multiplexer bus transaction model is
derived for the particular communications of the designs
[5][9][10][11]. This model is typically represented as a
connection graph and conventional graph search and
matching techniques are applied. Recent model accom-
modate register files but restrict the connectivity [14].
The second type of system used a pre-defined data-path
and generated microcode or control for the structure
[4][8]. In these systems, the network is specially
designed to simplify assignments of communications.
Finally, a related research line of formal verification sys-
tems is being developed [1][2][6]. In contrast to the veri-
fication modeling, our model is intended for synthesis us.
Thus, we are free to introduce heuristics which do not
seriously detract from the power of the system but greatly
enhance the speed.

 In Section 2, the path constrained model is developed
and shown to be capable of representing the behavior of a
wide variety of data-path switching element styles. In
Section 3, the Boolean relation for this model is formu-

Symbolic Execution of Data Paths*

Chuck Monahan, Forrest Brewer

Department of Electrical and Computer Engineering
University of California, Santa Barbara

Abstract
We present a data-path model which concisely cap-

tures the path constraints imposed by a data-path, such
as bus hazards, register constraints, and control encod-
ing limitations. A process for expressing arbitrary data-
paths in terms of this model’s base components and
techniques for systematic translation into Boolean
functions are described. Finally, this model is expanded
to represent the limitations of generating as well as
moving operands by incorporating dataflow graphs.
The power of this representation is demonstrated by
applying the path-constrained model to scheduling on a
commercial DSP microprocessor.

* This work has been supported in part by fellowship donation
from Mentor Graphics Corp.

lated, with special attention paid to efficient construction
and execution. Finally a number of applications for this
model are discussed and related results are presented in
Section 4.

2 Path Constrained Model
We model a data-path as a network of memory ele-

ments, switching logic, and combinational logic con-
nected by a set of wires. Switching logic, in which
operands are conditionally transferred to different wires, is
distinguished from combinational logic which creates new
operands. Figure 1 lists the basic blocks of the model.
Memory elements are represented by either latches or reg-
ister files, switching elements are modeled as multiplex-
ers, and combinational logic elements are referred to as
function units.

Each component connects to a network of buses via a
set of uni-directional ports. Bidirectional ports are mod-
eled by combinations of uni-directional ports, switching
elements, and switching control restrictions. The model
places restrictions upon wire and component interfaces.
First, each wire of the network contains a single source
represented by a specified output port. Also each output
port is connected to a single wire. While a wire may fan
out to many destinations, each input port must be con-
nected to a single wire. In the case where multiple wires
converge at an input port, a switching element interfaces
the wire set and the port.

A wide variety of data-paths can be represented by the
path-constrained model. More complex components are
built by combining the set of base components listed in
Figure 1. Each complex component is partitioned into its
operand storage, movement, and generating elements to
enhance the component’s behavioral specification. These
partitions are directly modeled by the memory, switching,
and function unit base components with appropriate con-
trol and wire interfaces, as shown in Figure 2. For exam-
ple, an arithmetic logic unit capable of transmitting either
of its operands or creating new ones is represented as the
structure in Figure 2(a). Figure 2(b) depicts the partition-
ing of the storage and routing element implied by a regis-
ter. Register files could be represented by a network of
multiplexers and a latch, but this would cause the repre-
sentation to contain information on the permutation order
of stored data. For this reason an alternative formulation is

 Figure 1. Base component set.

Latch Register File Function UnitMultiplexer

Input port
Input port Input portInput port

Output port Output portOutput port
ControlControl

Output port
Control

described in Section 3.2.1. The final example, Figure 2(c),
shows how a tri-stated buffer based bus model is repre-
sented by our multiplexer based model.

Although this model assumes buses of uniform bit-
width, it can model multiple bit-width buses. Figure 3 dis-
plays how multiple input and output ports can be utilized
to accommodate operands of wider bit-widths. Note, that
bit-wise operations, such as shifts, rotates and selections
are modeled as function units since they alter the values of
operands.

A communication consists of the transfer of an oper-
and over a connection. Aconnection is a path over an
arbitrary number of switching elements which connects
two component ports on the data-path. The restrictions
placed on the port and wire interfaces enable a connection
to be equivalently defined as a path from a source wire to
a destination wire. This definition implies a connection
between two component ports since the source wire has
an associated output port and the destination wire has a
list of input ports.

A data-path has restrictions on the connections and
communications that are simultaneously feasible. Buses
restrict paths between output and input ports. Multiplexers
generate restrictions since a multiplexer only transfers one
source to its output. Similarly, function units and memory
elements can be viewed as imposing restrictions upon
communications, since they can produce only a single
operand on each of their output ports. Lastly, control
encoding constraints can further restrict the data-path
activities.

3 Boolean Symbolic Formulation
This section formulates the Boolean symbolic repre-

sentation for the path-constrained model. Conceptually,

(a)

load
load

S1 S2 S3
S1S2 S3

(b)

 Figure 2. Representing larger structures in the model.

(c)

⇒ ⇒

⇒

ALU Register

Bus

Reg File

8-bit ALU 16-bit Incr

 Figure 3. An example variable bit-width data path

Mux

we wish to represent the behavior of the modeled data-path
implicitly as a symbolic state machine. Isolating the mem-
ory elements of the modeled data-path transforms the
model into a standard Huffman model of a state machine
as depicted in Figure 4. In our machine, the state is repre-
sented by the set of operands stored in each of the memory
components of the model. The next-state functions repre-
sent communications of operands on connections in the
network and creation of new operands in the function
units. Connection constraints model the behavior of the
interconnection network while operand constraints model
the behavior of the function units and memory elements.

3.1 Connection Constraints
The representation of a connection consists of an

encoding of the source and destination wires and the
switching control bits required to realize the connection on
the network. Each wire in the network is labeled with a
unique Boolean encoding. In this paper, upper case charac-
ters represent wire labels and lower case characters repre-
sent control bits. An example of the symbolic
representation of connections is shown in the switching
network in Figure 5. The set of possible communications
are listed in the accompanying table.

It is useful to denote the set of connections that can be
achieved for the destination wireX. A wire function W(X)
is defined as a sum of all such connections. To describe the
behavior of a switching network, it is sufficient to list a
wire function for each of the network’s primary outputs
(destinations).

MEMORYNETWORKFUNCT.
UNITS

operands operands

operandsoperands

(combinational logic) (storage)

 Figure 4. Path Constrained Model Organization

control connection

x y z E F

0 0 0 A A

0 0 1 A C

0 1 0 A A

0 1 1 A C

1 0 0 A B

1 0 1 A C

1 1 0 B B

1 1 1 B C

 Figure 5. An example data-path and the set of represented

connections.

A B C

D

E F

x

y z

The construction technique for W(X) for an arbitrary
networks relies on the acyclic nature of connections in
switching networks1. This construction process recur-
sively generates W(X) for each switching component. An
initial set of wire functions is constructed to represent the
switching function of each multiplexer. This set of wire
functions is then combined to represent a set of wire func-
tions for the network of multiplexers. Symbolic substitu-
tion of a wire symbol by the associated wire function
constructs the set of wire functions systematically. The
construction of the wire functions associated with the net-
work shown in Figure 5 is shown in Figure 6.

3.2 Operand Constraints
In a given cycle, the operation of a data-path consists

of a set ofcommunications. A communication is the trans-
fer of a specific operand on a connection. There are essen-
tially two basic cases for operand constraints, one in
which old operands are retrieved from memory elements,
and the other in which new operands are created in func-
tion units.

It is useful to list the possible ways a data-path can
supply specific operands. Anoperand function, F(W,
opX), is defined as the sum of communications which
supply operandopX to wireW. These equations elaborate
the previous wire equations by adding the control signals
required to generate the operand as shown in Figure 7.

3.2.1 Memory Constraints
Memory elements in the data-path provide “state”

information for the symbolic machine execution. Thus,

1. Combinational connections must be acyclic to prevent races.

Initial wire function:

W(D) = xA + xB

W(E) = yA +yD

W(F) = zD +zC

 Figure 6. Wire function construction.

Resulting wire functions:

W(E) = yA +y(xA + xB) = yA + yxA + yxB

W(F) = z(xA +xB) + zC = zxA + zxB + zC

a0Reg
File

ADD

X

B

C

A

add

op1 op2

op3
z

a1

 Figure 7. Example operand functions

(a) (b)

F(C, op3) = zF(A, op1)F(B, op2)F(X, op1) =a1a0

for each clock cycle, operands stored in the various mem-
ory elements are represented by the present state of the
machine. Since a latch contains only a single operand, con-
straints for retrieving an operand from a latch are only
dependent upon the state variables. By contrast, a register
file contains multiple operands requiring additional control
variables related to operand selection. It is possible to con-
strict register files using network constraints defined previ-
ously, however, this is not efficient since we do not care in
what order the operands are stored in register files. We
therefore simply list all values available in the register file.
The control variables then select which operand to use
instead of which register. We must, however, limit the
number of such operands to that allowed by the register
file.

3.2.2 Function Unit Constraints
A recursive construction technique is used to build a set

of operand functions for arbitrary data-paths and data-flow.
Dependencies are determined for each operand and func-
tion unit pair. Each dependency is a combination of input
operands and function unit control signals. One can
traverse the data-flow in order, evaluating an operand, only
after its operand dependencies have been met. Each func-
tion unit that can construct the selected operand uses the
operand functions of its predecessors to construct the total
operand function.

Figure 8 depicts the combination of an example data-
path and data-flow. For simplicity, this example ignores
any permutation of operands to the function units. Initial
functions are formulated by listing the conditions for the
creation of each operand. The initial functions are
expanded in Figure 9 by substituting operand functions
into each dependent operand instance. If an operand func-
tion must traverse a switching network as in F(D,op2), the
operand function is derived from the network’s wire func-
tion. Finally, operand memory access functions are substi-
tuted for those operands coming from memory storage.

Initial functions:

F(H, op5) = gF(E, op3)F(G, op4)

F(E, op3) = fF(C, op1)F(D, op2)

g

f

Reg
File 1

ADD

MUL

Reg
File 2

add

mul

op1 op4op2

op5

op3C D

E G

H

Mux x

A B

 Figure 8. Example data-path and data-flow

3.3 Transform Relation
A transform relation describing the relation between

present and next states, is systematically built from the
operand functions in a two step process. First, a set of
operand relations are constructed from the operand func-
tions. It is sufficient to only analyze operand functions
pertaining to input ports for the memory components.
Each operand function identifies the storage of a particu-
lar operand in a specific memory device. Multiplying the
operand function by the state encoding corresponding to
the operand and memory device creates an operand rela-
tion between the operands of the present state and the
operands available at the next state. Figure 10 shows
operand relations derived from the operand function of
Figure 9.

The second step uses Eq.1 to combine the operand
relations into a general transform relation. The inner term
lists the set of operands which may be loaded in each
memory device. The product of the resulting terms lists
which operand relations for the set of memory input ports
are compatible. If two communications require incompat-
ible control signals, the product will be null. Figure 10
shows resulting transform for the example data path.

 (1)

A number of additional constraints may be added to
the general transform relation. Control encoding con-
straints may be formulated as a Boolean function. Taking
the product of the transform relation and this Boolean
function constructs the set of permissible communica-
tions

Furthermore, external chip interfaces can be added to
the general transform relation. The interface ports are
modeled as function units as shown in Figure 11. For
timed external I/O signals, operand functions pertaining

 Figure 9. Deriving operand functions.

Converting wire functions to operand functions:

W(D) = xA + xB

Final operand functions:

F(E, op3) = fF(C, op1)(xF(A, op2) +xF(B, op2))

F(H, op5) = gfF(C, op1)(xF(A, op2) +xF(B, op2)) F(G, op4)

Operand relations:

R(E, op3) = fF(C, op1)(xF(A, op2) +xF(B, op2))Mem(RegFile2, op3)

R(H, op5) = gfF(C, op1)(xF(A, op2) +xF(B, op2))F(G, op4) Mem(RegFile1,
op5)

Transform relations:

R(H, op5) = gfF(C, op1)(xF(A, op2) +xF(B, op2))F(G, op4)Mem(ReeFile2,
op3)Mem(RegFile1, op5)

 Figure 10. Construction of transform relation.

transform R i j,()
j 0=

operands

∑ 
 

i 0=

memoryinputports

∩=

to specified data transfers are used to qualify the transform
relations on specific states. This is equivalent to a time
dependent encoding requirement. Alternatively, if the
inputs do not contain timing restrictions, operand relations
are built directly from the operand functions.

4 Applications
Many applications can be formulated around this sym-

bolic Boolean data-path model.

4.1 Connectivity
A user of an existing data-path may desire to confirm

whether a set of communications are feasible during a sin-
gle state. Alternatively, they may desire to know which
subsets from a list of communications may be simulta-
neously executed. These types of questions are directly
answered by the model which builds all sets of simulta-
neous communications for a single clock period. One
would simply intersect the specified list of communica-
tions which the transfer relation to determine the desired
results.

We have built three data-paths using techniques pre-
sented in this paper. For simplicity, the models listed in
this section do not utilize a specified DFG. Instead they are
constructed from the set of wire equations and represent
the set of feasible simultaneous connections supported by
the data-paths. Table 1 lists the construction size for the
Texas Instrument TMS32010 and 74888 data-paths and
for the data and control path of the Intel 8085. The column
“#terms” indicates the number of sets of simultaneously
feasible communications for the example. The column
“#nodes” list the number of BDD nodes required to repre-
sent the relation.

4.2 Feasible Schedule Verification
Another application is to verify the feasibility of a

schedule for a given datapath. This application is a logical
extension of the previous one, where the effects of multi-
ple cycles are considered. This is a powerful technique
since it will check the mapping of operands between states

 Figure 11. External I/O Interfaces

External Input

Output port
Control

External Output

Input port
Control

Table 1: Representation size

terms # nodes

TMS32010 80 79

7488 96 48

8085 608 579

as well as confirming that the data-path can support the
required communications.

Schedules can be specified in many forms. They may
list when operations are done, the function unit bindings,
and/or memory unit bindings. The application then sym-
bolically executes the machine. At each state, the trans-
form relation is restricted by the schedule and binding
information supplied. Information left unspecified can be
explored exhaustively or by heuristics to enhance the
speed. Conventional FSM state enumeration techniques
can be used to determine feasibility and all matching
solution bindings.

4.3 Scheduling
If only a DFG is specified, an application could sched-

ule the complete program. In general, however, the trans-
form relation grows rapidly as the size of the DFG and
data-path increase.

An application of this technique was constructed to
schedule theelliptic wave filter anddifferential equation
benchmarks for the TMS32010 design depicted in Figure
12. Theelliptic wave filter example was scheduled in 54
states. Other techniques using general data-path models
construct solutions in 27 states with equivalent register
and bus constraints [7][12]. The wide variance in the
scheduling time is based upon the restriction an existing
data-path places upon the routability of operands.

For differential equation, multiplication by the con-
stants 3 and 5 can be implemented by shifting and adding.
We formulated three forms of the data-flow in regards to
these options: using just the multiplier (*), just the shifter

latch p

Register
File

ALU

ACC

latch t
data
bus

 Figure 12. TMS32010 based data-path model

mult

ROM

>>

Design, Vol 11 No.4 April 1992, pp. 413-423.
[9] B. M. Pangrle, D. D. Gajski, “Design Tools for Intelligent

Silicon Compilation”, IEEE Trans on Computer Aided
Design, November 1987.

[10] N. Park, F. Kurdahi, “Module Asignment and Interconnect
Sharing in Register Transfer Synthesis of Pipelined Data-
Paths” Proc. ICCAD-89, November 1989, pp. 16-19.

[11] P.G. Paulin, J.P. Knight, “Force-Directed Scheduling for the
Behavioral Synthesis of ASIC’s”, IEEE Trans on Computer
Aided Design, June, 1989, pp. 661-679.

[12] I. Radivojevic, F. Brewer, “Ensemble Representation and
Techniques for Exact Control-Dependent Scheduling”, 7th
International Symposium on High-Level Synthesis, May
1994, pp. 60-65.

[13] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, A. Sangio-
vanni-Vincentelli: “Implicit State Enumeration of Finite
State Machines using BDD’s,” Proc ICCAD-90, November
1990, pp. 130-133.

[14] F. S. Tsai, Y.C. Hsu, “Data-Path Construction and Refine-
ment”, Proc. ICCAD-90, November 1990.

(>>), and using both (*>>). Schedules for all three exam-
ples consisted of 20 states. This reflects the fact that the
scheduling was restricted by the connection network. Add-
ing a second global “data bus” to increase freedom
decreased the time to 14 cycles for all sets of available
units.

Because of the lack of restrictions, the execution times
for these schedules varied between twenty minutes to two
hours.

4.4 Engineering Change
This model shows promise in field of engineering

change. Specifically, we are interested in analyzing the
effects that small changes in the DFG or data-path has on
prescheduled algorithms on existing machines. Changing
the timing constraints on an external signal or deleting a
previously existing wire are two examples of changes an
engineer might face. Our model can incorporate the exist-
ing algorithm, including all binding information and then
rapidly preform local rescheduling.

5 Conclusion and Future Work
This paper introduces a concise and flexible data path

model. Algorithms necessary to generate the Boolean rela-
tion for the data path are presented. The constraints were
used in communication mapping and scheduling applica-
tions to demonstrate the feasibility of the model. Future
work will expand the model to support multi-phase clock-
ing schemes and data flow which contains loops and nested
conditionals, as well as typing and bus bit-width exten-
sions.

6 References
[1] A. Aziz, F. Balarinet al., “HSIS:A BDD-Based Environment

for Formal Verification”, 31st ACM/IEEE Design Automa-
tion Conference, 1994.

[2] J. R. Burch, E. Clarkeet al., “Sequential Circuit Verification
Using Symbolic Model Checking”, 27th ACM/IEEE Design
Automation Conference, 1990.

[3] O. Coudert, J. Madre, “A Unified Framework for the Formal
Verification of Sequential Circuits”, Pro ICCAD-90, Novem-
ber 19990, pp. 126-129

[4] C. Ewering, “Automated High Level Synthesis of Partitioned
Busses” Pro. ICCAD-90, November 1990, pp. 304-307.

[5] B.S. Haroun, M.I. Elmasry, “Architectural Synthesis for DSP
Silicon Compiler”, IEEE Trans on Computer Aided Design,
April, 1989, pp. 431-447.

[6] A. Hu, D. Dill, et al. “Higher Level Specification and Verifi-
cation with BDD’s” Computer-Aided Verification: Fifth
International Conference, 1993, published in Lecutre Notes
in Computer Science v.697, Springer-Verlag, 1993.

[7] C.T. Hwang, J.H. Lee, and Y.C. Hsu, “A Formal Approach to
the Scheduling Problem in High Level Synthesis” Transac-
tions on Computer Aided Design, Vol 10 No.4 April 1991,
pp. 464-475.

[8] S. Note, F. Catthoor, G. Goossens, H. De Man, “Combined
Hardware Selection and Pipelining in High-Performance
Data-Path Design” IEEE Transactions on Computer Aided

