
1. Introduction
Operation scheduling is the process of assigning opera-

tions to time slots in a synchronous system, subject to data/
control-flow dependencies and resource constraints. Prac-
tical methods proposed for solving this problem can be
divided into three basic categories:(i) priority-based heu-
ristics, (ii) ILP-based optimizations, and(iii) symbolic
techniques. Heuristics [4][6][15] are applicable to large
schedules but may fail to find an optimal solution in tightly
constrained problems. This is primarily because the heu-
ristics cannot recuperate from early suboptimal decisions
which typically preserve only one representative from a
possibly very large pool of candidates. Applicability of
exact ILP methods [9] has been improved by pre-process-
ing and remapping of the constraints [7][8], but the num-
ber of variables in the formulation is still a dominant
limitation. Heuristic approaches based on ILP [10][11]
reduce the number of variables significantly, but suffer
from similar deficiencies as general heuristic schedulers.

Symbolic techniques describe scheduling constraints as
Boolean functions and build anOBDD (Ordered Binary

Decision Diagram [2]) encapsulatingall feasible solu-
tions to a particular problem instance. Such methods pro-
vide support for optimal resource-constrained scheduling
of non-branching and forward-branching (without specu-
lative operation execution) control/data flow graphs
(CDFGs) [16][17], exact resource-constrained schedul-
ing of forward-branching CDFGs with speculative exe-
cution [18], and scheduling with environmental
constraints [20]1. The main challenge for symbolic tech-
niques can be summarized by Bryant’s observation from
[3]: “... In many combinatorial optimization problems,
symbolic methods using OBDDs have not performed as
well as more traditional methods. In these problems we
are typically interested in finding only one solution that
satisfies some optimality criterion. Most approaches
using OBDDs, on the other hand, derive all possible solu-
tions and then select the best from among these. Unfortu-
nately, many problems have too many solutions to
encode symbolically...”. It has been shown that some
standard benchmark instances have billions of optimal
solutions [17]. In such cases, the OBDD representation
can become too large to be practical since both its size
and CPU runtime increase significantly.

To improve the applicability of symbolic techniques
for exact resource-constrained scheduling of larger data
flow graphs (DFGs), several novel approaches are pro-
posed in this paper.(i) To improve compression of large
solution sets,ZBDDs (Zero-Suppressed BDDs [14]) are
used.(ii) To prevent partial solutions from becoming pro-
hibitively large during the construction process a set of
auxiliary constraints (interior constraints) is used.(iii)
Complex constraints are appliedimplicitly (i.e. without
explicitly building a constraint BDD).

For large problems consisting of thousands of repre-
sentation variables, we also describe set-based heuristics
that preserve whole sets of partial solutions exhibiting
desirable properties. In this paper, we assume the formu-
lation introduced in [16] and extended in [17][18].

1. A formal approach based on algebra of control-flow expressions is
presented in [5].

On Applicability of Symbolic Techniques to
Larger Scheduling Problems *

Ivan Radivojevi′c, Forrest Brewer

Department of Electrical and Computer Engineering
University of California, Santa Barbara, U.S.A.

Abstract
It has been generally assumed that recently intro-

duced symbolic techniques are applicable only to
small scheduling problems. This report demonstrates
that applicability of these techniques can be extended
to larger dataflow graphs by: (i) using Zero-Sup-
pressed BDDs, (ii) applying a set of interior con-
straints that reduce the size of intermediate solutions,
(iii) implicit application of complex constraints, and
(iv) formulation of set-based heuristics that preserve
whole sets of partial solutions exhibiting desirable
properties. Both heuristic and exact methods are dis-
cussed using standard benchmarks and are compared
to the previously published work.

* This work has been supported in part by fellowship donation
from Mentor Graphics Corp.

2. ZBDD Representation and Manipulations
The advantage of using ZBDDs [14] in exact symbolic

schedulers is effectively illustrated by the example of the
Elliptic Wave Filter (EWF) benchmark. The 28-cycle
EWF has only 34 operations but 437 variables are used to
fully describe the problem. Every solution (a path to ‘true’
node in OBDD representation) consists of 437 variables
out of which only 34 are ‘1’. A vast majority of variables
are equal to ‘0’ (i.e. a particular operation is not scheduled
at a particular time step), but are explicitly represented in
the OBDD. Consequently, the representation has more
than 130,000 OBDD nodes. Since the 0-variables that
belong to the solution are implicit (suppressed) in ZBDDs,
much larger compression of the solution set is possible. In
fact, our experiments show that for a 28-cycle EWF a
nearly ten-fold reduction in size is achieved (Fig. 1). A 15-
fold reduction is observed when a 2-cycle adder is used
(967 variables, 54-cycle optimal solutions, Fig. 2, [19]).
This marked compression of the representation size allows
analysis of much larger problems than is possible using
OBDDs. For example, the benchmark instances discussed
above run in 20 Mbytes of RAM incurring only 2-3% per-
cent CPU time penalty due to garbage collection over-
head. In fact, for some examples discussed in Section 6,
the number of nodes in the optimal solution sets is occa-
sionally smaller than the number of variables describing
the problem.

We observed that, when applied to the scheduling
problem, ZBDD manipulations are somewhat slower than
similar OBDD manipulations. This seems to be caused by

 Figure 1. 28-cycle EWF: exact and heuristic constructions

- resources: 1 single-cycle adder, 1 two-cycle multiplier (> 10e+9 solutions)
- #variables: 437

_zbdd: exact solution (ZBDD), no interior constraints: ~ 20.5 min
_ic_zbdd: exact solution (ZBDD) built using interior constraints: ~ 12.5 min1

_heu_obdd: utility-based set-heuristic solution (OBDD): ~ 22 s2

_heu_zbdd: utility-based set-heuristic solution (ZBDD): ~ 110 s
_obdd: exact solution (OBDD): > 1.5 h

1. For optimal number of registers (10), the size of exact ZBDD solution decreases from
~14.5 to ~3.5 Knodes.

2. ~ 5 s if both utilization and critical path are used as heuristic criteria

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 4 8 12 16 20 24 28

_zbdd
_ic_zbdd

_heu_obdd
_heu_zbdd

STEP

#N
O

D
E

S

NOTE:size(_obdd) > 130,000.

the frequently simpler OBDD form of constraints. The
constraint may involve only a few formulation variables
and the corresponding OBDD representation is typically
small. Such constraint may become more complex when
converted to ZBDD becausedon’t-care variables are not
implicit in the ZBDD representation. Our experience,
however, is that very slight modification in the construc-
tion strategy can dramatically improve the execution time
(discussed in Section 4). Moreover, further performance
optimizations are likely since we use a recently developed
custom C++ ZBDD package (e.g. currently there is no
support for ‘inverted-edges’ strategy [1][14] that enables
faster manipulations and reduces BDD size).

3. Interior Constraints
In the current implementation, the solution is built iter-

atively and a termination test is performed after all of the
constraints relevant to a particular time step are applied.
Although the OBDD size of the final solution is typically
very moderate, the intermediate solutions can become
prohibitively large, resulting in a slower construction and
larger memory requirements. Ideally, the intermediate size
should never exceed the size of the final solution. In such
a scenario, as long as the final solution fits the memory
limits of the runtime environment, we should be able to
complete a scheduling task.

To alleviate the problems arising from the uncon-
trolled growth of the intermediate solution, we identify
and discard a set of partial schedules that ‘hopelessly lag
behind’ during the construction process and cannot con-
tribute to the set of optimal solutions. This means that at a

- resources: 1 two-cycle adder, 1 two-cycle multiplier (> 10e+13 solutions)
- #variables: 967

_zbdd: exact solution (ZBDD), no interior constraints: could not be constructed
_ic_zbdd: exact solution (ZBDD) built using interior constraints: > 1.5 h1

_heu_obdd: utility-based set-heuristic solution (OBDD): ~ 73 s2

_heu_zbdd: utility-based set-heuristic solution (ZBDD): ~ 12.5 min
_obdd: exact solution (OBDD), not constructed (converted from_ic_zbdd)

1. For optimal number of registers (10), the size of exact ZBDD solution decreases from
~18.5 to ~6.5 Knodes.

2. ~18 s if both utilization and critical path are used as heuristic criteria.

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 6 12 18 24 30 36 42 48 54

_zbdd
_ic_zbdd

_heu_obdd
_heu_zbdd

NOTE:size(_obdd) > 285,000. STEP

#N
O

D
E

S

 Figure 2. 54-cycle EWF: exact and heuristic constructions

particular time step such partial schedules cannot terminate
for given resources and a pre-specified upper bound on
execution time. This consideration leads to a set ofinterior
constraints which is dynamically generated during the
scheduling in order to prune the OBDD/ZBDD.

The main strategy is illustrated by the following exam-
ple: Assume that at the beginning of steps there aren addi-
tion operations that have ALAP (as-late-as-possible)
bounds in the range [s... (s+k-1)] and that there are onlym
single-cycle adders available. At least (n - km) of these
addition operations must be completed prior to step s in a
feasible solution. Selection of a subset satisfying this prop-
erty is done efficiently using the constraint template shown
in Fig. 3 (further discussed in Section 4). Such constraints
can be derived for each functional unit type (including
multicycle and pipelined units). Interior constraints with
lookahead kenable an early detection of many (not neces-
sarily all) partial schedules that are destined to be dis-
carded within the nextk steps. Since the completeness of
the solution set is preserved, this does not impact optimal-
ity.

Application of interior constraints has its trade-offs:
more constraints are generated and applied, but the size of
the intermediate solution is kept under better control. For
larger problems in particular, interior constraints are very
cost-effective. Even if the solution can be built without
interior constraint application, this construction requires
more CPU time and memory requirements are drastically
higher. In the examples shown in Fig. 1 and Fig. 2, the loo-
kahead was set to a value equal to the difference between
the upper bound on execution time and critical path
latency. The figures indicate controlled growth of the solu-
tion in which the intermediate size is never greater than the
final size (curves labeled_ic_zbdd). Although such ideal
behavior is not always achievable, our experiments indi-
cate that the use of interior constraints has a dramatic
effect on scheduler efficiency. Without interior constraints,
the schedule in Fig. 2 (labeled _zbdd) failed to terminate in
several CPU hours.

4. Implicit Application of Constraints
In this section we discuss more efficient implementa-

tion of two constraints:generalized resource bound and
uniqueness [16][17].

Generalized resource bound: The constraint OBDD
shown in Fig. 3 is frequently used as aconstruction tem-
plate in symbolic scheduling. Some applications include:
(i) selection of solutions that satisfy a particular resource
constraint at a particular time step [16],(ii) interior con-
straints described in Section 3,(iii) scheduling heuristics
(to be discussed in Section 5), and(iv) post-processing
(after the scheduling is completed, the bounds can be itera-
tively tightened/identified). The constraint hasO[(n

k)]

complexity (in terms of a number of product terms), but
the number of nodes isO(kn). The template can be built
efficiently usingite [1] calls directly. Vertices in this if-
then-else template are not restricted to Boolean variables -
- complex Boolean functions (f1, f2,... fn) can be inserted
into the template (e.g. bus/register constraints, formulated
in [16]).

However, even when (f1, f2, ... fn) are rather simple,
the overall constraint may become extremely large. Con-
sequently, it can happen that the partial scheduling solu-
tion is of a very moderate size, but the constraint to be
applied cannot be built. However, the scheduling con-
straint need not be explicitly built. The following can be
done instead:

(i) Introduce a new set of auxiliary variables (y1, y2, ...
yn) corresponding to the set of functions (f1, f2, ... fn).

(ii) build the template functionT (shown in Fig. 3)
using only (y1, y2, ... yn).

(iii) computeP0 = And(P’,T), whereP’ is a partial
solution to which the constraint is applied.

(iv) clearly, a new partial solutionP” can be obtained
using the recursive formula:

Pi = ∃yi [And(P(i-1), Xnor(yi, fi))]
where∃xf = fx + fx . This amounts to the standard BDD
substitution operation:

 (1)

Using this approach, in all of the benchmarks dis-
cussed in Section 6, we were able to apply register con-
straints that could not be built explicitly.

Uniqueness: This constraint enforces that each opera-
tion j is scheduled once and only once in all feasible solu-
tions.Csj denotes operationj’s instance at time steps. If
(ASAP)j ≤ s< (ALAP)j:

 (2)

whereRsj = [(ASAP)j , s]. If s = (ALAP)j:

 (3)

This formulation enforces uniqueness explicitly at

0 1

A

B B

C C C

D D D

E E

F F

G

E

(n-k)

(k+1)
1

1 1

1 1 1

1 1 1

1 1 1

1 1

1

0

0 0

0 0 0

0 0 0

0 0 0

0 0

0

 Figure 3.At-most-k-out-of-n constraint (k=4, n=7)

P
i()

P
i 1−()

yi fi≡=

Ckj Cij
i k≠() Rsj∈

∏
k Rsj∈
∑

 Cij

i Rsj∈
∏

 + 1=

Ckj Cij
i k≠() Rsj∈

∏
k Rsj∈
∑

 1=

every iterative construction step. However, uniqueness can
be maintained implicitly (by construction) using the much
simpler form of Eq.2:

 (4)

where R(s-1)j = [(ASAP)j , (s-1)]. In some of the largest
experiments discussed in Section 6, this simplification
reduced CPU time by 35%.

5. Set-Heuristics
Since valid partial schedules are available after each

time step, it is possible to devise heuristic scheduling tech-
niques.The simplestutility-based heuristic [17] propagates
only the subset of schedules with maximum utilization of
resources. Utilization is measured by the number of opera-
tions active in each time step. The utility-based heuristic is
implemented by iterative application of the generalized
resource bound. We enforce maximum utilization of func-
tional units, and then iteratively relax this constraint until
satisfying partial solutions are found. Sinceall such sched-
ules are propagated, this simple heuristic has good behav-
ior. An additional (second-level) pruning strategy
(utility+CP) based on the AFAP (as-fast-as-possible)
scheduling of the operations belonging to the critical
path(s) is possible as well. Essentially, the scheduler favors
the partial solutions where the largest number of operations
belonging to the critical path(s) have been scheduled. This
strategy is effective when the number of operations that
can be scheduled simultaneously is very small or when the
schedule is expected to take very large number of steps
(some of the problems in Section 6 execute in more than
100 cycles).

An accurate estimate of the upper bound on scheduling
latency may not be available before scheduling. Unfortu-
nately, the search space increases enormously fast with
relaxation of this bound. Set-heuristic scheduling is very
robust: the construction pace shows very weak sensitivity
to the upper bound used to initialize the scheduler.
Although additional constraints are generated (due to an
increase in ALAP-ASAP spans for individual operations),
the intermediate solution size increases very mildly (Table
1). Furthermore, it is very important that the heuristics be

Csj Cij
i R s 1−() j∈

∏

 + 1=

Table 1: Robustness analysis of the heuristic scheduler

cycles upper
bound # vars

utility-based utility + CP

max
nodes

CPU
[s]

max
nodes

CPU
[s]

54 54 967 14,328 73 2,210 18
55 1,001 14,839 75 2,292 19
56 1,035 15,559 81 2,392 20
59 1,137 17,151 94 2,616 21
64 1,307 19,378 119 2,914 25

2-cycle adder, 2-cycle multiplier

robust, since they can be used to derive accurate bounds
for the exact schedulers whose runtime efficiency is more
sensitive to the bound estimates.

Fig. 1 and Fig. 2 indicate that utility-based set-heuris-
tics (curves labeled_heu_obdd and _heu_zbdd) are far
superior to exact schedulers both in terms of CPU time
and memory requirements, while still finding representa-
tive minimum-latency schedules.

It is to be expected that heuristics based solely on uti-
lization of the functional unit resources will occasionally
produce sub-optimal results in terms of register require-
ments. For example, if the 28-cycle EWF (Fig. 1) is
scheduled heuristically with no pre-specified register
bound, the solution requires at least 13 registers. How-
ever, if a register bound of 10 is enforced during the con-
struction, the utility-based heuristic still produces the
fastest possible solutions (28 cycles). The same behavior
was observed in the 54-cycle case (Fig. 2) and experi-
ments described in Section 6.

6. Experimental Results
In this section, three examples are used to demonstrate

the concepts discussed in this report: (i) EWF-2 (EWF
unfolded two times, 68 operations, Table 2),(ii) EWF-3
(EWF unfolded three times, 102 operations, Table 3), and
(iii) FDCT (Fast Discrete Cosine Transform [13], 42
operations, Table 4). The exact scheduler was run using
ZBDD representation and interior constraints. Currently,
all of the individual constraints are generated as OBDDs
and then converted to ZBDDs prior to their intersection.
This introduces a very small overhead for large problems,
and is beneficial since:(i) the OBDD form of constraints
is well-understood and they can be built efficiently,(ii)
OBDD-to-ZBDD conversion is a simple one-pass algo-
rithm, (iii) a significant software infrastructure for
OBDD-based symbolic scheduling was already avail-
able.In contrast, the heuristic was run using OBDDs only,
since the number of nodes was kept small (“max #nodes”
column). All experiments were run on Sun SPARCstation
10 using custom C++ OBDD/ZBDD packages. The
results are compared to theZone Scheduling (ZS) [10].
This method subdivides a large problem in zones and
solves the subproblems using ILP technique.

EWF experiments: To compare our results, the sched-
uler was run with the same constraints on the number of
functional units and busses as in [10]. Register bounds
(inputs and outputs included) were identified during the
post-processing phase for both heuristic and exact sched-
uler (column “reg[h/e]”). Maximum size of the partial
OBDD solution at the end of each iteration step is
reported (“max #nodes”), as well as the CPU times
(“CPU[s]”) of the heuristic scheduler. Column “optimal”
indicates whether the result of the heuristic scheduler

could be verified by the exact scheduler. A question mark
in that column means that we were not able to construct all
minimum-latency schedules before exceeding the time
limit (one CPU hour). Column “CPU rel” indicates the
ratio of the execution time for the heuristic and exact con-
structions. The CPU times for the exact constructions were
generated using interior constraints as aggressively as pos-
sible (i.e. all possible lookaheads were allowed at each
scheduling step).

- EWF-2: We were able to solve exactly the instances
with up to 611 variables in the formulation. The largest
instance solved heuristically introduced more than 2,500
variables. Heuristics found minimum-latency solutions in
all cases but one, with greatly reduced runtime and mem-
ory requirements. Solutions for 2-cycle (non-pipelined)
multipliers are the same as in [10]. However, no informa-
tion on registers is included in [10] and there are no results
for pipelined units. Exact solution sizes range between 274
and 4,331 ZBDD nodes.

- EWF-3: Benchmark instances with up to 615 vari-
ables were solved exactly, and up to 5,919 variables (105-
cycle case) heuristically. The heuristic failed in one case to
find the optimal execution time (however, as in the case of
EWF-2, that problem instance was solved exactly).EWF-3
results were not provided by [10]2. Exact solution sizes
are 293 to 1,311 ZBDD nodes.

Pre-specified register bounds can be used during the
construction to minimize the number of registers needed in
the heuristically scheduled results. We ran the heuristics
with fixed register bounds of 11 (allEWF-2 instances) and
12 (allEWF-3 instances) and in all cases the solutions that
required the same number of cycles as those presented in

2. To our knowledge, the only reference to this problem is in [7], where
a result for the instance with 1 pipelined multiplier and 3 adders is
presented. There is no information on the number of registers and bus-
ses.

Table 2: EWF-2 experiments

add mul buscycles optimal reg
[h/e] #vars max

#nodes
CPU
[s]

CPU
rel

3 3 6 33 yes 11/11 135 178 0.3 0.067
3 2(*) 6 33 yes 11/11 203 178 0.4 0.089
3 1(*) 6 34 yes 11/11 203 203 0.8 0.062
3 2 6 35 no(34) 11/11 271 291 1.7 0.079
2 2(*) 6 35 yes 11/11 271 661 2.4 0.033
2 2 6 35 yes 11/11 271 639 2.3 0.034

4 39 yes 12/11 543 1,770 13.5 0.005
2 1(*) 6 36 yes 11/11 339 686 2.3 0.013

4 39 yes 11/11 543 2,064 14.8 0.008
2 1 4 40 yes 11/11 611 1,232 11.8 0.010
1 1(*) 4 56 ? 14/ - 1,699 2,603 30.5 -

2 68 ? 14/ - 2,515 4,128 88.3 -
1 1 4 56 ? 14/ - 1,699 2,636 30.3 -

2 70 ? 14/ - 2,651 4,403 94.4 -
1-cycle adder, 2-cycle multiplier except: (*) 2-cycle pipelined multiplier

Table 2 and Table 3 were found. However, making an
accurate estimate on the register bound is a difficult prob-
lem, and a further work to directly incorporate a register
cost (not just a bound on the number) is planned. This is
important for exact scheduling as well, since register con-
straints can dramatically reduce the solution space. For
example, even using OBDDs, all schedules for the 28-
cycle EWF with 10 registers can be found in 690 CPU
seconds (7x faster than the unconstrained version, Fig. 1).

FDCT experiments: AlthoughFDCT has a relatively
moderate number of operations, we include it in this
report for two reasons:(i) it comes from a practical appli-
cation, and(ii) due to its highly symmetric nature (which
should lead to huge solution sets), it is likely to be rather
challenging task for exact schedulers. Table 4 presents the
results for some larger FDCT instances. As before, the
scheduler was run with the same constraints on the num-
ber of functional units and busses as in [10]. Register
bounds were determined during the post-processing
phase for the approach which used both utilization and
critical path heuristic. To constrain the solution space, the
exact scheduler was run using a pre-specified register
bound. The heuristic found the fastest schedules in all
cases and performed quite well in terms of the number of

Table 3: EWF-3 experiments

add mul buscycles optimal reg
[h/e] #vars max

#nodes
CPU
[s]

CPU
rel

3 3 6 49 yes 12/12 207 293 0.6 0.057
3 2 (*) 6 49 yes 12/12 207 293 0.6 0.057
3 1 (*) 6 50 yes 12/12 309 309 1.4 0.039
3 2 6 52 no(50) 12/12 513 549 4.7 0.075
2 2 (*) 6 52 yes 12/12 513 1,263 6.6 0.012
2 2 6 52 yes 12/12 513 1,289 6.5 0.013

4 58 ? 13/ - 1,125 3,450 39.8 -
2 1(*) 6 53 yes 12/12 615 1,176 5.1 0.005

4 58 ? 12/ - 1,125 4,065 42.3 -
2 1 4 59 ? 12/ - 1,227 2,249 31.5 -
1 1 (*) 4 84 ? 15/ - 3,777 5,408 123.5 -

2 102 ? 15/ - 5,613 7,762 356.7 -
1 1 4 84 ? 15/ - 3,777 5,408 118.2 -

2 105 ? 15/ - 5,919 8,010 372.9 -
1-cycle adder, 2-cycle multiplier except: (*) 2-cycle pipelined multiplier

Table 4: FDCT experiments

add sub mul bus cycles
[our/ZS] opt. reg

[h/e] #vars max
#nodes

CPU
[s]

CPU
rel

2 2 2 10 10/10 yes 11/10 251 1,490 47.1 0.179
2 2 2(*) 10 11/ - yes 9/9 229 2,252 39.6 0.093
1 1 2 8 13/14 yes 12/11 377 3,988 35.1 0.007
1 1 2(*) 8 14/ - ? 11/ - 355 4,451 29.7 -
1 1 1 6 18/20 yes 11/10 587 12,340 117.0 0.055
1 1 1 4 18/ - yes 11/10 587 5,486 56.7 0.034
1 1 1(*) 6 19/ - yes 10/9 565 15,346 175.3 0.102
1 1 1(*) 4 19/ - yes 10/9 565 7,216 91.3 0.063

single-cycle units assumed except: (*) 2-cycle pipelined multiplier

registers (typically, off by 1). As can be seen in rows 3 and
5, our heuristic scheduler outperformsZS. This can be
explained by the fact that we preserve a complete set of
solutions satisfying the heuristic criteria. Even for 2-cycle
pipelined multipliers our results are equal (row 4) or better
(row 7) that those reported for single-cycle units inZS.
Moreover, in rows 6 and 8, we indicate that the problem
can be solved with the reduced number of busses (4 instead
of 6). TheFDCT instance with 1 adder, 1 subtracter, 1
pipelined multiplier and 4 busses (row 8) is frequently used
to evaluate scheduling results for functional pipelining.
However, to our knowledge, the best reported results so far
required latency (iteration interval) of 20 cycles [12]. One
randomly selected 19-cycle schedule is shown in Fig. 4.

7. Summary
This report demonstrates that the applicability of sym-

bolic techniques can be extended to larger scheduling
problems by: using Zero-Suppressed BDDs, applying a set
of interior constraints that reduce the size of intermediate
solutions, and implicit application of complex constraints.
Furthermore, we describe efficient set-heuristics that pre-
serve whole sets of partial solutions exhibiting desirable
properties. Not only are some large benchmarks solved
exactly for the first time, but the related heuristics demon-
strate excellent behavior. This justifies further research in
symbolic techniques, development of CDFG scheduling
heuristics and the inclusion of loop optimization concepts.
A further improvement in runtime efficiency can be
expected if execution interval analysis [19] is used for
search space reduction. Interior constraints can be viewed
as a subset of such analysis.

Symbolic techniques introduce significant flexibility to
a design process. Since sets of solutions are preserved, it is

A7

A6

A5

A4 A3

A2

A1

A0

F0F2 F4F6

A7 A6 A5 A4 A3A2A1A0

F1F3 F5F7

 Figure 4. 19-cycle FDCT with pipelined multiplier

possible to explore the solution space after the scheduling
is done and apply additional constraints incrementally. The
process can be made adaptive -- we can try to preserve as
large as possible set of solutions based on acceptable speed
of the construction. Thus, a wide range of solutions, from
heuristic to optimal, can be generated. Experiments to do
this in a fully automated fashion are under way.

Acknowledgment -- We thank A. Crews, C. Monahan, and A.
Stornetta for helping improve the C++ BDD packages.

References:
[1] K.S. Brace, R.L. Rudell, and R.E. Bryant, “Efficient Imple-

mentation of a BDD package”,Proc. 27th DAC, 1990.
[2] R.E. Bryant, “Graph-Based Algorithms for Boolean Func-

tion Manipulation”,IEEE Trans. Computers, vol. c-35, no.8,
Aug. 1986.

[3] R. E. Bryant, “Symbolic Boolean Manipulation with
Ordered Binary Decision Diagrams”,ACM Computing Sur-
veys, vol.24, no.3, Sep. 1992.

[4] R.Camposano, “Path-Based Scheduling: for Synthesis”,
IEEE Trans. CAD/ICAS, vol.10, no.1, Jan. 1991.

[5] C.N. Coelho Jr. and G. De Micheli, “Dynamic Scheduling
and Synchronization Synthesis of Concurrent Digital Sys-
tems under System-Level Constraints”,Proc. ICCAD, 1994.

[6] S. Davidson, D. Landskov, B. Shriver, and P. Mallett, “Some
Experiments in Local Microcode Compaction for Horizontal
Machines”,IEEE Trans. Comp. vol. c-30, no.7, July 1981.

[7] C.H. Gebotys and M.I. Elmasry, “Global Optimization
Approach for Architectural Synthesis”,IEEE Trans. CAD/
ICAS, vol.12, no.9, September 1993.

[8] C.H. Gebotys, “Throughput Optimized Architectural Syn-
thesis”,IEEE Trans. VLSI Syst., vol.1, no.3, Sep. 1993.

[9] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A Formal
Approach to the Scheduling Problem in High Level Synthe-
sis”, IEEE Trans. CAD/ICAS, vol.10, no.4, Apr. 1991.

[10] C.-T. Hwang and Y.-C. Hsu, “Zone Scheduling”,IEEE
Trans. CAD/ICAS, vol.12, no.7, July 1993.

[11] H. Komi, S. Yamada, and K. Fukunaga, “A Scheduling
Method by Stepwise Expansion in High-Level Synthesis”,
Proc. ICCAD, 1992.

[12] T.-F. Lee, A.C.-H. Wu, D. Gajski, and Y.-L. Lin, “A Trans-
formation-Based Method for Loop Folding”,IEEE Trans.
CAD/ICAS, vol.13, no.4, April 1994.

[13] D. J. Mallon and P.B. Denyer, “A New Approach To Pipeline
Optimisation”,Proc. EDAC, 1990.

[14] S.-I. Minato, “Zero-Suppressed BDDs for Set Manipulation
in Combinatorial Problems”,Proc. 30th DAC, 1993.

[15] P.G. Paulin and J.P. Knight, “Force-Directed Scheduling for
the Behavioral Synthesis of ASIC’s”,IEEE Trans. CAD/
ICAS, vol.8, no.6, June 1989.

[16] I. Radivojevi′c and F. Brewer, “Symbolic Techniques for
Optimal Scheduling”, Proc. 4th SASIMI,Nara, Japan, 1993.

[17] I. Radivojevi′c and F. Brewer, “Ensemble Representation
and Techniques for Exact Control-Dependent Scheduling”,
Proc. 7th Intl. Symp. High Level Synthesis, 1994.

[18] I. Radivojevi′c and F. Brewer, “Incorporating Speculative
Execution In Exact Control-Dependent Scheduling”,Proc.
31th DAC, 1994.

[19] A.H. Timmer and J.A.G. Jess, “Execution Interval Analysis
under Resource Constraints”,Proc. ICCAD, 1993.

[20] J. Yang, G. De Micheli and M. Damiani, “Scheduling with
Environmental Constraints based on Automata Representa-
tion”, Proc. EDAC, 1994.

