On Applicability of Symbolic Techniques to
Larger Scheduling Problems *

Ivan Radivojeut, Forrest Brewer

Department of Electrical and Computer Engineering
University of California, Santa Barbara, U.S.A.

Abstract

It has been generally assumed that recently intro-
duced symbolic techniques are applicable only to
small scheduling problems. This report demonstrates
that applicability of these technigues can be extended
to larger dataflow graphs by: (i) using Zero-Sup-
pressed BDDs, (ii) applying a set of interior con-
straints that reduce the size of intermediate solutions,
(iii) implicit application of complex constraints, and
(iv) formulation of set-based heuristics that preserve
whole sets of partial solutions exhibiting desirable
properties. Both heuristic and exact methods are dis-
cussed using standard benchmarks and are compared
to the previously published work.

1. Introduction

Decision Diagram [2]) encapsulatiral feasible solu-
tions to a particular problem instance. Such methods pro-
vide support for optimal resource-constrained scheduling
of non-branching and forward-branching (without specu-
lative operation execution) control/data flow graphs
(CDFGs) [16][17], exact resource-constrained schedul-
ing of forward-branching CDFGs with speculative exe-
cution [18], and scheduling with environmental
constraints [20] The main challenge for symbolic tech-
nigues can be summarized by Bryant’s observation from
[3]: “... In many combinatorial optimization problems,
symbolic methods using OBDDs have not performed as
well as more traditional methods. In these problems we
are typically interested in finding only one solution that
satisfies some optimality criterion. Most approaches
using OBDDs, on the other hand, derive all possible solu-
tions and then select the best from among these. Unfortu-

Operation scheduling is the process of assigning opera-nately, many problems have too many solutions to

tions to time slots in a synchronous system, subject to datalencode symbolically...”. It has been shown that some
control-flow dependencies and resource constraints. Pracstandard benchmark instances have billions of optimal
tical methods proposed for solving this problem can be solutions [17]. In such cases, the OBDD representation

divided into three basic categori€: priority-based heu-
ristics, (ii) ILP-based optimizations, angii) symbolic
techniques. Heuristics [4][6][15] are applicable to large
schedules but may fail to find an optimal solution in tightly

constrained problems. This is primarily because the heu-

can become too large to be practical since both its size
and CPU runtime increase significantly.

To improve the applicability of symbolic techniques
for exact resource-constrained scheduling of larger data
flow graphs (DFGs), several novel approaches are pro-

ristics cannot recuperate from early suboptimal decisions posed in this papefi) To improve compression of large
which typically preserve only one representative from a solution setsZBDDs (Zero-Suppressed BDDs [14]) are

possibly very large pool of candidates. Applicability of

used (ii) To prevent partial solutions from becoming pro-

exact ILP methods [9] has been improved by pre-process-hibitively large during the construction process a set of

ing and remapping of the constraints [7][8], but the num-
ber of variables in the formulation is still a dominant
limitation. Heuristic approaches based on ILP [10][11]
reduce the number of variables significantly, but suffer
from similar deficiencies as general heuristic schedulers.
Symbolic techniquedescribe scheduling constraints as
Boolean functions and build &a@BDD (Ordered Binary

* This work has been supported in part by fellowship donation
from Mentor Graphics Corp.

auxiliary constraintsititerior constraint$ is used.(iii)
Complex constraints are appligaplicitly (i.e. without
explicitly building a constraint BDD).

For large problems consisting of thousands of repre-
sentation variables, we also descriie¢-based heuristics
that preserve whole sets of partial solutions exhibiting
desirable properties. In this paper, we assume the formu-
lation introduced in [16] and extended in [17][18].

1. A formal approach based on algebra of control-flow expressions is
presented in [5].

N 7
oy 4500 W 5000
8 40000 _zbdd® 8 45000
Z 35000 _ic_zbddt+ = 40000 _zbdd ¢
* _heu_obdd * 35000 _ic_zbdd+
30000 heu_zbdX _heu_obdda
25000 - 30000 “heu_zbddx
25000
20000
20000
15000 15000
1000d 10000
5000 5000
0 77777777777 58 ,a. O AAAAAAAAAAAA
NOTE: sizd_obdd) > 130,000. STEP NOTE: siz_obdd) > 285,000. STEP
Figure 1. 28-cycle EWF: exact and heuristic constructions Figure 2. 54-cycle EWF: exact and heuristic constructions
- resources1 single-cycle adder, 1 two-cycle multiplier (> 10e+9 solutions) - resources1 two-cycle adder, 1 two-cycle multiplier (> 10e+13 solutions)
- #variables 437 - #variables 967
| zbdd exact solution (ZBDD), no interior constraints: ~ 20.5 min _zbdd exact solution (ZBDD), no interior constraints: could not be constructed
| ic_zbdd exact solution (ZBDD) built using interior constraints: ~ 12.5 hin _ic_zbdd exact solution (ZBDD) built using interior constraints: > 15h
|_heu_obdd utility-based set-heuristic solution (OBDD): ~ 23 s _heu_obddutility-based set-heuristic solution (OBDD): ~ 73s ‘
| heu_zbddutility-based set-heuristic solution (ZBDD): ~ 110 s _heu_zbddutility-based set-heuristic solution (ZBDD): ~ 12.5 min
| obdd exact solution (OBDD): > 1.5 h _obdd exact solution (OBDD), not constructed (converted fraenzbdd
1. For optimal number of registers (10), the size of exact ZBDD solution decreases from 1. For optimal number of registers (10), the size of exact ZBDD solution decreasgs from
~14.5to ~3.5 Knodes. ~18.5to ~6.5 Knodes.
2. ~5sif both utilization and critical path are used as heuristic criteria 2. ~18 s if both utilization and critical path are used as heuristic criteria.

2. ZBDD Representation and Manipulations the frequently simpler OBDD form of constraints. The
The advantage of using ZBDDs [14] in exact symbolic constraint may involve only a few formulation variables

schedulers is effectively illustrated by the example of the @"d the corresponding OBDD representation is typically

Elliptic Wave Filter (EWF) benchmark. The 28-cycle small. Such constraint may become more complex when

EWF has only 34 operations but 437 variables are used td:on\./e.rte_d to ZBDD becausk)n”[—ca_re variables are not
fully describe the problem. Every solution (a path to ‘true’ Implicit in the ZBDD representation. Our experience,

node in OBDD representation) consists of 437 variableshowever’ is that \:jery sllghtllmpdlflcatlonhln the cqnstrgc-
out of which only 34 are ‘1'. A vast majority of variables tion strategy can dramatically improve the execution time

are equal to ‘O’ (i.e. a particular operation is not scheduleg(discussed in Section 4). Moreover, further performance

at a particular time step), but are explicitly represented inOptimizations are likely since we use a recently developed

the OBDD. Consequently, the representation has morecustom C++ ZBDD package (e.g. currently there is no

than 130,000 OBDD nodes. Since the O-variables thatSUpport for ‘inverted-edges’ strategy [1][14] that enables

belong to the solution are implicit (suppressed) in ZBDDs, faster manipulations and reduces BDD size).

much larger compression of the solution set is possible. In3. Interior Constraints

fact, our experiments show that for a 28-cycle EWF a | the current implementation, the solution is built iter-
nearly ten-fold reduction in size is achieved (Fig. 1). A 15- atively and a termination test is performed after all of the
fold reduction is observed when a 2-cycle adder is usedongtraints relevant to a particular time step are applied.
(967 variables, 54-cycle optimal solutions, Fig. 2, [19]). Although the OBDD size of the final solution is typically
This marked compression of the representation size allowsvery moderate, the intermediate solutions can become
analysis of much larger problems than is possible usingyrohibitively large, resulting in a slower construction and
OBDDs. For example, the benchmark instances discussegyrger memory requirements. Ideally, the intermediate size
above run in 20 Mbytes of RAM incurring only 2-3% per- shoyid never exceed the size of the final solution. In such
cent CPU time penalty due to garbage collection over-5 scenario, as long as the final solution fits the memory

head. In fact, for some examples discussed in Section Bjimits of the runtime environment, we should be able to
the number of nodes in the optimal solution sets is occaomplete a scheduling task.

sionally smaller than the number of variables describing 145 gjleviate the problems arising from the uncon-

the problem. _ ~ trolled growth of the intermediate solution, we identify
We observed that, when applied to the schedulingang giscard a set of partial schedules that ‘hopelessly lag

problem, ZBDD manipulations are somewhat slower than pehing’ during the construction process and cannot con-

similar OBDD manipulations. This seems to be caused byyihyte to the set of optimal solutions. This means that at a

particular time step such partial schedules cannot terminat
for given resources and a pre-specified upper bound on
execution time. This consideration leads to a settefior
constraints which is dynamically generated during the
scheduling in order to prune the OBDD/ZBDD.
The main strategy is illustrated by the following exam-
ple: Assume that at the beginning of st¢bere are addi-
tion operations that have ALAP (as-late-as-possible)
bounds in the range.[. (stk-1)] and that there are onig
single-cycle adders available. At least-(km) of these
addition operations must be completed prior to stiEpa
feasible solution. Selection of a subset satisfying this prop
erty is done efficiently using the constraint template shown complexity (in terms of a number of product terms), but
in Fig. 3 (further discussed in Section 4). Such constraintsthe number of nodes ©(kn) The template can be built
can be derived for each functional unit type (including efficiently usingite [1] calls directly. Vertices in this if-
multicycle and pipelined units). Interior constraints with then-else template are not restricted to Boolean variables -
lookahead lenable an early detection of many (not neces- - complex Boolean functions,(ff,,... f;) can be inserted
sarily all) partial schedules that are destined to be dis-into the template (e.g. bus/register constraints, formulated
carded within the next steps. Since the completeness of in [16]).
the solution set is preserved, this does not impact optimal- However, even when (ff,, ... f,) are rather simple,
ity. the overall constraint may become extremely large. Con-
Application of interior constraints has its trade-offs: sequently, it can happen that the partial scheduling solu-
more constraints are generated and applied, but the size dfon is of a very moderate size, but the constraint to be
the intermediate solution is kept under better control. For applied cannot be built. However, the scheduling con-
larger problems in particular, interior constraints are very straint need not be explicitly built. The following can be
cost-effective. Even if the solution can be built without done instead:
interior constraint application, this construction requires (i) Introduce a new set of auxiliary variables, (, ...
more CPU time and memory requirements are drasticallyyn) corresponding to the set of functiong ¢, ... f,).
higher. In the examples shown in Fig. 1 and Fig. 2, the loo- (i) build the template functioi (shown in Fig. 3)
kahead was set to a value equal to the difference betweetising only (Y, Yo, ...)
the upper bound on execution time and critical path (i) computeP® = AndP’,T), whereP’ is a partial
latency. The figures indicate controlled growth of the solu- solution to which the constraint is applied.
tion in which the intermediate size is never greater than the (iv) clearly, a new partial solutioR” can be obtained
final size (curves labeledic_zbdd. Although such ideal using the recursive formula:
behavior is not always achievable, our experiments indi- P = [i/i [And p(-1), Xnor(y;,))]
cate that the use of interior constraints has a dramaticwherellf = f, + f; . This amounts to the standard BDD
effect on scheduler efficiency. Without interior constraints, substitution operation:
the schedule in Fig. 2 (labeledbdd failed to terminate in e N (1)
several CPU hours. o

Figure 3. At-most-k-out-of-nconstraint (k=4, n=7)

Using this approach, in all of the benchmarks dis-

4. Implicit Application of Constraints cussed in Section 6, we were able to apply register con-
In this section we discuss more efficient implementa- straints that could not be built explicitly.

tion of two constraintsgeneralized resource bourahd UniguenessThis constraint enforces that each opera-

uniquenes$l6][17]. tion j is scheduled once and only once in all feasible solu-

Generalized esouce bound:The constraint OBDD tions. Cg; denotes operatiofs instance at time step If
shown in Fig. 3 is frequently used asanstruction tem- (ASAP)< s< (ALAP):
plate I|n s_ymb(f)hc Ischeduhrr]wg. Some appllca_molns include: 0 ij l_l C—”m Dﬂ C—”D - @)
() set egntonto S0 li_tloTs tt_at sa;usfy[fﬁga_rtl{:u_ar resource kéRr, C(zlor, 'O Ghk, 'O
constraint at a particular time step interior con- _ \ _)
straints described in Section @#j) scheduling heuristics whereRs; = [(ASAP), §. If s = (ﬂ‘AP)'
(to be discussed in Section 5), afid) post-processing 0 S 1 CijIj =1 (3)
(after the scheduling is completed, the bounds can be itera- kR, 2k 0OR; U
tively tightened/identified). The constraint haS[()] This formulation enforces uniqueness explicitly at

every iterative construction step. However, uniqueness camobust, since they can be used to derive accurate bounds
be maintained implicitly (by construction) using the much for the exact schedulers whose runtime efficiency is more

simpler form of Eq.2: sensitive to the bound estimates.
Cc +0 c =1 4) Fig. 1 and Fig. 2 indicate that utility-based set-heuris-
T D,L_l . tics (curves labeled heu_obddand _heu_zbdyl are far

(s=D)j

where Rs.1y; = [(ASAP), (s-1]. In some of the largest
experiments discussed in Section 6, this simplification
reduced CPU time by 35%.

superior to exact schedulers both in terms of CPU time
and memory requirements, while still finding representa-
tive minimum-latency schedules.

o It is to be expected that heuristics based solely on uti-
5. Set-Heuristics lization of the functional unit resources will occasionally

Since valid partial schedules are available after eachProduce sub-optimal results in terms of register require-
time step, it is possible to devise heuristic scheduling techments. For example, if the 28-cycle EWF (Fig. 1) is
niques.The simplesttility-basedheuristic [17] propagates scheduled heuristically with no pre-specified register
only the subset of schedules with maximum utilization of bound, the solution requires at least 13 registers. How-
resources. Utilization is measured by the number of operag€Ver, if a register bound of 10 is enforced during the con-
tions active in each time step. The utility-based heuristic isstruction, the utility-based heuristic still produces the
implemented by iterative application of the generalized fastest possible solutions (28 cycles). The same behavior
resource bound. We enforce maximum utilization of func- was observed in the 54-cycle case (Fig. 2) and experi-
tional units, and then iteratively relax this constraint until ments described in Section 6.
satisfying partial solutions are found. Siratesuch sched- 6, Experimental Results
ules are propagated, this simple heuristic has good behav-
ior. An additional (second-level) pruning strategy the
(utility+CP) based on the AFAP (as-fast-as-possible)
scheduling of the operations belonging to the critical
path(s) is possible as well. Essentially, the scheduler favori
the par_tlal SOIUt'OnS.’ yvhere the largest number of operaﬂoq operations, Table 4). The exact scheduler was run using
belonging to the critical path(s) have been scheduled. Thi . S .
strategy is effective when the number of operations that BDD reprege_ntatlon and |_nter|or constraints. Currently,

all of the individual constraints are generated as OBDDs

can be scheduled simultaneously is very small or when theand then converted to ZBDDs prior to their intersection.

schedule is expected t(.) take very large ”“”."ber of Ster)S'rhis introduces a very small overhead for large problems,
(some of the problems in Section 6 execute in more than

100 cycles) and is beneficial sincéi) the OBDD form of constraints
Y) . is well-understood and they can be built efficientiy,

latency may not be available before scheduling. Unfortu-g(.)BDD't.(.J.'ZBDD.Co.nyerSIorl Is a simple one-pass algo-
ithm, (iii) a significant software infrastructure for

nately, the search space increases enormously fast wit BDD-based symbolic scheduling was already avail-

relaxation of this bound. Set-heuristic scheduling is very able.In contrast, the heuristic was run using OBDDSs only

robust: the construction pace shows very weak sensitivity . » i
o since the number of nodes was kept small (“max #nodes
to the upper bound used to initialize the scheduler.

Although additional constraints are generated (due to an(l:olumn). All experiments were run on Sun SPARCstation
increase in ALAP-ASAP spans for individual operations), 0 using custom C++ OBDD/ZBDD packages. The

the intermediate solution size increases very mildly (Tableresults are compared to tene SchedulingZsS) [10].

1). Furthermore, it is very important that the heuristics beThIS method subdivides a large pmb'?m in zones and
solves the subproblems using ILP technique.

Table 1: Robustness analysis of the heuristic scheduler EWF experimentsTo compare our results, the sched-
uler was run with the same constraints on the number of
functional units and busses as in [10]. Register bounds

In this section, three examples are used to demonstrate
concepts discussed in this rep@it:EWF-2 (EWF
unfolded two times, 68 operations, Table (#), EWF-3
EWFunfolded three times, 102 operations, Table 3), and
iii) FDCT (Fast Discrete Cosine Transforfi3], 42

utility-based| utility + CP

cycled SEPEN vars o Topul max [GPU . . s
#nodes [s] |# nodes [s] (inputs and qutputs included) were _|d<_ant|f|ed during the
R R B B e e BT post—processwlg phase”for bot_h heurls_uc and exact s_ched—
55 (1001 14830 75 2290 1b uler (column_ reg[h/e]”). Maximum size of Fhe partlal_
56 | 1,034 15550 81 2390 2b OBDD solution at the end of each iteration step is
59 | 1131 17,150 94 261p 2} reported (“max #nodes”), as well as the CPU times
64 | 1,301 19,378 116 2,91 2k (“CPUIs]") of the heuristic scheduler. Column “optimal”

2-cycle adder, 2-cycle multiplier indicates whether the result of the heuristic scheduler

Table 2: EWF-2 experiments Table 3: EWF-3 experiments

add| mul buscycleqoptimal [{53] #vars #nmoadxe< C[SP]U CrZIU add| mul| buscyclegoptimal [ﬁg] #vars| #nmoadxes C[E]U CrZIU
3 3[6] 33 | yes |1/11 136 178 0|3 0.0p7 3 3[6 49 | yes |12/12 20 298 0[6 0.0p7
3[27] 6] 33 | yes [11/1] 208 178 O0[4 0.0p9 3[200] 6] 49 | yes [12/12 20f 298 0[6 0.0p7
3[10] 6] 34 | yes [11/1] 20 208 0[8 0.0p2 3[10] 6] 50 | yes [12/12 309 300 14 0.0p9
3[2[6] 35 [no@BH[111 270 291 1[7 0.0f9 3] 2[6] 52 [no(50)] 12/12 518 549 4|7 0.0f5
2[27] 6] 35 | yes [11/1] 271 661 2[4 0.0p3 2[20] 6] 52 | yes [12/12 513 1,263 66 0.002
2] 2] 6] 35 | yes [11/11 271 630 2|3 0.0p4 2] 2] 6 52 | yes [12/122 518 1,289 6[5 0.0§3
4] 39 | yes [12/11 548 1,740 13[5 0.0p5 4] 58 ? [13/-11,12% 3,45p 398 -
217 6] 36 | yes [11/11 330 686 2[3 0.0]3 2] 197 6] 53 | yes [12/12 616 1,176 5[1 0.0p5
4] 39 | yes [11/11 548 2,064 14[8 0.0p8 4] 58 ? [127-11,12% 4,066 42[3 -
2 1] 4] 40 | yes [11/11 61 1,232 11(8 0.010 2 1] 4] 59 ? [127-11,227 2,24p 31]5 -
1107 4| 56 2 [14/-11,699 2,608 305 - 1107 4| 84 ? [15/-13,777 5,408 1235 -
2| 68 ? [14/-1251% 4,128 88[3 - 2] 102 ? |15/-]15,613 7,76R 3567 -
1 1] 4| 56 ? [14/-11,699 2,636 30[3 - 1 1] 4] 84 ? |15/-13,777 5,408 118]2 -
2[70 ? |14/-]12,65]1 4,408 94|4 - 2| 105 ? |15/-15919 8,01p 372|9 -
1-cycle adder, 2-cycle multiplier except: (*) 2-cycle pipelined multipligr 1-cycle adder, 2-cycle multiplier except: (*) 2-cycle pipelined multiplie

could be verified by the exact scheduler. A question markTable 2 and Table 3 were found. However, making an
in that column means that we were not able to construct allaccurate estimate on the register bound is a difficult prob-
minimum-latency schedules before exceeding the timelem, and a further work to directly incorporate a register
limit (one CPU hour). Column “CPU rel” indicates the cost (not just a bound on the number) is planned. This is
ratio of the execution time for the heuristic and exact con- important for exact scheduling as well, since register con-
structions. The CPU times for the exact constructions werestraints can dramatically reduce the solution space. For
generated using interior constraints as aggressively as posexample, even using OBDDs, all schedules for the 28-
sible (i.e. all possible lookaheads were allowed at eachcycle EWF with 10 registers can be found in 690 CPU
scheduling step). seconds (7x faster than the unconstrained version, Fig. 1).

- EWF-2:We were able to solve exactly the instances ~ FDCT experimentsAlthough FDCT has a relatively
with up to 611 variables in the formulation. The largest moderate number of operations, we include it in this
instance solved heuristically introduced more than 2,500 report for two reasongi) it comes from a practical appli-
variables. Heuristics found minimum-latency solutions in cation, and(ii) due to its highly symmetric nature (which
all cases but one, with greatly reduced runtime and mem-should lead to huge solution sets), it is likely to be rather
ory requirements. Solutions for 2-cycle (non-pipelined) challenging task for exact schedulers. Table 4 presents the
multipliers are the same as in [10]. However, no informa- results for some larger FDCT instances. As before, the
tion on registers is included in [10] and there are no resultsscheduler was run with the same constraints on the num-
for pipelined units. Exact solution sizes range between 274pber of functional units and busses as in [10]. Register
and 4,331 ZBDD nodes. bounds were determined during the post-processing

- EWF-3: Benchmark instances with up to 615 vari- phase for the approach which used both utilization and
ables were solved exactly, and up to 5,919 variables (105-critical path heuristic. To constrain the solution space, the
cycle case) heuristically. The heuristic failed in one case toexact scheduler was run using a pre-specified register
find the optimal execution time (however, as in the case ofpound. The heuristic found the fastest schedules in all
EWF-2 that problem instance was solved exacBy)F-3 cases and performed quite well in terms of the number of
results were not provided by [18] Exact solution sizes
are 293 to 1,311 ZBDD nodes.

Pre-specified register bounds can be used during thejadd suy mul b
construction to minimize the number of registers needed in
the heuristically scheduled results. We ran the heuristics
with fixed register bounds of 11 (&IWF-2instances) and

Table 4: FDCT experiments

cycles reg max [CPU| CPU
iour/ZS] opt. [h/e] #varg #nodes [s] | rel

2] 10 10710 [yes| 1710 _25[1,490 47,1 0.9
200 10] 11/- |yes| 9/9| 229 2,252 39|6 0.0p3

c

2l 2
2| 2
1| 1| 2 § 13/14 [yes|12/11 377 3,998 351 0.0p7
12 (allEWF-3instances) and in all cases the solutions that [1| 1|20 8| 14/- | ? | 11/-| 358 4451 207 -
required the same number of cycles as those presented if 1| 1| 1] 6 18/20 |yes| 11/10 587 12,340 114.0 0.465
_ o 1| 1| 1] 4 18/- |yes|11/10 587 5,496 567 0.04
2. To our knowledge, the only reference to this problem is in [7], where [1[17] 6| 197- |yes| 10/9] 565 15,346 175.3 0.4p2

a result for the instance with 1 pipelined multiplier and 3 adders is 7 L X
presented. There is no information on the number of registers and bus- 1 11 19/- |yes| 10/9] 56% 7,216 91j3 0.0p3
ses. single-cycle units assumed except: (*) 2-cycle pipelined multiplier

I

AT| A0 AG[AL A5 [A2 A4 A3 possible to explore the solution space after the scheduling
e ABSFAL is done and apply additional constraints incrementally. The
LR - RSS2 | process can be made adaptive -- we can try to preserve as
Y f"j L ARCE#O large as possible set of solutions based on acceptable speed
e L S of the construction. Thus, a wide range of solutions, from
= —=5 heuristic to optimal, can be generated. Experiments to do
U] X this in a fully automated fashion are under way.
le | N U Acknowledgment- We thank A. Crews, C. Monahan, and A.
T o~ é Q] Stornetta for helping improve the C++ BDD packages.
40 X7 References:
= Y, g [1] K.S. Brace, R.L. Rudell, and R.E. Bryant, “Efficient Imple-
AU L —1 mentation of a BDD packageProc. 27th DAC1990.
U/ | TR xX [2] R.E. Bryant, “Graph-Based Algorithms for Boolean Func-
VXN tion Manipulation”,|EEE Trans. Computeysol. c-35, no.8,
g MY Aug. 1986.
fa a4 fe [3] R. E. Bryant, “Symbolic Boolean Manipulation with
o ' Ordered Binary Decision DiagramsACM Computing Sur-
. > S Vs —VEr Ve veys vol.24, no.3, Sep. 1992. _ _
) e - [4] R.Camposano, “Path-Based Scheduling: for Synthesis”
Figure 4. 19-cycle FDCT with pipelined multiplier IEEE Trans. CAD/ICASv0l.10, no.] Jan. 1991.

; . ; 5] C.N. Coelho Jr. and G. De Micheli, “Dynamic Scheduling
registers (typpally, off Dy 1). As can be seen .m rows 3 ano[and Synchronization Synthesis of Concurrent Digital Sys-
5, our heuristic scheduler outperford§ This can be tems under System-Level Constrain®foc. ICCAD 1994.
explained by the fact that we preserve a complete set 6] s. Davidson, D. Landskov, B. Shriver, and P. Mallett, “Some
solutions satisfying the heuristic criteria. Even for 2-cycle Experiments in Local Microcode Compaction for Horizontal

pipelined multipliers our results are equal (row 4) or better g?_'chigest;’,ltEEE Trjmlf/i ICOE}WO'- 0'396;{‘%7" J(‘)J'yt_l%lt-_
: _ f M. epotys an .. masry, obal pumization

(row 7) tha}t those reported for ,Sm,gle cycle unitZ@ Approach for Architectural SynthesidEEE Trans. @D/
Moreover, in rows 6 and 8, we indicate that the problem |cas vol.12, no.9, September 1993.
can be solved with the reduced number of busses (4 insteg®| C.H. Gebotys, “Throughput Optimized Architectural Syn-
of 6). TheFDCT instance with 1 adder, 1 subtracter, 10[| thesis”,IEEE Trans. VLSI Systv(él.l, no.3, Sep. 1993. |

ipelined multiplier and 4 busses (row 8) is frequently used®l C--T. Hwang, J.-H. Lee, and Y.-C. Hsu, "A Forma
tpope aluate S(E)hed ling results fE)r f n)ct'ona? - elyn'n Approach to the Scheduling Problem in High Level Synthe-

valu uling resu uncti PIPEINING. gig» |EEE Trans. @D/ICAS, vol.10, no.4, Apr. 1991.

However, to our knowledge, the best reported results so fgfio] c.-T. Hwang and Y.-C. Hsu, “Zone SchedulingEEE
required latency (iteration interval) of 20 cycles [12]. One Trans. CAD/ICASvol.12, no.7, July 1993.

randomly selected 19-cycle schedule is shown in Fig. 4. [11] H. Komi, S. Yamada, and K. Fukunaga, “A Scheduling
Method by Stepwise Expansion in High-Level Synthesis”,
7. Summary Proc. ICCAD 1992.

This report demonstrates that the applicability of sym-[12] T-F. Lee, A.C.-H. Wu, D. Gajski, and Y.-L. Lin, “A Trans-

bolic techniques can be extended to larger scheduling fCOXB?It'CO:éB\%SieldS '\f]itZOdAgﬁlr 1L;;f FoldingEEE Trans.

problems by: using Zero-Suppressed BDDs, applying & sgi3] p_J. Mallon and P.B. Denyer, “A New Approach To Pipeline
of interior constraints that reduce the size of intermediate ~ Optimisation”,Proc. EDAG 1990.

solutions, and implicit application of complex constraints.[14] S.-I. Minato, “Zero-Suppressed BDDs for Set Manipulation
Furthermore, we describe efficient set-heuristics that pre- _in Combinatorial Problemsroc. 30th DAC1993.
serve v_vhole sets of partial solutions exhibiting desirabl 15] ;S'Bpe?mo?gf ;)'/F;{tlfgs'?shtéf ?Srfggggge%:gegxgg for
properties. Not only are some large benchmarks solved |cas vol.8, no.6, June 1989.

exactly for the first time, but the related heuristics demon{16] I. Radivojevt and F. Brewer, “Symbolic Techniques for
strate excellent behavior. This justifies further research in _ Optimal Scheduling”Proc. 4th SASIMINara, Japan, 1993.
symbolic techniques, development of CDFG schedulindﬂ] |. Radivojevt and F. Brewer, “Ensemble Representation

heurist d the inclusi fl timizati t and Techniques for Exact Control-Dependent Scheduling”,
euristics an e inclusion of loop optimization concepts. Proc. 7th Intl. Symp. High Level Synthe4i94.

A further improvement in runtime efficiency can be [18] |. Radivojewt and F. Brewer, “Incorporating Speculative
expected if execution interval analysis [19] is used for Execution In Exact Control-Dependent Schedulirgfoc.
search space reduction. Interior constraints can be vieweﬂg] 3Allf|h _'?_AC 1994-d LAG. Jess. “Excoution Interval Analvei
H A limmer an A.G. Jess, xecuton Interval Analysis
asa SUbse.t of Such analySIS' C g I under Resource Constraintftoc. ICCAD 1993.
Symbolic techniques introduce significant flexibility to [20] J. Yang, G. De Micheli and M. Damiani, “Scheduling with

a design process. Since sets of solutions are preserved, itis Environmental Constraints based on Automata Representa-
tion”, Proc. EDAC 1994.

