
* This work has been generously supported by UC MICRO 95-021 and Mentor
Graphics Corp.

1. Introduction
Systematic evaluation of interconnection trade-offs in designs

containing pre-designed cores or pre-defined structural implemen-
tation present several difficult challenges. In particular, changes to
the interconnections structure appear as timing changes yet may
require operation rescheduling and/or operand rebinding. This is
because detailed timing information is only available late in the
design cycle after scheduling, binding, interconnection synthesis
and floorplanning have already been performed. One could modify
the interconnection to only allow functionally equivalent alterna-
tives, but at great cost to the design freedom. Our aim is to provide
techniques for timing optimization under the constraints of a pre-
defined data path structure and feasible interconnection alterna-
tives.

Positional layout information is utilized to estimate the cycle
time of competing designs. Fig. 1 depicts a simple RT-level data
path, data flow, and floorplan which completes the data flow in
seven cycles. Two additional wire segments are indicated on the
data path; either of which permit six cycle execution. However,
incorporating these changes will alter the affected nets, potentially

Reg

Reg 2 op3

a b

d

e

 Figure 1. Example problem of data path alternatives.

Reg 1

op1

op2
c

ALU
File

Data Path Data Flow

RAM

ALU

Reg 2Reg 1

Floorplan

degrading the system cycle time. A designer with a highly con-
strained clock cycle may not wish to alter the design, while
another who desires higher performance wants to know which of
the two scenarios is faster.

An analysis of the timing due to alternative interconnection
networks must account for the introduction and placement of buff-
ers and switching elements. Designers utilize these elements to
substantially alter the timing delay along the critical path(s) with-
out changing the functional behavior. Nonetheless, reducing
delays along one path usually comes at the price of increasing tim-
ing delays along alternative routes. If the penalty is large enough, a
new critical path is created whose delay exceeds that of the former
critical path, degrading the system performance.

In this work, we introduce a systematic method for the simul-
taneous evaluation of multiple designs. In contrast to feedback
approaches (Fig. 2a) which may become confused by local min-
ima, our system processes a number of designs alternatives con-
currently (Fig. 2b) with equal consideration. Efficiency is
maintained by pruning designs which fail to meet the designer’s
specifications and by sharing common information between the set
of active designs.

2. Previous Work
Considerable work has been performed in the area of intercon-

nection synthesis and design. Work by [11], [8], [5], [3], and [2]
introduced many key components of interconnection synthesis.
Due to a lack of positional and/or load models, those techniques
measured the quality of their results by the number of multiplexers
rather than timing analysis. Timing analysis for interconnection
network trade-offs was discussed in [9] and [6]. The first work
modeled path-dependent timing delays but restricted the set of
component configurations. The second work considered rebinding
of function units and memory elements but restricted the designs
to one-dimensional layout in order to simplify propagation delay
estimation.

Recent developments in retargetable compilers have intro-
duced two promising data path analysis techniques. Instruction set
extraction from a mixed structural/behavioral description was
introduced in [4]. [10] utilized a combination of code selection and
register binding but restricted their use to a restricted set of data-
path components.

True/False

Solution
Selector

 Figure 2. Feedback analysis vs. concurrent evaluation.

(a) (b)

Network Delay
Analyzer

Network Alterations

design

Network
Redesign

design

Network Delay
Analyzer

Concurrent Analysis Techniques for Data Path Timing Optimization*

Chuck Monahan Forrest Brewer

Department of Electrical and Computer Engineering
University of California, Santa Barbara, U.S.A.

Abstract
Conventional High-level Synthesis techniques create an inter-

connection structure before physical design. Following physical
design, connection delays and special requirements may cause the
structure to fail timing or performance constraints. Alterations to
this structure are often limited since it was created either after or
during the binding and scheduling tasks. In this paper we present a
set of techniques which analyze the timing trade-offs associated
with the position-specific interconnection network given the free-
dom of high-level binding and rescheduling changes.

3. Problem Specification
In this work, the automata based data-path model introduced in

[7] is utilized to implicitly execute a series of data flows on a
detailed RTL data path. Given the additions of a floorplan, a set of
alternative interconnection networks, and a set of timing ranges,
the automata will produce a timed output sequence as well as char-
acterize the timing behavior of the “care paths” for each element of
the solution set. New variables were added to the automata state
vector to accommodate the concurrent analysis and timing prob-
lems.

A number of additions to the data path specification were
required to incorporate timing analysis. To facilitate interconnec-
tion modification, propagation delays along the wires are com-
puted dynamically based on the set of connection points.
Therefore, the positional layout of each connection point is speci-
fied. While functionally equivalent to multiplexers, the rich posi-
tional information of bus elements required their inclusion into our
list of base components as well. Finally, component timing delays
must be specified.

4. Conditional Connections
The problem specification describes a set of interconnection

network alternatives.Topology variables are a set of Boolean vari-
ables used to encode each network’s architecture. These variables
allow an arbitrary representation of topological interconnection
changes with minimal encoding.

A conditional connection is the connection between a wire and
a component’s input which exists for only a subset of the proposed
interconnection networks. The behavior of these conditional con-
nections may be modeled using techniques previously developed
for switching constraints if the following restrictions are obeyed:

- The condition of each conditional connection is the sum of
the encodings associated with the subset of networks in
which the connection exists.

- Multiple conditional connections may be defined for the
same component’s input only if their conditions are disjoint.

- Conditional connections occur only at switch inputs. Zero
delay switches are inserted to accommodate conditional con-
nections to non-switch inputs.

- A switch with conditional connection at an input, will now
only connect if the switching control variables are set to
select the desired input and if the topology variables are set to
meet the condition of the connection. Fig. 3 depicts such a
transformation for an example multiplexer.

- The automata treats the set of switching and topology vari-
ables differently. Whereas the switching variables are
allowed to change from cycle to cycle, the topology variables
are incorporated into the state vector where they are used to
restrict future topology settings and ensure a consistent inter-
connection network for all cycles.
Conditional connections provide the designer with a number of

powerful features. It’s always possible to describe any potential
network using a minimal number of bits to distinguish potential
connection. Further, the conditions for the various connections
need not be disjoint. This allows the designer to propose a set of
trade-offs, where the resulting solution may be selected from any

Multiplexer’s behavior:
q r => D = x A +x y B + x y C
q r => D = x y B + x y C
r => D = x y C

Augmented multiplexer’s behavior:
D = x qr A + x y r B +x y C

B CA

D

x
y

qr r
B CA

D

x
y
q
r

 Figure 3. Modeling restricted mobility as switch behavior.

1- 01 00 1-10 01-0 00--

combination of these trade-offs. Finally, this system shares a sub-
stantial portion of the analysis of the different networks when the
differences between the designs are small.

Fig. 4 depicts the process for combining two example inter-
connection networks. Initially each network is assigned a disjoint
encoding: a anda. The conditions for each potential connection is
formulated. Finally the zero-delay switching component, M2, is
introduced into the combined network to distinguish the connec-
tion options for the input of component D.

4.1. Evaluating Timing Modifications
The insertion and removal of connections affect the timing

characteristics of the wires. Before discussing their effects, we first
present our delay model for wires with a set of fixed terminal con-
nection points. In the absence of detailed routing and timing infor-
mation, we use a conservative approximation of the propagation
delays based on a wire’s connection points. While future work will
allow timing delays to vary between different path down the same
wire, this is not currently modeled. Finally, note that these approx-
imations apply only to delays along multi-terminal metal nets. The
delays incurred through the path-dependent switching elements are
modeled according to user-supplied parameters.

The transmission delay is dependent upon the distributed RC
(resistance-capacitance) of the wire, the resistance of the driver,
and the cumulative capacitance of the taps. Distributed RC is a
function of the wire length which estimate as half of the perimeter
of the Manhattan bounding box containing the wire’s set of drivers
and receivers. We assume that the driver resistance and capaci-
tance values are constant as well as the receiver capacitance. The
cumulative tap capacitance is a function of the number and type of
connecting points of the wire. The 50% rise time, appropriate for
static CMOS circuits, is computed from these three values using
the approximation in [1]. Fig. 5 displays an example wire configu-
ration, its actual physical properties, our estimated model, and a
timing equation for the communication shown.

Conditional connections alter this analysis by removing and
inserting elements from a wire’s set of connection points altering
the bounding box and total capacitance values. Proper modeling
requires instantiating each set of viable connection points to deter-

a

aa

a
Network a Networka

 Figure 4. Labeling and merging network topologies.
D

a+a=1
C

A B

M1

M2

DC

A B

DC

A B

M1x

x

RD

CT

CT

CT

CT

4CT

Wire topology Circuit characteristics Circuit approximation

 Figure 5. Wire Delay Model.

bo
un

di
ng

 b
ox

l

h

, ,Rw l h+() Runit= Cw l h+() Cunit= CL CT
taps
∑()=

t50% 0.4RwCw 0.7 RDCw RDCL RwCL+ +()+=

Vcc+

Driver Receiver

RD
Vcc

+

mine the range of propagation delays for each wire. Typically, the
user will specify a small set of connection combinations per wire as
in the example point set in Fig. 6. However, the complexity of
identifying these viable sets can grow exponentially in relation to
the number of potential connection points. Therefore, we utilize a
compressed Boolean representation to compile a list of viable con-
nection sets. Fig. 6 shows how this approach is performed in a two
step process for our example. First, we express a connection’s
existence as a Boolean function by XNORing a variable represent-
ing the connection with the connection’s existence condition.
ANDing the set of resulting terms produces a Boolean relation
which describes the connection sets and the pertinent control val-
ues which formulate the set. The wire delays may be computed
directly from these connection sets and then paired with their Bool-
ean condition for the subsequent timing analysis.

5. Timing Variables
We introduce a set oftiming variables to encode the timing

delays through the data path. Each variable is associated with a
unique range of timing delays. Each path delay through the data
path is identified by a component’s input port and control vector.
The control vector operates over the set of switching variables
(which decide which path is taken to the input) as well as the set of
topology variables (which effect the delay of the various wire seg-
ments which comprise the path). After instantiating every path
delay through the data path, the timing delay will be symbolically
represented with the associated timing variable in a one-hot encod-
ing. Delays which violate user-specified timing constraints will
have their associated path removed from the automata construc-
tion. These constraints may appear as both minimal and maximal
allowed delays through the circuit.

 Fig. 7 depicts these timing variables in use for an example net-
work. The network is comprised of a series of zero delay multi-
plexers and contains a single conditional connection linking
component A to the second multiplexer. The set of timing variables
are listed in the “Time Partition” tables. Given a maximum delay of
15ns and no minimal timing delay, the “Network Timing” table
lists each timing delay and their delay encodings.

Resulting formulations:
D -> D U -> U(x +y) + U (xy)
W -> W X -> X (x + y) +X (x y)
Y -> Y (x) + Y (x) Z -> Z (x + y) +Z (x y)

(D U W X Y Z)(x y) + (D U W X Y Z)(xy) + (D U W XY Z)(xy + xy)

 Figure 6. Instantiating viable connection sets.

U: x + y
X: x + y
Z: x + y

W

Y

X

Z

U

x yxy+xy

xy

D

Conditions:
D: tautology
W: tautology
Y: x

Time Partitions
Timing variable Time range

t1 10-11ns
t2 12-13ns
t3 14-15ns

x

y,z

5ns 7 ns
a => 10ns

5 ns

2 ns

 Figure 7. Example partitioned delay network.

A B C

D E F

a
00011-

a => 12 ns

1 0

Network Timing
Primary
output

Primary
input

Control
settings

Time
delay

Delay
encoding

D A
a 10ns t1
a 12ns t2

E A
x a 17ns Ø
x a 15ns t3

B x 10ns t1

F
A

y a 14ns t3
x y z a 17ns Ø

B x y z 12ns t2
C y z 9ns

6. Automata Issues
The timing variables are incorporated into the automata state

vector to derive timing attributes for elements of the solution set.
The cycle time for a synchronous design is the maximal propaga-
tion delay between clocked components. Therefore, each transition
between states will include a vector of timing requirements
obtained from paths utilized for operand transfers. Summing these
timing vectors in a state vector generates a history of timing
requirements for each solution.

Modeling timing behavior on the automata structure outlined
in [7] requires modeling ofnull operands during the state explora-
tion. Null operands carry “don’t care” information in the automata
and are a convenient means to encode the contents of “empty”
latches which frequently appear in initial conditions and in pipe-
lined designs. Previously, the inclusion of null operands was
required only when no other operand was available for a given
memory element. In the presence of timing and power analysis,
null operands must be considered regardless of the status of other
operands. This is because placing operands into latches which
could otherwise remain empty will affect the timing and power
attributes of the system design. It is preferable to use null operands
which have no time requirements to operands which are stored in a
memory device but serve no useful function except to be subse-
quently overwritten. Unfortunately, the usefulness of an operand
can not be evaluated beforehand. Therefore, all potential operand
bindings (including regular and null operands) must be considered
equally. This equal consideration may cause explosive growth in
the set of potential solutions. To curb this growth, the automata is
used in two phases: the first ignores timing issues and determines
the solution set from the set of potential solutions and the second
reevaluates this solution set using a more extensive analysis to sys-
tematically evaluate the timing requirements of the “care path” of
the system.

The elimination of “false paths” from our timing analysis is
one of the most elegant features of the technique. Since the timing
characteristics of each solution is derived from only the required
set of operand transfers, timing delays from unutilized portions of
the data path do not mislead the timing analysis. Further, the set of
all the care sequences can be generated for a given solution. This
capacity is of great importance for the subsequent steps of verifica-
tion analysis.

7. Results
An application tool was constructed to demonstrate the feasi-

bility of the ideas proposed in this paper. The input for this tool
consists of three major sections: 1) A RT-level description of the
data path, including positional information and conditional inter-
connections; 2) A set of scheduled data flows which must be
mapped onto the proposed data path; and 3) A partitioned timing
range in the format described in Section 5.

This tool evaluates which of the proposed changes accommo-
date the full set of data flows. From the set of realizable alterations,
the designs that result in the highest performance are chosen. Upon
the user’s request, the system will generate a set of Boolean rela-
tions representing an exhaustive list of binding options for the
selected designs. Alternatively, a textual description of a single
representative binding and schedule is listed.

This application was implemented on a Sun SPARC 10 in C++
using an OBDD (ordered binary decision diagram) package to rep-
resent the boolean functions. Examples were run on two manually
constructed data paths. The first data path is based on Texas Instru-
ment’s TMS32010 DSP which was altered to accommodate a
pipelined multiplier. For this specification, three different intercon-
nection alternatives were specified: the use of multiplexer or

equivalent bus model for switching elements M1 and M2, and a
direct buffered line between the register file and multiplier was per-
mitted. The design and it’s manual floorplan, including intercon-
nection alternatives, are outlined in Fig. 8. Additionally, we
introduce a second data path accompanied by its floorplan in Fig. 9.
This data path features a symmetric interconnection structure and
dual register banks designed to test our limitations in operand
rebinding.

Table 1 lists the results from analyzing three benchmark data
flows. Thedifferential equation, differential heat release computa-
tion, andelliptic wave filter scheduling benchmarks were run on
each of these data paths under two different modes. The first mode
utilized a predefined schedule and operand mapping to purely test
the freedom in interconnection and determine fastest cycle times
(timing). The second ignored the specified operand mapping, con-
sidered all alternative operand mappings, and presented the results
for the fastest cycle time (rebinding). The length of the schedule
for each benchmark/data path combination are listed in the col-
umns “#cycles”. The column “cycle time” reflects the computed
cycle time given the floorplan and parameters listed in Table 2.

P

Reg
File

>>

ALU

ACC

T
data
bus

Figure 8. TMS32010 based data-path model and floorplans

pipeline
ROM

M2

M1

External
Output

R
A

M

R
O

M

XO XI

A
C

C

tp

A
LU

Shift

1.0

2.0

3.0

4.0

5.0

1.0 2.0 3.0 4.0kµ
Bus floorplan Multiplexer floorplan Buffered line floorplan

External
Input

Mult 1Mult 2

pi
pe

R
A

M

R
O

M

XO XI

A
C

C

tp

A
LU

Shift

1.0

2.0

3.0

4.0

5.0

1.0 2.0 3.0 4.0 kµ

Mult 1Mult 2

pi
pe

R
A

M

R
O

M

XO XI

A
C

C
tp

A
LU

Shift

1.0

2.0

3.0

4.0

5.0

1.0 2.0 3.0 4.0 kµ

Mult 1Mult 2

pi
pe

mult

External Input

Adder

ALUpipe-mult

Reg File

Mult

Reg File

>>

 Figure 9. Dual register data path

1.0

2.0

3.0

4.0

5.0

1.0 2.0 3.0 4.0 5.0kµ

6.0

7.0

X
in

MUL

Mult S
hi

ft

A
LU

Add
RAM

RAM

TABLE 1. Results
Bench-
mark

TMS32010 dual register design
#

cycles

execution time (s) cycle
time (ns)

#
cycles

execution time (s) cycle
time (ns)timing rebinding timing rebinding

diff eq 20 27.34 34.38 36.68 15 3.33 7.47 28.98
dhrc 27 28.44 32.89 36.68 21 4.95 6.73 28.98
ewf 53 40.74 278.24 36.63 45 22.65 177.46 28.98

Analysis of the TMS32010 interconnection alternatives reveals
a consistency for the examples. All of the examples preferred the
bus design to replace mux M1 and chose to retain mux M2. Inclu-
sion of the buffered line is dependent upon the schedule utilized.
For the examples listed in the table, the buffered line only
increases the propagation delays to the ALU. But the inclusion of
the line also permits extra operand mobility shortening schedules
between 4-14% at the cost of longer cycle times. Additionally, one
should note that designs which use a single cycle multiplier uni-
formly adopted the buffered line, since the multiplier replaces the
ALU as the critical path.

An analysis of execution times reveals general trends for the
system. The results under the pure “timing” analysis reflect the
overhead for handling the longer data flows and the more complex
data paths. The addition of the alternative interconnection compo-
nent for the TMS32010 specification causes the increase in these
execution times. When rebinding is considered, the interaction of
the data path and specified schedule define the solution space. This
interaction causes the surprisingly longer execution of the “diff eq”
over the shorter dhrc benchmark.

8. Conclusion
In this work we have introduced techniques for concurrently

analyzing differing rebinding options over multiple designs. Tim-
ing analysis is utilized to limit the search space and rate the final
designs. Key benefits include optimal change control and elimina-
tion of fasle-path timing sequences. Future work will expand the
model to incorporate power estimation, perform limited reschedul-
ing, and utilize the data path to identify critical paths and suggest
interconnection wire alteratives.

9. References
[1] H. Bakoglu, Circuits,Interconnections, and Packaging for VLSI,

Addison-Wesley Publishing Company, 1990.
[2] C. Ewering, “Automated High Level Synthesis of Partitioned Bus-

ses,”Proc. IEEE Int. Conf. Computer-Aided Design, pp 304-7, 1990
[3] A. Jerraya and B. Courtois “The SYCO Silicon Comlier and its

Environment,” in Design Systems for VLSI Circuits, Martinus
Nijhoff: Dordrecht. pp 499-526

[4] R. Leupers, P. Marwedel, “A BDD-based Frontend for Retargetable
Compilers,”Proc. of the European Design Automation Conference,
pp 239-243, 1995.

[5] T. Ly, W. Elwood, and E. Girczyc,“ A Generalized Interconnect
Model for Data Path Synthesis,”27th Design Automation Confer-
ence Proc., pp. 168-73, 1990.

[6] C. Monahan, F. Brewer, “Communication Driven Interconnect Syn-
thesis,”6th International Workshop on HLS Proc., pp 65-73, 1992.

[7] C. Monahan, F. Brewer, “Symbolic Modeling and Evaluation of
Data Paths,”32nd Design Automation Conference Proc., pp 389-94,
1995.

[8] B. Pangrle,“ Splicer: A Heuristic Approach to Connectivity Bind-
ing,” 25th Design Automation Conference Proc., pp. 536-41, 1988

[9] J. Rabaey, “CATHEDRAL-II: Computer-aided synthesis of digital
processing systems,” presented at theIEEE Custom Integrated Cir-
cuits Conf., May 1987.

[10] A. Timmer,et. al, “Conflict Modelling and Instruction Scheduling in
Code Generation for In-House DSP Cores,”32nd Design Automa-
tion Conference Proc., pp.593-398, 1995.

[11] C. Tseng and D. Siewiorek,“ Automated Synthesis of Data Path in
Digital Systems,”IEEE Trans. on Computer-Aided Design, Vol. 5,
No. 3, pp 379-95, July 1986.

TABLE 2. Physical Parameters
Parameter Value

Rd 3.175 kΩ
Ct 20 ff
Rw 0.166Ω/micron
Cw 0.176 ff/micron

