
Abstract Techniques for constructing synchronous sequen-
tial machines with associated data paths from an input format
consisting of high-level non-deterministic productions are de-
scribed. These construction techniques rely on recent work in
symbolic Boolean representation and manipulation to produce an
intermediate machine representation that is not impacted by state
explosion.

I. Introduction
In conventional register-transfer-level and high-level design lan-

guages, the control structure is represented by conditional branching
and procedure constructions which utilize explicitly specified program
state variables during execution. However, for many problems, the
specification of the machine behavior in this format is unnecessarily
lengthy and complex. This is especially true for problems in which the
time sequence behavior is complex or the control state space is large
or difficult to describe explicitly. Example machines include protocol
controllers, communication devices, and computer interface sub-
systems.

To address these specification problems, a non-deterministic pro-
duction-based specification for high-level synthesis was introduced in
[15] building on efforts in the areas of software engineering [1, 8, 9,
12] and hardware specification [6, 10]. Jackson introduced a gram-
mar-based methodology for specification of software programs and
software interfacing between programs. These ideas are manifest in
the successful compiler specification and constructions tools “yacc”
and “lex”. Ullman et al. used regular expression based specifications
for hardware compilation of minimal area PLA-based controllers.

Conventional sequential synthesis techniques are usually based on
deterministic FSM manipulations. Using these techniques requires
conversion from a non-deterministic production model to a determin-
istic FSM. Since the FSM model is typically a state transition graph,
this conversion often leads to an exponential number of deterministic
states. In the formulation presented here, the machine is instead, rep-
resented using symbolic Boolean Decision Diagrams which can be
rapidly manipulated and from which a deterministic machine can be
directly derived. These construction techniques rely on the recent
work in symbolic Boolean representation and manipulation [2, 3, 5,
13, 14, 16]. It is important to note that the complexity of this deriva-
tion and the resulting implementation is not impacted by the potential-
ly exponential growth of the deterministic state space. This is due to
the fact that exponential growth of the deterministic state space does
not necessarily imply the exponential growth of a circuit implementa-
tion.

In the work described herein, the high-level specification form has
been expanded with the addition of productions which can represent
arbitrary Boolean functions of the interface signals and additional
Boolean production connective operators. These additions greatly ex-
pand the expressive power of the language and allows an efficient re-
formulation of the machine construction process.

II. The Production Specification
The high-level specification form described here, specifies the con-

trol structure of a synchronous design using a hierarchical set ofpro-
ductions. These productions describe the desired “protocol” of the
design at the high-level, and “recognition” of these productions effect
the design’s behavior. A production is a named composition of sym-
bols, operators, and action clauses. In this production specification,
there are two kind of productions, those specifying sequential behav-
iors, and those specifying combinational Boolean functions. The sym-
bols in a sequential production are either references to other
sequential productions or aretokens. A token is a reference to a Bool-
ean production in a sequential production. The symbols in a Boolean
production are either references to other Boolean productions or atom-
ic symbols which represent the input interface signals or are other lan-
guage defined symbols.

Composition operators are used to compose the productions. They
build more abstract or complex productions from simpler productions.
The composition operators are similarly grouped into sequential and
combinational types for use in the two kinds of productions. The se-
quential operators include the classical regular expression [1, 7, 11]
operators:concatenation, or, andclosure (“, ”, “ || ”, “ * ”), generali-
zations such as thesequential-and operator “&&”, useful for specify-
ing synchronization, thesequential-not operator “! ”, and many
specialized operators mainly used for specifying exception behaviors.
The combinational operators include the usual Boolean operators rep-
resented by: “&”, “ | ”, and “~”.

Recursion of productions is not allowed, since the intent is to pro-
duce a specification representable by a finite state machine. Although
simple tail recursion doesn’t jeopardize the finite machine require-
ment, it is still not allowed. This is not a problem, since, tail recursive
behavior can be concisely described using the closure operator.

A token is “accepted” or “recognized”, if its Boolean function is
satisfied in the cycle the token is referenced through execution of the
productions. A production is accepted when the time sequence of be-
haviors dictated by itscomposition is satisfied. Symbols, composi-
tions, and productions are annotated withaction clauses or actionsfor
short. An action is a specified data-flow behavior which is executed
when its antecedent symbol, composition, or production is recog-
nized. In general, any number of productions may be active or simul-
taneously in acceptance, reflected by the composition of the
specification. To make these ideas clear, consider the set of five pro-
ductions shown below:

p1 -> p2 || p3; { action2 }
p2 ->(z1 & z2), p4
p3 -> p4 && p5; { action1 }
p4 -> z2+;
p5 -> z3 | ~z4;

In this example, the symbols,z1 , z2 , z3 , andz4 represent inter-
face signals. Productionsp1 , p2 , p3 , p4 are all sequential produc-
tions because they contain sequential operators or references to
sequential productions. Productionp5 is a Boolean production, “(z1

High-level Symbolic Construction Techniques for High Performance Sequential Synthesis

Andrew Seawright and Forrest Brewer
 ECE Dept. University of California, Santa Barbara 93106.

&z2) ” is a Boolean composition, and “z2+ ” is a sequential composi-
tion using thesequential one-or-more operator “+” and is equivalent
to the composition “z2*,z2 ”. Two actions denoted by curly brace
clauses are attached to two of the productions.

When the production specification is compiled, a directed acyclic
graph (DAG) structure representing the collapsed production structure
is constructed. This DAG is calledthe production DAG. Each node in
the DAG represents a composition operator. The production DAG
representation for the example productions is illustrated in the left-
hand figure below. Here, the sequential composition operator nodes

are represented by unshaded nodes, while the Boolean composition
nodes are shaded. It is illegal for sequential productions or composi-
tions to be used in Boolean compositions. Thus, the Boolean (shaded)
nodes must be only present in the lower portion of the DAG structure.

Each sub-DAG represents a sub-machine. Actions clauses from
the productions are associated with respective sequential composition
nodes. An action clause associated with the top node in a sub-DAG is
executed after initiation and recognition of the respective sub-ma-
chine. Often, several actions will be required to execute in the same
cycle due to the behavior specified in the productions. The conceptual
execution order of the actions within the cycle is important. For exam-
ple, if the two actions “{ x := 0; }” and “{ x := x + 1; }” were to exe-
cute in the same cycle their execution ordering matters.Action
precedencedetermines the conceptual ordering of actions executing
within the same clock cycle and is determined from the production
DAG structure which enforces apartial ordering on the actions. The
precedence stems from the refinement of simultaneously accepting
productions from primitive to abstract. For example, in the production
DAG above,action1 < action2.

The right-hand figure shows the structure with the Boolean nodes
removed. Instead, the arcs from the sequential nodes to Boolean com-
position nodes are replaced by arcs to the representative Boolean
functions. For example, t1(Z) = z1 ∧ z2, and t2(Z) = z2. These referenc-
es to the Boolean functions are token references. Practically speaking,
these arcs are implemented as ROBDD [2] node pointers representing
the token functions. A machine representation can be constructed
from this production DAG structure.

The next section describes the intermediate machine representa-
tion. An ensuing section describes the process which constructs the in-
termediate form from the production DAG structure.

III. Intermediate Machine Representation
The intermediate machine representation consists of two parts, a

state transition function and an output function for the machine. In
what follows, B represents the set {0, 1}. The transition function ∆ is a
function mapping: Bn × Bk → Bn. This mapping is written:

~

||

&&

*

& |

{ action1 }

z1 z2 z3 z4

{ action2 }

,

,

||

&&

*

{ action1 }

{ action2 }

,

,

t2(Z)

t3(Z)t1(Z)

∆: {(x1, x2, x3, ... , xn)} ×{(z1, z2, z3, ... , zk)} → {(y1, y2, y3, ... , yn)},
where X, Y, and Z are Boolean vectors. X represents the present state
of the machine, Z represents the input interface signals, and Y the next
state of the machine. The transition function ∆ represents a determin-
istic state transition function. Each xi, however, represents a particular
control point in the machine. The control points represent the activity
of non-deterministic states in the machine, for example, many xi’s
may be simultaneously active. The function yi = fi(X, Z) represents
excitation for the next state of control point xi. This representation of
the transition function allows two views: Viewed as a whole,∆ repre-
sents the transition function of a single deterministic FSM, while each
fi(X, Z) in ∆ represents the excitation of an individual non-determinis-
tic control point.

The output function Λ maps Bn → U. In this mapping, written:
Λ: {(x1, x2, x3, ..., xn)} → { u1, u2, u3, ... , ul }.

X represents the present state of the machine, and each ui ∈ U repre-
sents, symbolically, asequence of actions to be executed within a sin-
gle clock cycle. Anequivalent output functionΛ′: Bn → Bm is
defined, mapping:

Λ′: {(x1, x2, x3, ... ,xn)} → {(a1, a2, a3, ... , am)}.
Again, X is the present state, however, the elements ai ∈ A represent
each of the individual actions. Each action is “activated” by the condi-
tion ai = ci(X). Because many actions may be activated simultaneous-
ly, action precedence determined by the production structure enforces
the execution sequence. The ordering of the ai’s in the vector A satisfy
these partial order action relations implied by the production DAG.
The functionsΛ andΛ′ are related as follows: each ui symbolically
represents a particular action sequence which is an element of the
range ofΛ′. We focus on the functionΛ′, Λ was described simply to
introduceΛ′.

The output function described previously is the Moore machine
form of the intermediate machine representation. The Mealy machine
representation form, as expected, is: Λ : Bn × Bk → U, Λ′: Bn × Bk →
Bm, and with the individual action conditions a function of X and Z,
e.g. ci(X, Z).

IV. Construction of the Intermediate Machine
This section describes a procedure to construct the intermediate

machine form introduced in the previous section. The construction is a
recursive process which builds, from the production DAG structure,
either a Moore or Mealy intermediate machine representation. This re-
cursive construction procedure applies a particular construction rule at
each composition node of the DAG, based on the node’s type. The
process proceeds in a fashion similar to Thompson’s construction [1,
7] for creating a NFA state graph from a regular expression. Here,
however, we are symbolically constructing the intermediate machine
representation. Recall, the intermediate machine representation con-
tains the excitation functions for individual non-deterministic control
points. In this representation, there is no analog ofε transitions which
are generally present in NFA machines. The construction necessarily
produces anε-free implementation directly. Furthermore, the con-
struction process allows generalization of the regular expression oper-
ator construction rules to other very useful composition operators.

The construction is performed in a recursive bottom-up fashion
over the production DAG. The structure of the recursive routine
Build() which implements construction process is illustrated in the
pseudocode below. At each level of the recursion, the routine is passed
a pointer to a node of the production DAG and a Boolean function

representing a partial excitation function f(X) passed from other recur-
sion levels. The routine returns a Boolean function h(X). Depending
on the type of node, different operations are performed. At leaf nodes,
control points are allocated and their excitation functions are set. At
intermediate nodes, left and right sub-machines are composed via op-
erations on the passed and returned functions. The construction pro-
cess is initiated by allocating an initial control pointx1 and calling:
Build(n= top-level-node, f(X)=x1).

Build (node: *n, Boolean function: f(X)) {

if (n is a terminal function tj(Z)) {

create new control point xi;

set h(X) = fi(X, Z) = yi = f(X) ∧ tj(Z);

} else if (n is “concatenation” node) {

g(X) = Build(node->left, f(X));

h(X) = Build(node->right, g(X));

} else if (n is “sequential and” node) {

g(X) = Build(n->left, f(X));

h(X) = Build(n->right, f(X));

h(X) = g(X) ∧ h(X);

} else if (n is “sequential not” node) {

g(X) = Build(n->left, f(X));

h(X) = ¬ g(X);

} else if (...) {

... other cases ...

}

if (action ak attached to node)

set ck(X) = ck(X) ∨ h(X);

return h(X);

}

The time complexity of this algorithm depends on the representa-
tion used for Boolean functions. If we assume constant time for two
operand Boolean operations, which is certainly possible for a factored
representation, then, for a DAG representing a regular expression, the
time complexity of this construction is linear in the size of the regular
expression. Using BDDs, a pseudo-linear algorithm results as the
growth of the variable support of the BDDs is typically slow.

The construction for the closure operator is more complex. A tem-
porary variable xtmp is allocated and passed down for construction of
the operand sub-machine. This is done because the excitation of the
sub-machine depends on the returned function g(X), which is un-
known until the machine is constructed. On the return of g(X), after
the sub-machine is constructed, the function h(X) = f(X) ∨ g(X) is cal-
culated. At this point, this function may be substituted for xtmp in all
functions in which xtmp appears in the structure of the sub-machine.
This completes the closure construction and removes the extraneous
variable xtmp. These substitutions are nicely performed by composing
BDD functions e.g. f(x=g()) = ite(g(), fx, fx) [2]. Note, a unique xtmp
variable must be used for each simultaneously open closure in the
construction process.

Special sequential operators calledexception operators are imple-
mented. In an exception construction, a handler machineMh is initiat-
ed when its associated sub-machineM, once initiated, will enter a
state in the next cycle from which it cannever accept. Note this is a

different notion than in thesequential notoperator where not accept-
ing includes both the cases of “active but not presently accepting” and
“will never accept”. The function e(X, Z) represents the excitation that
triggersMh. Consider the following equation for ex(X, Z), which is
used to calculate e(X, Z):

(EQ 1)

This equation describes the conditions in whichM is not in a state
of recognition and in the next cycle will contain no active control
points. However, this relation is not enough to describe e(X) as we
need knowledge thatM was first initiated. This information can be
computed as summation of the present control points inM and M’s ex-
citation. However, this logic can be substantially reduced if an extra
control point is allocated to store this information. Let xh represent
this control point. Then,

(EQ 2)

The excitation of xh is fh(X, Z) and can be computed as follows:

(EQ 3)

Other related exception operators are implemented, as well, in a
similar fashion. One further point concerning the exception operators,
since the exception operators operate on a general sub-machine, they
may be nested hierarchically.

To clarify the construction process, a circuit implementation of the
constructed machine for the example is illustrated below:

In the pseudocode, the action execution conditions cK(X)’s are cre-
ated using h(X) at the nodes where actions are attached. This creates
the Moore output functionΛ′. The Mealy output function may be cre-
ated from the Moore output function after the construction is com-
plete. This is done by substituting fi(X,Z) for all xi’s in ck(X) forming
ck’(X, Z). Again, substitutions can be easily done by composing BDD
functions. Note, this conversion from Moore to Mealy does not create
an identically equivalent Mealy machine the results of action exe-
cutions will lag by a cycle in the Moore machine vs. the Mealy ma-
chine. The designer is aware of this in choosing the machine model
and will structure the actions accordingly. The following are the ac-
tion execution conditions for the example:

• Moore: c1(X) = x7x6, c2(X) = x7x6 + x4.

• Mealy: c1(X, Z) = t2t3x1(x5 + x1),
c2(X, Z) = t2t3x1(x5 + x1) + t2(x3 + x2).

The constructed intermediate machine is intended to be a base rep-
resentation to which further synthesis tasks and manipulations are ap-
plied. It is a convenient form, because both classical FSM techniques
as well as more recent symbolic methods may be applied. A further
useful property is that the elements of intermediate machine can be di-
rectly linked, during the construction, to the high-level operators that

ex X Z,() g X() f i X Z,()
f i M∈
∏∧=

e X Z,() f X() xh∨() ex X Z,()∧=

fh X Z,() f X() xh∨() ex X Z,() h X()∧ ∧=

t1(Z)

t3(Z)

t2(Z)
t2(Z)

t2(Z)

x2

x1

x3 x4

x5 x6

x7

created them. This is useful for high-level optimization, debugging,
and design information tracking in a synthesis system.

V. Implementation
A production compiler using these construction techniques was

implemented. This compiler is part of a high-level synthesis system
coded in approximately 8000 lines of C++. The output of the compiler
is VHDL code describing the synthesized machine architecture. The
VHDL is composed of processes that describe the logic structure of
the machine and processes that implement the register transfers and
data-path logic required by the actions. The structure of the VHDL ac-
tion processes also satisfy the partial ordering required by action pre-
cedence. The VHDL output is tailored for further hardware synthesis
by specific adherence to an appropriate synthesis policy.

The tool is able to perform reachable state analysis on the com-
piled intermediate machines. This type of analysis is an example of
the symbolic techniques possible on the intermediate form. The reach-
able state analysis is based on the work in [5, 13, 16].Reachable state
analysis is not required for the synthesis of the intermediate machine,
but it is an important task, useful in several ways. Knowledge of the
set of reachable states aids in further RTL optimizations, particularly,
determining action conflict resolution. This information may be used
to simplify elements of the machine structure. For example, simplify-
ing (EQ 1) using sequential don’t care information. Finally, it is useful
for design analysis and providing feedback to the designer of possible
problems.

The tool uses BDDs for all Boolean and symbolic manipulations.
The BDD nodes are allocated as the construction proceeds. It should
be pointed out that the construction process naturally develops a rea-
sonable heuristic variable ordering based on circuit topology argu-
ments [14]. In addition, the different kinds of BDD variables are
divided into classes and are interleaved. The following three-way or-
dering is used: z1 < x1 < q1 < z2 < x2 < q2 < z3 < x3 < q3 < ... The qi’s
represent an additional set of state variables used by the reachable
state analysis. The reachable states are computed based on implicit
enumeration techniques. Specifically, the procedure is based on the
heuristics in [16]. The observation that the variable support of each
fi(X, Z) is generally localized in a range close to and prior to i allows
further tailoring of the heuristics to this application.

VI. Experiments
Several example designs were compiled and studied using the tool.

The characteristics of these designs are tabulated in Table I. The
mouse examples are quadrature decoder machines used in computer
pointing devices. These designs continuously update a 1-dimensional
position based on the quadrature encoding of signals from external
motion sensors. Both versions recognize the same quadrature signals,
however, the difference is that themouse(b) design places more con-
straints on the input waveforms than themouse(a) design.

Thexymouse designs are 2-dimensional versions of the respective
1-D mouse decoder examples and are specified as a single set of pro-
ductions using the expressive power of the Boolean representation in
the language. Using the earlier version of language, described in [15],
which only modeled tokens as an enumerated set, thexymouse would
be impossible to specify as concisely in a single set of productions.

count0 counts sequential zero’s in a valid input frame format. This
example is based on the procedural design in [4].qr42 is an asynchro-
nous handshake conversion protocol implemented as a sequential ma-

chine. The machine connects two devices together, one side operating
with two-phase (non-return-to-zero) signaling and the other with four-
phase (return-to-zero) signaling. This machine makes use of the syn-
chronization (sequential and) operator.

The i8251ar example implements the asynchronous receiver por-
tion of the i8251. This example makes use of Booleanqualification
operators. Themidi example is a machine that forms a MIDI inter-
face controller which interprets the MIDI music protocol for a digital
synthesizer chip controller. This design included an exception opera-
tor to reset the machine in case of invalid input. mismatch is the
pathological regular expression introduced in [10] which detects mis-
matches between the first 8 symbols and the last 8 symbols of a string.
This example is expected to produce very large numbers of determin-
istic states.

VII. Results and Conclusions
The results for compiling the example designs to the intermediate

machine form and generating direct VHDL implementations from the
intermediate machine is shown in the second part of the table. The
variable support of the transition and output functions is also equiva-
lent to their depth, in these designs. The number of ite() calls repre-
sents the total number of calls to this fundamental BDD function and
indicates the relative complexity of the constructions. The generated
designs were simulated with VHDL simulator.

The third portion of the table shows the results for further hard-
ware synthesis of the output VHDL descriptions of the designs. Gate
level circuit implementations of the intermediate machine representa-
tion were synthesized using the Synopsys VHDL and logic synthesis
tools. In this process,no additional sequential optimizations such as
state-assignment, re-timing, or re-encoding were invoked. Only the
logic synthesis and data-path allocations were performed. In a few
cases, boundary control point registers were eliminated due to lack of
fan-out. The logic synthesis was directed to use LSI 10k gate array li-
brary cells and to optimize for speed. The relative area, total number
of cells, and number flip-flops includes the logic for both the control
and the data-path portions of the designs.

The final portion of the table contains the results of the optional
reachable state analysis to better illustrate the designs. The reachable
states represent the total number of deterministic states reachable from
the start state in the intermediate machine. The diameter denotes the
path length to the furthest reachable states from the initial state. The
ite numbers in this table include both the machine synthesis as well as
the reachable state analysis.

A few conclusions can be drawn from the results. In themouse
andxymouse machines, the number of productions and control points
roughly doubles while the state space of the machine is squared. It is
clear that the construction complexity is not proportional to the
growth of the machine’s state space as might be expected from con-
ventional algorithms. The speed of the two designs (which includes
the data-path delay as well as the control delay) is nearly the same.
The i8251ar design had a small number of control points but a rela-
tively large number of states due its numerous modes. The final design
is shown in figure 1. Finally, themidi design was much more compli-
cated in its behavior and included an exception handling routine so
that any valid data imbedded in arbitrary invalid data would be cor-
rectly interpreted. The exception operator lead to the larger variable
support numbers and relatively slower cycle time.

It is of interest to note the relatively high performance of the de-
signs derived directly from the intermediate form. These designs have
many more registers than conventional designs but generally have
very simple excitation logic between the control points. This is due to
the constructive synthesis of the machine from the high-level specifi-
cation. In effect, the control points provide a set of signals from which
their excitation functions can be derived with very small literal sup-
port. In future work, optimization of the intermediate machine to re-
duce the number of registers under performance constraints will be
studied.

The authors thank Emil Girczyc and Margaret Marek-Sadowska
for helpful suggestions and discussion. This research was made possi-
ble through the generous support of Synopsys Inc. and the California
MICRO program #92-019.

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman,Compilers Principles,
Techniques, and Tools. Reading: Addison-Wesley 1988.

[2] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient Implemen-
tation of a BDD Package,” 27th DAC, pp. 40-45, June 1990.

[3] R. E. Bryant, “Graph Based Algorithms for Boolean Function
Manipulation,” IEEE T-CAD, pp. 677-691, Aug. 1986.

[4] S. Carlson,Introduction to HDL-Based Design Using VHDL.
Mountain View: Synopsys, 1990.

[5] O. Coudert, J. C. Madre, “A Unified Framework for the Formal
Verification of Sequential Circuits,” ICCAD-90, pp. 126-129, Nov.
1990.

[6] R. W. Floyd, and J. D. Ullman, “The Compilation of Regular Ex-
pressions into Integrated Circuits,” Jo. ACM. 29:2, 1982.

[7] J. E. Hopcroft, J. D. Ullman,Introduction to Automata Theory,
Languages, and Computation. Reading: Addison Wesley, 1986.

[8] M. A. Jackson, “Constructive Methods of Program Design,”Lec-
ture Notes in Computer Science, Vol. 44, Springer-Verlag, pp. 236-
262, 1976.

[9] S. C. Johnson, “Yacc: Yet Another Compiler Compiler,” Comput-
ing Science Tech. Rep. 32, AT&T Bell Labs, Murray Hill, NJ 1975.

Legend: #P - number of productions, #A - number of actions, #in - number of inputs including clock & reset, #out - number of outputs,
POC - # of control points,∆sup - transition function variable support avg./max.,Λ′sup - output function variable support,
tcyc - minimum cycle time nS, area - total relative area (LSI 10k), #cells - number of cells (LSI 10k), #FF - DP & control,
RS - number of reachable states, D - diameter, RST - time to compute RS Times are CPU seconds for Sparcstation 1.

Table I design characteristics intermediate machine synthesis direct circuit synthesis optional reachable state analysis

example #P #A #in #outPOC ∆sup Λ′sup time ite calls tcyc area #cells #FF RS D RST ite calls

mouse(a) 5 2 4 8 8 3/4 4/4 0.1 285 7.88 299 130 14 8 2 0.5 10,211

mouse(b) 8 2 4 8 14 3/4 4/4 0.1 660 6.88 334 132 20 14 4 1.5 33,854

xymouse(a) 8 4 6 16 14 3/4 4/4 0.1 892 8.91 465 198 26 50 2 3.4 79,763

xymouse(b) 15 4 6 16 27 3/4 4/4 0.2 2292 7.69 634 258 39 170 4 17.9 444,780

count0 6 3 3 4 10 3/5 4/5 0.1 500 5.47 170 62 13 8 4 0.6 13,160

qr42 4 3 4 2 21 3/6 8/10 0.3 3349 6.09 251 90 23 62 12 6.2 146,568

i8251ar 14 4 8 10 33 4/8 8/12 0.5 6309 6.87 407 115 42 814 12 94.7 2.20e6

midi 29 12 3 16 182 14/166 10/27 12.7 224,707 9.22 2223 683 210 310 40 3363 6.84e7

mismatch 7 1 4 1 74 2/4 5/5 0.5 6419 3.94 788 229 74 8062 16 8620 2.05e8

Figure 1.

[10] A. R. Karlin, H. W. Trickey, and J. D. Ullman, “Experience with
a Regular Expression Compiler,” ICCD, pp. 656-665, 1983.

[11] Z. Kohavi,Switching and Finite Automata. New York: McGraw-
Hill, 1978.

[12] M. E. Lesk, “Lex -A Lexical Analyzer Generator,” Computing
Science Tech. Rep. 39, AT&T Bell Labs, Murray Hill, NJ 1975.

[13] B. Lin, Synthesis of VLSI Designs with Symbolic Techniques, Ph.
D. Thesis, Univ. of Calif., Berkeley, UCB/ERL M91/105, Nov. 1991.

[14] S. Malik, A. R. Wang, R. K. Brayton, A. Sangiovanni-Vincentel-
li, “Logic Verification Using BDDs in a Logic Synthesis Environ-
ment,” ICCAD-88, pp. 6-9 Nov. 1988.

[15] A. Seawright, F. Brewer, “Synthesis from Production-Based
Specifications,” 29th DAC, pp. 194-199, June 1992.

[16] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovan-
ni-Vincentelli, “Implicit State Enumeration of Finite State Machines
using BDD’s,” ICCAD-90 pp. 130-133, Nov. 1990.

