High-level Symbolic Construction Techniques for High Performance Sequential Synthesis

Andrew Seawright and Forrest Brewer
ECE Dept. University of California, Santa Barbara 93106.

Abstractd Techniques for constructing synchronous sequen- Il. The Production Specification
tial machines with associated data paths from an input format The high-level specification form described here, specifies the con-
consisting of high-level non-deterministic productions are de- trol structure of a synchronous design using a hierarchical peb-of
scribed. These construction techniques rely on recent work in ductions These productions describe the desired “protocol” of the
symbolic Boolean representation and manipulation to produce an design at the high-level, and “recognition” of these productions effect
intermediate machine representation that is not impacted by state the design’s behavior. A production is a named composition of sym-
explosion. bols, operators, and action clauses. In this production specification,
there are two kind of productions, those specifying sequential behav-
I. Introduction iors, and those specifying combinational Boolean functions. The sym-
In conventional register-transfer-level and high-level design lanbols in a sequential productionare either references to other
guages, the control structure is represented by conditional branchisequential productions or aakens A token is a reference toBool-
and procedure constructions which utilize explicitly specified progranean productiorin a sequential production. The symbols in a Boolean
state variables during execution. However, for many problems, thproduction are either references to other Boolean productions or atom-
specification of the machine behavior in this format is unnecessariic symbols which represent the input interface signals or are other lan-
lengthy and complex. This is especially true for problems in which thguage defined symbols.
time sequence behavior is complex or the control state space is lai Composition operatorare used to compose the productions. They
or difficult to describe explicitly. Example machines include protocolbuild more abstract or complex productions from simpler productions.
controllers, communication devices, and computer interface sulThe composition operators are similarly grouped into sequential and
systems. combinational types for use in the two kinds of productions. The se-
To address these specification problems, a non-deterministic prquential operators include the classical regular expression [1, 7, 11]
duction-based specification for high-level synthesis was introduced operatorsconcatenationor, andclosure(*, ”, “|| ”, “*"), generali-
[15] building on efforts in the areas of software engineering [1, 8, ¢zations such as theequential-andperator &&’, useful for specify-
12] and hardware specification [6, 10]. Jackson introduced a graring synchronization, thesequential-notoperator ", and many
mar-based methodology for specification of software programs arspecialized operators mainly used for specifying exception behaviors.
software interfacing between programs. These ideas are manifest The combinational operators include the usual Boolean operators rep-
the successful compiler specification and constructions tools “yacresented by:&”, “| *, and “~".
and “lex”. Ullman et al. used regular expression based specificatiol Recursion of productions is not allowed, since the intent is to pro-
for hardware compilation of minimal area PLA-based controllers. duce a specification representable by a finite state machine. Although
Conventional sequential synthesis techniques are usually based simple tail recursion doesn't jeopardize the finite machine require-
deterministic FSM manipulations. Using these techniques requirement, it is still not allowed. This is not a problem, since, tail recursive
conversion from a non-deterministic production model to a determirbehavior can be concisely described using the closure operator.
istic FSM. Since the FSM model is typically a state transition grapt A token is “accepted” or “recognized”, if its Boolean function is
this conversion often leads to an exponential number of deterministsatisfied in the cycle the token is referenced through execution of the
states. In the formulation presented here, the machine is instead, rproductions. A production is accepted when the time sequence of be-
resented using symbolic Boolean Decision Diagrams which can khaviors dictated by itsompositionis satisfied. Symbols, composi-
rapidly manipulated and from which a deterministic machine can btions, and productions are annotated \aittion clause®r actionsfor
directly derived. These construction techniques rely on the receshort. An action is a specified data-flow behavior which is executed
work in symbolic Boolean representation and manipulation [2, 3, fwhen its antecedent symbol, composition, or production is recog-
13, 14, 16]. It is important to note that the complexity of this derivanized. In general, any number of productions may be active or simul-
tion and the resulting implementation is not impacted by the potentiataneously in acceptance, reflected by the composition of the
ly exponential growth of the deterministic state space. This is due ispecification. To make these ideas clear, consider the set of five pro-
the fact that exponential growth of the deterministic state space doductions shown below:

not necessarily imply the exponential growth of a circuit implementa pl->p2 || p3: { action, }
tion. p2 ->(z1 & z2), p4

In the work described herein, the high-level specification form ha p3 -> p4 && p5; { actiom }
been expanded with the addition of productions which can represe p4 -> z2+;
arbitrary Boolean functions of the interface signals and additione p5 -> z3 | ~z4;

Boolean production connective operators. These additions greatly €
pand the expressive power of the language and allows an efficient |
formulation of the machine construction process.

In this example, the symbolsl, z2, z3, andz4 represent inter-
face signals. Productionsl, p2, p3, p4 are all sequential produc-
tions because they contain sequential operators or references to
sequential productions. Productiph is a Boolean production(z1

&z2) " is a Boolean composition, and2+” is a sequential composi- A: {(X1, Xo, X3, .. , %)} X{(21, 20, Z3, ... ,)} - {Y1. Y2 V3 - s W)}
tion using thesequential one-or-moreperator “+” and is equivalent where X, Y, and Z are Boolean vectors. X represents the present state
to the compositionZ2*,z2 . Two actions denoted by curly brace of the machine, Z represents the input interface signals, and Y the next
clauses are attached to two of the productions. state of the machine. The transition functlonepresents a determin-
When the production specification is compiled, a directed acycliistic state transition function. Eacly kowever, represents a particular
graph (DAG) structure representing the collapsed production structucontrol point in the machine. The control points represent the activity
is constructed. This DAG is calléde production DAGEach node in of non-deterministic states in the machine, for example, mgsy x
the DAG represents a composition operator. The production DA(May be simultaneously active. The functiqre¥fi(X, Z) represents
representation for the example productions is illustrated in the lefeXcitation for the next state of control point his representation of

hand figure below. Here, the sequential composition operator nodthe transition function allows two views: Viewed as a whalegpre-
sents the transition function of a single deterministic FSM, while each

fi(X, Z) in A represents the excitation of an individual non-determinis-

(1){ action,} tic control point.
"@ action, } The output functiom\ maps B' - U. In this mapping, written:
N{(X 1, X0 Xgy oy %)} = {Ug, Up, U, o, Y)
t,(2) 0 t3(2) X represents the present state of the machine, and gaictl vepre-

sents, symbolically, sequencef actions to be executed within a sin-
gle clock cycle. Anequivalentoutput functionA’: B" — B™M is
defined, mapping
t(2) AR (CSTRE SRS S (CEAE SN W)
2y 2 I3 74 Again, X is the present state, however, the elemeriisfarepresent
each of the individual actions. Each action is “activated” by the condi-
are represented by unshaded nodes, while the Boolean composittion g = G(X). Because many actions may be activated simultaneous-
nodes are shaded. It is illegal for sequential productions or compody, action precedence determined by the production structure enforces
tions to be used in Boolean compositions. Thus, the Boolean (shad¢he execution sequence. The ordering of {sdrathe vector A satisfy
nodes must be only present in the lower portion of the DAG structurthese partial order action relations implied by the production DAG.
Each sub-DAG represents a sub-machine. Actions clauses froThe functions\ andA" are related as follows: eachsymbolically
the productions are associated with respective sequential compositifepresents a particular action sequence which is an element of the
nodes. An action clause associated with the top node in a sub-DAGrange of/A". We focus on the functiof\’, A was described simply to
executed after initiation and recognition of the respective sub-médntroducen'’.
chine. Often, several actions will be required to execute in the san The output function described previously is the Moore machine
cycle due to the behavior specified in the productions. The conceptiform of the intermediate machine representation. The Mealy machine
execution order of the actions within the cyclamgortant.For exam- representation form, as expected/Ns:B" x BX _ U,A:B"xBX o
ple, if the two actions “k :=0;}" and *{ x:=x + 1,}" were to exe- B™, and with the individual action conditions a function of X and Z,
cute in the same cycle their execution ordering matt&csion e.g. ¢(X, 2).
precedencaletermines the conceptual ordering of actions executin
within the same clock cycle and is determined from the productio IV. Construction of the Intermediate Machine
DAG structure which enforcespartial orderingon the actions. The This section describes a procedure to construct the intermediate
precedence stems from the refinement of simultaneously acceptimachine form introduced in the previous section. The construction is a
productions from primitive to abstract. For example, in the productioirecursive process which builds, from the production DAG structure,
DAG aboveaction < actior. either a Moore or Mealy intermediate machine representation. This re-
The right-hand figure shows the structure with the Boolean nodecursive construction procedure applies a particular construction rule at
removed. Instead, the arcs from the sequential nodes to Boolean cceach composition node of the DAG, based on the node’s type. The
position nodes are replaced by arcs to the representative Booleprocess proceeds in a fashion similar to Thompson’s construction [1,
functions. For exampley(Z) = z; Oz, and §(Z) = 2. These referenc- 7] for creating a NFA state graph from a regular expression. Here,
es to the Boolean functions are token references. Practically speakithowever, we are symbolically constructing the intermediate machine
these arcs are implemented as ROBDD [2] node pointers representirepresentation. Recall, the intermediate machine representation con-
the token functions. A machine representation can be constructtains the excitation functions for individual non-deterministic control
from this production DAG structure. points. In this representation, there is no analagtadnsitions which
The next section describes the intermediate machine represenare generally present in NFA machines. The construction necessarily
tion. An ensuing section describes the process which constructs the Produces are-free implementation directly. Furthermore, the con-

termediate form from the production DAG structure. struction process allows generalization of the regular expression oper-
ator construction rules to other very useful composition operators.
lll. Intermediate Machine Representation The construction is performed in a recursive bottom-up fashion

The intermediate machine representation consists of two parts,0ver the production DAG. The structure of the recursive routine
state transition function and an output function for the machine. 1Build() which implements construction process is illustrated in the

what follows, B represents the set {0, 1}. The transition fundiina Pseudocode below. At each level of the recursion, the routine is passed
function mapping: Bx BX _, B". This mapping is written a pointer to a node of the production DAG and a Boolean function

representing a partial excitation function f(X) passed from other recudifferent notion than in theequential nobperator where not accept-
sion levels. The routine returns a Boolean function h(X). Dependining includes both the cases of “active but not presently accepting” and
on the type of node, different operations are performed. At leaf node“will never accept”. The function e(X, Z) represents the excitation that
control points are allocated and their excitation functions are set. AriggersM;,. Consider the following equation fog(X, Z), which is
intermediate nodes, left and right sub-machines are composed via wsed to calculate e(X, Z):
erations on the passed and returned functions. The construction p —— — v
cess is initiated by allocating an initial control poftand calling: eX(X,Z) =9(X) Df HMfi (X.2) (EQI)
Build(n=top-level-nodef(X)=x,). i~
This equation describes the conditions in witls not in a state

Build (node: *n, Boolean function: f(X)) { of recognition and in the next cycle will contain no active control
points. However, this relation is not enough to describe e(X) as we
need knowledge tha¥l was first initiated. This information can be
computed as summation of the present control poirsandM’s ex-

if (nis a terminal function(Z)) {
create new control poing;x

set h(X) ={(X, 2) =y, = f(X) D;(2); citation. However, this logic can be substantially reduced if an extra
} else if(n is “concatenation” node) { control point is allocated to store this information. Lgtrepresent
g(X) = Build(node->left, f(X)); this control point. Then,
h(X) = Build(node->right, g(X)); e(X 2) = (f(X) Ox,) Oe (X,2) (EQ 2)
} else if(n is “sequential and” node) { The excitation of xis f,(X, Z) and can be computed as follows:

g(X) = Build(n->left, f(X));
h(X) = Build(n->right, f(X));
h(X) = g(X) O h(X);

f,(X,2) = (f(X) Ox,) Og, (X,Z) Oh(X) (EQ3)
Other related exception operators are implemented, as well, in a
similar fashion. One further point concerning the exception operators,

} else if(n is “sequential not” node) { since the exception operators operate on a general sub-machine, they
g(X) = Build(n->left, f(X)); may be nested hierarchically.
h(X) == g(X); To clarify the construction process, a circuit implementation of the

} else if(...) { constructed machine for the example is illustrated below:

... other cases..

}

if (action @ attached to node)
set g(X) = g(X) Oh(X);
return h(X);
}

The time complexity of this algorithm depends on the represent:
tion used for Boolean functions. If we assume constant time for tw

operand Boolean operations, which is certainly possible for a factore I the pseudocode, the action execution conditip(¥)és are cre-
representation, then, for a DAG representing a regular expression, lated using h(X) at the nodes where actions are attached. This creates

time complexity of this construction is linear in the size of the regulat® Moore output functio\’. The Mealy output function may be cre-
expression. Using BDDs, a pseudo-linear algorithm results as ”ated from the Moore output function after the construction is com-
growth of the variable support of the BDDs is typically slow. plete. This is done by substitutingq,Z) for all x's in g(X) forming
Th nstruction for the closur rator is mor mplex. A t rrck’(X, Z). Again, substitutions can be easily done by composing BDD
€ cor sbluc onfo I € tC gsu ((ajope ag ds ofe co pte .t' € 1functions. Note, this conversion from Moore to Mealy does not create
f)horary vanr:; N Ef”P IS i.oca_?h. an dpasseb own tohr cons_trut(_: lon f°1an identically equivalent Mealy machifk the results of action exe-
€ operand sub-machine. 'his 1S done because e excrtalion ol ,, iqng | lag by a cycle in the Moore machine vs. the Mealy ma-
sub-machine depends on the returned function g(X), which is ur

. S chine. The designer is aware of this in choosing the machine model

known until the machine is constructed. On the return of g(X), afte

o . . and will structure the actions accordingly. The following are the ac-
the sub-machine is constructed, the function h(X) = f)§}X) is cal- . . o .

) :) ! . . tion execution conditions for the example:
culated. At this point, this function may be substituted fgy i all
functions in which ¥, appears in the structure of the sub-machines Moore: G(X) = X7Xg, C(X) = X7Xg + X4.
This completes the closure construction and removes the extranec

; - - e Mealy: (X, Z) = ttzx1(X5 + Xq),

variable x,,, These substitutions are nicely performed by composin % 7) = tt)+ b+
BDD functions e.g. f(x=g()) = ite(g()xffe) [2]. Note, a unique g, X, 2) =u 3X1(X5_ x1) z(_Xs Xz)
variable must be used for each simultaneously open closure in t The constructed intermediate machine is intended to be a base rep-
construction process. resentation to which further synthesis tasks and manipulations are ap-
plied. It is a convenient form, because both classical FSM techniques
as well as more recent symbolic methods may be applied. A further
useful property is that the elements of intermediate machine can be di-
rectly linked, during the construction, to the high-level operators that

Special sequential operators calieecteption operatorare imple-
mented. In an exception construction, a handler madhjnis initiat-
ed when its associated sub-machigonce initiated, will enter a
state in the next cycle from which it camveraccept. Note this is a

created them. This is useful for high-level optimization, debuggingchine. The machine connects two devices together, one side operating

and design information tracking in a synthesis system. with two-phase (nhon-return-to-zero) signaling and the other with four-
phase (return-to-zero) signaling. This machine makes use of the syn-
V. Implementation chronization (sequential and) operator.

A production compiler using these construction techniques wa Thei8251ar example implements the asynchronous receiver por-
implemented. This compiler is part of a high-level synthesis systertion of the i8251. This example makes use of Boolpaalification
coded in approximately 8000 lines of C++. The output of the compileoperators The midi example is a machine that forms a MIDI inter-
is VHDL code describing the synthesized machine architecture. Tkace controller which interprets the MIDI music protocol for a digital
VHDL is composed of processes that describe the logic structure synthesizer chip controller. This design included an exception opera-
the machine and processes that implement the register transfers ior to reset the machine in case of invalid inpatsmatch is the
data-path logic required by the actions. The structure of the VHDL apathological regular expression introduced in [10] which detects mis-
tion processes also satisfy the partial ordering required by action prmatches between the first 8 symbols and the last 8 symbols of a string.
cedence. The VHDL output is tailored for further hardware synthesiThis example is expected to produce very large numbers of determin-
by specific adherence to an appropriate synthesis policy. istic states.

The tool is able to perform reachable state analysis on the cor
piled intermediate machines. This type of analysis is an example VII. Results and Conclusions
the symbolic techniques possible on the intermediate form. The reac The results for compiling the example designs to the intermediate
able state analysis is based on the work in [5, 13REg|chable state machine form and generating direct VHDL implementations from the
analysis is not required for the synthesis of the intermediate machinintermediate machine is shown in the second part of the table. The
but it is an important task, useful in several ways. Knowledge of thvariable support of the transition and output functions is also equiva-
set of reachable states aids in further RTL optimizations, particularhlent to their depth, in these designs. The number of ite() calls repre-
determining action conflict resolution. This information may be usesents the total number of calls to this fundamental BDD function and
to simplify elements of the machine structure. For example, simplifyindicates the relative complexity of the constructions. The generated
ing (EQ 1) using sequential don'’t care information. Finally, it is usefudesigns were simulated with VHDL simulator.
for design analysis and providing feedback to the designer of possit The third portion of the table shows the results for further hard-
problems. ware synthesis of the output VHDL descriptions of the designs. Gate

The tool uses BDDs for all Boolean and symbolic manipulationslevel circuit implementations of the intermediate machine representa-
The BDD nodes are allocated as the construction proceeds. It shottion were synthesized using the Synopsy$iDL and logic synthesis
be pointed out that the construction process naturally develops a retools. In this processio additional sequential optimizations such as
sonable heuristic variable ordering based on circuit topology argistate-assignment, re-timing, or re-encoding were invokauy the
ments [14]. In addition, the different kinds of BDD variables arelogic synthesis and data-path allocations were performed. In a few
divided into classes and are interleaved. The following three-way ocases, boundary control point registers were eliminated due to lack of
deringisused:Z< X < <<% <pHp < <X < ER<..Theds fan-out. The logic synthesis was directed to use LSI 10k gate array li-
represent an additional set of state variables used by the reachabrary cells and to optimize for speed. The relative area, total number
state analysis. The reachable states are computed based on impof cells, and number flip-flops includes the logic for both the control
enumeration techniques. Specifically, the procedure is based on tand the data-path portions of the designs.
heuristics in [16]. The observation that the variable support of eac The final portion of the table contains the results of the optional
fi(X, Z) is generally localized in a range close to and prior to i allowsreachable state analysis to better illustrate the designs. The reachable

further tailoring of the heuristics to this application. states represent the total number of deterministic states reachable from
the start state in the intermediate machine. The diameter denotes the
VI. Experiments path length to the furthest reachable states from the initial state. The

Several example designs were compiled and studied using the toite numbers in this table include both the machine synthesis as well as
The characteristics of these designs are tabulated in Table I. Tthe reachable state analysis.
mouseexamples are quadrature decoder machines used in compu A few conclusions can be drawn from the results. Inntogise
pointing devices. These designs continuously update a 1-dimensiorandxymousemachines, the number of productions and control points
position based on the quadrature encoding of signals from exterrroughly doubles while the state space of the machine is squared. It is
motion sensors. Both versions recognize the same quadrature signclear that the construction complexity is not proportional to the
however, the difference is that theouse(b)design places more con- growth of the machine’s state space as might be expected from con-
straints on the input waveforms than theuse(a)design. ventional algorithms. The speed of the two designs (which includes

Thexymousedesigns are 2-dimensional versions of the respectivthe data-path delay as well as the control delay) is nearly the same.
1-D mouse decoder examples and are specified as a single set of [Thei8251ar design had a small number of control points but a rela-
ductions using the expressive power of the Boolean representationtively large number of states due its numerous modes. The final design
the language. Using the earlier version of language, described in [1Yis shown in figure 1. Finally, thaidi design was much more compli-
which only modeled tokens as an enumerated setytheusewould cated in its behavior and included an exception handling routine so
be impossible to specify as concisely in a single set of productions. that any valid data imbedded in arbitrary invalid data would be cor-

count0 counts sequential zero’s in a valid input frame format. Thisrectly interpreted. The exception operator lead to the larger variable
example is based on the procedural design imjf4R is an asynchro- support numbers and relatively slower cycle time.
nous handshake conversion protocol implemented as a sequential r

It is of interest to note the relatively high performance of the def10] A. R. Karlin, H. W. Trickey, and J. D. Ullman, “Experience with
signs derived directly from the intermediate form. These designs haweRegular Expression Compiler,” ICCD, pp. 656-665, 1983.
many more registers than conventional designs but generally haper] z. Kohavi, Switching and Finite Automatélew York: McGraw-
very simple excitation logic between the control points. This is due tgyj||, 1978.
the constructive synthesis of the machine from the high-level specifhz] M. E. Lesk, “Lex -A Lexical Analyzer Generator,” Computing

cation. In effect, the control points provide a set of signals from Whic%cience Tech. Rep. 39, AT&T Bell Labs, Murray Hill, NJ 1975.

their excitation functions can be derived with very small literal sup-[l3] B. Lin, Synthesis of VLSI Designs with Symbolic Technj

port. In future work, optimization of the intermediate machine to re: . . .
duce the number of registers under performance constraints will b& Thesis, Univ. of Calif., Berkeley, UCB/ERL M91/105, Nov. 1991.

studied. [14] S. Malik, A. R. Wang, R. K. Brayton, A. Sangiovanni-Vincentel-

S : i, “Logic Verification Using BDDs in a Logic Synthesis Environ-
The authors thank Emil Girczyc and Margaret Marek Sadowskfg ent,” ICCAD-88, pp. 6-9 Nov. 1988.

for helpful suggestions and discussion. This research was made poégl—]))

ble through the generous support of Synopsys Inc. and the Californig>] A- Seawright, F. Brewer, “Synthesis from Production-Based

MICRO prograni] #92-019. Specifications,” 29th DAC, pp. 194-199, June 1992.

[16] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovan-
References ni-Vincentelli, “Implicit State Enumeration of Finite State Machines

[1] A. V. Aho, R. Sethi, and J. D. UllmaiGompilers Principles. using BDD’s,” ICCAD-90 pp. 130-133, Nov. 1990.

Techniques, and ToolReading: Addison-Wesley 1988.

[2] K.S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient Implem

tation of a BDD Package,” 27th DAC, pp. 40-45, June 1990.

[3] R. E. Bryant, “Graph Based Algorithms for Boolean Funci

Manipulation,” IEEE T-CAD, pp. 677-691, Aug. 1986.

[4] S. Carlson,Introduction to HDL-Based Design Using VHDL

Mountain View: Synopsys, 1990.

[5] O. Coudert, J. C. Madre, “A Unified Framework for the Formak H

Verification of Sequential Circuits,” ICCAD-90, pp. 126-129, Nov. 1 : al

1990.

[6] R.W. Floyd, and J. D. Ullman, “The Compilation of Regular Ex- >

pressions into Integrated Circuits,” Jo. ACM. 29:2, 1982. J !

[7] J. E. Hopcroft, J. D. Ullmarintroduction to Automata Theory, s e

Languages, and ComputatioReading: Addison Wesley, 1986. I i Lo

[8] M. A. Jackson, “Constructive Methods of Program Desityeg¢-

ture Notes in Computer Sciendél. 44, Springer-Verlag, pp. 236- ==

262, 1976.

[9] S. C. Johnson, “Yacc: Yet Another Compiler Compiler,” Comput- Figure 1.

ing Science Tech. Rep. 32, AT&T Bell Labs, Murray Hill, NJ 1975.

-
-

Table | design characteristics intermediate machine synthesis direct circuit synthesis | optional reachable state analysis

example | #H #A #in #oYtPOC| Agy, | AN'syp |lime |ite calls| to,. | area| #celly #FF RS| DO RS itecalls
mouse(a) g 2 4 B B K} 44 01 285 788 299 130 |14 8 2 0.5 10,211
mouse(b) g 2 4 3 1 3 44 01 660 6{88 334 132 |20 14| 4 |15 33,854
xymouse(a)| 4 4 5 1P 1 314 44 (1 802 8|91 465 [198 | 26 50 2 |34 79,763
xymouse(b)| 14 4 b 16 27 3(4 44 Q.2 2292 7,69 634 258 | 39 170 4 117.9 444,780
countO 6 3 3 4 1 3/5 46 01 500 5.47 170 62 (13 8 4 0.6 13,160
qra2 4 3 4 2 21 3/6 8/1p 0f3 3349 6.09 251 90 (23 62 | 12 6.2 146,568
i8251ar 14 4 s 1 38 4/8 8/12 05 6309 6(87 407 115 | 42 814 | 12 |(94.7 2.20e6
midi 29| 12 3 14 182 14/16p 10/27 12.7 224,107 9.22 2223 |683 |210 310(40 |3363 5.84e7
mismatch 1] 4 1 74 2/h 55 0f5 6419 3|94 788 P29 |74 8062 | 16 B620 2.05e8

Legend: #P - number of productions, #A - number of actions, #in - number of inputs including clock & reset, #out - numtéspf out
POC - # of control pointgg,,,- transition function variable support avg./maXg,,- output function variable support,
teye - Minimum cycle time nS, area - total relative area (LSI 10k), #cells - number of cells (LSI 10k), #FF - DP & control,
RS - number of reachable states, D - diameter, RST - time to computeTRBes are CPU seconds for Sparcst&ﬁdm

