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Abstract

This paper describes a model for, and an implementa-
tion of, production-based synthesis of hardware descrip-
tion language (HDL) code in which the overall structure
of the resultant machine is derived from a hierarchy of
sub-machine descriptions, each represented by a produc-
tion. The production-based specification (PBS) consists of
productions annotated with HDL action code, and forms
the input to a design tool which outputs procedural HDL
tailored for hardware synthesis. Due to the concise nature
of this form of specification, for certain machines such as
protocol controllers, the technique can save enormous la-
bor in the construction of procedural specifications for
these machines. Novel aspects of this research include the
compilation of a PBS with HDL action clauses into syn-
thesizable procedural HDL and the approach to specifica-
tion of machine behavior in the event of exceptional
conditions.

1.0  Introduction

A common way to describe the behavior of a machine
is in a procedural form using a hardware description lan-
guage (HDL) such as VHDL [13]. This type of description
is procedural in the sense that the designer describes the
behavior in a step by step sequence. An example procedur-
al specification is shown in Figure 1, which describes a

machine that counts consecutive zero bits in a sequential
single bit input stream. Simulation and direct hardware
synthesis is commonly performed from procedural de-
scriptions. An alternative description is shown in Figure 2.

process
begin
wait until CLK’event and CLK = ‘1’;
if(SEEN_TRAILING and DATA = ‘0’) then

IS_LEGAL <= ‘0’;
COUNT <= 0;

elsif(SEEN_ZERO and DATA = ‘1’) then
SEEN_TRAILING := TRUE;

elsif(DATA = ‘0’) then
SEEN_ZERO <= ‘1’;
COUNT := COUNT + 1;

end if;
end process;

Figure 1

This second type of description is based on productions. A
production is a rule describing certain compositions of
symbols as a single symbol of higher abstraction. Symbols
at the lowest level of abstraction (tokens) describe atomic
sets of external signal transitions, while those at higher
levels describe arbitrarily complex sequences of these to-
kens. In the example above, ONE and ZERO are tokens.
Note that some productions initiate actions which are frag-
ments of HDL code enclosed in braces.

For many types of complex behavior, production based
specifications (PBS) are superior to procedural specifica-
tions, in that they can be more concise, and easier to debug
and understand. Examples include communications proto-
cols, cache protocols, bus controlers, adaptive coding, and
translators. The simplicity of interpretation stems from the
local nature of each production in the specification. Each
production is simultaneously active for all input transitions
so that the designer need not worry about the explicit con-
struction of the global control flow, which is necessary in
designing a procedural specification.

The synthesis procedure described in this work con-
verts a production specification of machine behavior into a
procedural description encoded in a specified hardware de-
scription language and tailored explicitly for hardware
synthesis. This output description contains explicitly the
minimal controlling FSM described implicitly by the pro-
ductions. The advantage of the HDL output description is
that it enables fast turnaround simulation or synthesis of
the machine using state-of-the-art HDL tools. Since for
many applications the production hierarchy is very con-
cise, the resulting HDL has a greater chance of represent-
ing the designer’s intent than a hand coded procedural

Count -> Valid | Invalid;
Valid -> ONE* Low* ONE*;
{

IS_LEGAL <= ‘1’;
}
Invalid ->ONE* ZERO+ ONE+ ZERO;
{

IS_LEGAL <= ‘0’;
COUNT := 0;

}
Low -> ZERO; { COUNT := COUNT + 1;}

Figure 2
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description. In this respect, the user model for this tech-
nique is a hardware analog of the very successful compiler
generation tools prevalent in software design [3] [4] [8].

2.0  Related Work

The related software tools compile grammar produc-
tions and pattern recognition expressions into parsers, and
lexical scanner routines. Many of the advantages present in
using these software toolsmust be applicable to the specifi-
cation of control dominated behavior. However, since the
trade-offs involved in designing a hardware machine are
different than for generating a software program, the mod-
els, metrics, and techniques used in compiling these speci-
fications differ substantially. With respect to hardware, the
most closely related work is due to Ullman et. al. [1] [2] in
their study of the compilation of regular expressions into
PLA implementations. In this work, a single regular ex-
pression is compiled into a non-deterministic finite automa-
ta (NFA). This NFA was directly implemented as a PLA,
with combinational feedback terms. The non-determinism
of the current state in the machine was represented by these
feedback terms, each representing a single active state. Ver-
ification of equivalent behavior of differing implementa-
tions of machines was done using automata based models
[5]. Their model for representing classes of equivalent be-
havior is in some respects similar to the model presented in
this paper representing the target machine’s behavior after
the production description is compiled.

Due to the fact that the PBS describes a hardware entity,
a multitude of CAD techniques and technologies are avail-
able to create an efficient implementation. These tech-
niques include: 1) The synthesis of logic networks from
procedural hardware description languages such as imple-
mented in the BDSYN tool [6] and industrial CAD packag-
es [14]. Of particular importance to this technique is the
notion of resource allocation and sharing among the several
possibly mutually exclusive operations implied in the ac-
tion clauses in the PBS. 2) The optimization of logic net-
works to meet timing and area constraints offered by logic
synthesis [6] [7]. 3) The techniques of state assignment [11]
[12] and minimization [10] of finite state machines.

3.0  Methodology and Advantages

In use, the tool provides an HDL generator. The output
VHDL can be both simulated and synthesized. Desired
changes in the specification are made by constructively
modifying the PBS description and re-compiling. This
technique has several advantages: 1) Modification of a de-
sign can be readily made, as the productions form a natural
partitioning of the machine’s behavior. 2) The compilation
and optimizations of the productions are inherently sym-

bolic, enabling the designer to specify behavior at many
levels of abstraction, from single bit events to valid proto-
col recognition. 3) Powerful control and data flow analysis
may be possible from the hierarchical PBS description. 4)
After synthesis the structural architecture can be simulated
and compared with the procedural simulation in order to
track design integrity. 5) The procedural HDL output can
be tailored and annotated by the production based specifi-
cation compiler to match a synthesis policy. This allows
customization of the output for direct logic synthesis using
currently available tools.

4.0  Model

A Mealy [9] machine is defined as a 6-Tuple (Q, S, D, d,
l, q0), where Q is a finite set of states, S the input alphabet,
and D the output alphabet. The transition function d maps
Q x S to Q, while l maps Q x S to D. The initial state of the
machine is q0. Our goal is to design an entity M, which is
essentially an FSM when viewed at the interface level, but
could in fact be a complex controller with arbitrary data-
path or other interior extensions. We model M as an 8-Tu-
ple (Q, S, A, d, L, q0, I, X) where Q, S, d, and q0 are the
same as in the Mealy machine above. L is a function of do-
main Q x S mapping to a range consisting of arbitrary or-
dered subsets of A. The elements of A are “actions”
performed by the FSM under certain state transitions.
These actions are segments of procedural HDL code. Un-
like the Mealy machine’s output function, L maps to or-
dered sets of these arbitrary high-level segments. I is a
vector of boolean signals providing the totality of the ma-
chine’s external interface. We define X as an function that
maps the interface, I, to elements of the alphabet S. X pro-
vides a level of abstraction between the interface signal
vector and the internal input language for the FSM and oth-
er possible uses for the interface signals (such as operands
to/from the actions).

A production-based specification describing M is com-
piled using the PBS compiler to obtain complete register
transfer level procedural description of the machine M.
This RTL description consists of, among other things, the
implementations of the functions X, d, and L. The PBS in-
put consists of a set of productions, annotated with associ-
ated actions forming the set A, and auxiliary HDL code.
The productions specify the behavior of the machine
through the actions, as a function of internal state and the
input stimulus. The terminal symbols of the productions
form the set S. The auxiliary HDL code defines the inter-
face I, the mapping function X, initialization code for the
state q0, and other user defined HDL code. The user, or an-
other tool, is free to define the specifics of the clocking
strategy and the mapping X in the specification, as long as



it can be synthesized. For the rest of this paper we assume a
synchronous framework.

The following statements codify our model with respect
to the specification of the behavior of the machine through
the action clauses:

• The behavior of the machine with respect to the external
world is defined by the behavior of a machine, derived from
the production specification, in which the actions are combi-
nationally executed in the designated points of the protocol
and within a single clock transition.

• When there are several actions defined during a state transi-
tion of M, the actions of more primitive productions have
higher precedence and conceptually execute before the actions
of more advanced productions. To clarify, we define the be-
havior of the machine with several simultaneous actions to be
the behavior of the machine if the actions were procedurally
executed in step by step order even though they may be re-
solved by a single combinational logic function.

• A production is more primitive if it is called by the more ad-
vanced production.

Given the above points concerning thebehavior of the
machine as defined by the specification and viewed by the
designer, any transformation of the machine is certainly al-
lowed that results in the same external behavior. Such
transformations would be made to improve performance or
minimize cost.

4.1  Hardware vs. Software

There are different trade-offs and implicit assumptions
in specifying and constructing a finite state machine to per-
form some task as a hardware device, rather than as a soft-
ware program, using productions. In compiling programs
in software, we often have the luxury of lookahead, e.g.
looking at the future input tokens to disambiguate the
meaning of the input. In hardware, lookahead may be diffi-
cult if not impossible. For example, in this model, input is
defined through the X function as the state of the interface I
during a clock transition. In this case, lookahead is simply
not possible (lookahead can be simulated using an X func-
tion with state). Another difference in hardware is due to
the presence of rigid timing constraints. For example, be-
tween successive cycles of a clock a FSM must compute its
next state based on the current input. A controller may be
required to respond to an input event in the next clock cy-
cle. Although software compilers are designed to be effi-
cient it may be of little concern that several “cycles” of the
parsing loop are required to interpret the meaning of an in-
put token before the next token is read. This is true in the
classic shift/reduce parser [8]. A further distinction is found
in the meaning and mechanism for producing “tokens”. In
hardware, we have a wide variety of possible candidates for

tokens including operands on busses and transitions of in-
put signals. Finally, the issue of error recovery is important
in both hardware and software. In program compilers, the
emphasis is usually placed on identifying errors in the input
stream, and terminating the compilation. On the other hand,
in hardware the emphasis is on conveniently specifying
well-defined behavior of the machine with respect to ab-
normal or exceptional input. For example an exception may
require the machine to perform additional processing, re-
synchronization, and recovery procedures.

5.0  Implementation

A PBS compiler has been implemented, in approximate-
ly 4600 lines of C++, which compiles input specifications
containing productions, VHDL actions, and VHDL code
segments. The productions are composed of symbols and
operators. The symbols represent sub-machines (“calls” to
other productions), or terminal symbols. In the current im-
plementation, recursion in the productions is illegal. Each
symbol in a production represents an instantiation of a sub-
machine that performs some task. Terminal symbols repre-
sent machines that recognize a single input symbol. During
the compilation process, any symbols in the productions
that are not calls to other productions, i.e. are not non-ter-
minals, are considered terminals forming the set S. The
user explicitly specifies in the PBS description explicitly
how the tokens are generated; i.e. the X function.

The operators in the productions combine the sub-ma-
chines into more complex machines through compositions
of the sub-machines. These operators consist of the stan-
dard regular expression operators [8] [9] [10] plus several
special operators. The special ‘^’ operator is for conve-
nience and is used as a shorthand for representing the con-
catenation of several identical sub-machines by the
specified number of instantiation. For example the produc-
tion below illustrates its use:

block -> byte^4;

The production definesblock  to be a sequence of four
byte s.

The exception operator, ‘!’, is used to specify conve-
niently the behavior of a sub-machine in the circumstance
of non-recognition. For example in the production:

data -> block!resync;

The exception operator states that if the sub-machine
block  recognizes events that can not beblock  or any
other valid production, then the state is transferred immedi-
ately to the sub-machine represented by theresync  pro-
duction. When thenresync  production accepts, the effect
is as if theblock  machine accepts. Several levels of ex-



ception handling are possible, with well defined scoping
rules and precedences. The ‘!!’ operator is another excep-
tion operator. When used, the annotated sub-machine is
constructed with exceptional behavior causing a “reset” of
the sub-machine.

The exception operators allow the user to specify con-
cisely behavior in the case of events not explicitly de-
scribed in the ordinary productions, by giving access to the
complement space of the production. The complement
space for the production is defined with respect to all of the
ensemble productions. This allows a convenient mecha-
nism for specifying re-synchronization. Of course the user
is also free to explicitly add specific error productions in
the specification as well.

The productions can be annotated with VHDL code seg-
ments as “actions”. These actions may be associated with
any sub-machine symbol in the production or with the en-
tire production as a whole. In either case, the action is as-
sumed to take effect on valid recognition of the input
conditions as described in the model section. Consider the
example machine introduced earlier. When the machine de-
tects an invalid input frame, the last token will be a ZERO.
Two actions are indicated: the action attached to the ZERO
token in thelow  production, and the action associated with
the invalid  production. Due to precedence the more
primitive action “computes” first. In this case the overall
effect is theCOUNT variable reset to zero.

5.1  Compilation

The productions are collapsed and compiled into an in-
termediate tree representation. The interior nodes of the
tree represent the various composition operators, and the
leaves of the tree represent the terminal token symbols. To
be efficient, common sub-trees are shared when there are
multiple references to a production from other productions
in the PBS. Since each node of the tree represents a particu-
lar point in the protocol, action objects are attached to lists
provided at the nodes. In the current implementation, the
action objects consist of wrappers around VHDL code.

A non-deterministic finite automata (NFA) is construct-
ed from this tree using a process based on Thompson’s
Construction [9], however suitably modified to implement
the exception handling mechanism and other extensions.
Actions are propagated from the tree to the NFA while
maintaining their precedence. Next the NFA is converted to
a DFA. This is done using the well-known subset construc-
tion algorithm [9], again with extensions for implementing
the exception handling mechanism, particularly in the
method in which the ‘death’ state is handled. The death
state is a DFA state generated in the construction process
when a group of NFA states do not have successor(s) for

some input symbol. All of the transitions leaving the DFA
death state return to itself, thus the machine can never leave
this state. Exception handling is described in more detail in
the next section.

The next step in the compilation process is the optimiza-
tion and encoding of the of the DFA. The number of states
in the DFA is minimized using a partition refinement tech-
nique [10], and the states are encoded using a heuristic
based on [12]. Finally synthesizable VHDL code is gener-
ated.

5.2  Exceptions and Compilation

When a PBS containing exception operators is com-
piled, the exception operators mark sub-trees in the inter-
mediate representation with a specific exception “scope”.
These scope regimes may be hierarchically nested and as-
sociate non-recognition in the indicated sub-tree with a
specific error sub-machine (represented as another sub-
tree). Each exception scope is represented by a “color”.
Thenatural color annotates sub-trees not contained in any
exception scope; e.g. no exception was specified. When the
NFA is generated, all of the NFA nodes are colored in ac-
cordance to their relationship to the tree representation.

Recall, when the DFA ia constructed, a “death” state is
generated when a group of NFA states have no successor
state(s) for a transition on a particular input symbol. To im-
plement the exception scoping,several different death
states are generated. Each death state is marked by a unique
combination of exception colors collected from the NFA
nodes implying the transition. Due to the potential for non-
determinism expressed in the NFA, a DFA death state may
be marked by several exception colors. In the most typical
cases of exception operator use, this is not manifest. How-
ever, complex production expressions containing exception
operators are certainly possible. In this case, one of the ex-
ception colors dominates. This dominating color is deter-
mined by a simple precedence rule. In the final steps, all of
the colored death states, except the one annotated by the
natural color, are removed from the DFA and the transitions
to these states are redirected to the DFA equivalents of the
exception machines (note that no actions are lost in this
process since the DFA is a mealy machine and actions are
associated with the transitions, not the states). The excep-
tion behavior due to the ‘!!’ operation is handled in a simi-
lar way.

5.3  VHDL output

The PBS compiler’s output is two files: a VHDL pack-
age, and a VHDL entity/architecture body. The package file
contains definitions, declarations, token and state encod-
ings, and a state transition table. The entity/architecture



body consists of the machine body with action code, and
other user defined VHDL code segments “dropped” into
the VHDL entity after compilation. The skeleton format of
the VHDL entity body is shown in Figure 3. The main body
of the machine is contained in the “machine core” section
which contains the action code as well. The gray regions
are locations in the skeleton where the user code segments
are inserted using special directives. The directives, and the
corresponding code enclosed by braces, is placed in the be-
ginning of the PBS description, and can occur in any order.
Several directives are mandatory such as “port{}” since a
useful VHDL entity must have an interface. Most are op-
tional. Figure 4. illustrates the directives required by the
example.

5.4  Descriptive Partitioning Issue

We introduce this idea by noting the existence of input
specifications, even quite small ones, that result in the gen-
eration of an enormous number of states in the DFA during
compilation. In worst case the growth of the number of
DFA states is an exponential function of the growth of the
number of NFA states [8]. This arises essentially when the
DFA states are used as “memory” as opposed to strictly
“control state” due to the manner of specification. An ex-
ample is the storage and later comparison of permutations
of large numbers of past input symbols. Although extreme-
ly bad state explosion behavior certainly exists for patho-
logical specifications, it does not detract from the utility of
this specification technique. We have found that, for most
types of machine behavior suited to PBS style specifica-
tion, a natural partitioning of design specification is typical.
This partitioning is between the description of the control
aspects of the design through the productions, and the spec-
ification of data-paths, memory storage, and semantics
through the HDL action clauses, and other procedural or
structural entities. Storage-in-mass of input data can also be
achieved via interactive behavior specified by productions,
with memory storage entities.

6.0  Experiments

Several example production base specifications have
been compiled and synthesized. Table 1 illustrates the re-
sults of the experiments1 to date. The cache example is a
simple cache coherency protocol from [15]. Parity is a se-
quential machine that recognizes only even parity bytes. It
is an interesting example because it is a good benchmark
for the optimization algorithms. The bounce example be-
haves as a bit sequential low pass filter. This example is

1.  The PBS descriptions for these examples may be obtained
via anonymous ftp from bears.ece.ucsb.edu.

from [1]. The count0 example is the complete description
of the machine introduced earlier, and is a PBS implemen-
tation of the procedural design in [14]. The pager2 example
is a large example adapted from a protocol for radio pagers,
requiring complex control. The VHDL actions in this spec-
ification perform such functions as assembling data words
and implementing linear feedback shift registers for error
detection. The PBS and VHDL size columns are the total
number of lines in the input descriptions and output de-
scriptions respectively. Note that the VHDL output makes
use of very concise jump transition tables and hand coded
procedural versions of these files would probably be much
larger. It should be noted that the smaller examples have
fixed overhead in the form of reset conditions and interface
descriptions which dominate the size of the smaller PBS
descriptions. This can be seen by comparing the number of
lines of productions and actions versus the total PBS de-
scription size. In the larger example (pager2), a hand coded
procedural description would have to represent at least 536
distinct states, and 39 distinct actions, while this behavior
can be concisely represented in 139 lines of productions.
The NFA state column contains data for the total number of
NFA states before conversion to a DFA. The compilation
times are CPU seconds running on a Sun Sparcstation 1

workstation for compiling the PBS to procedural VHDL.
This time includes state minimization, but excludes state
assignment. The last two rows of the table show the results
of further compilation and logic synthesis of the designs
using the Synopsys synthesis tools.

7.0  Conclusion and Acknowledgment

A model and an implementation for hardware specifica-
tion, simulation, and synthesis from production based spec-
ifications has been described. For many types of complex
behavior, production based specifications have advantages
over procedural specifications. We believe this specifica-
tion technique to be useful for the ASIC designer, as well as
having potential for further research in the field of system
level design. Currently we are studying optimization of the
data flows implied by the HDL actions in the framework of
the model presented in this work.

The authors wish to acknowledge Synopsys Inc. for
valuable discussion and for the use of their VHDL compil-
er and logic synthesis tools in obtaining the data for this pa-
per. This research was supported through grants from
Synopsys and the California MICRO program #90-195.
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entity <name> is
port ( );port{}

architecture BEHAVIOR of <name> is

begin

end BEHAVIOR;

header{}

PBS_MACHINE: process

trailer{}

begin
decl{}

process_front{}

process_end{}

architecture{}

end process;

library work;
use work.<name>_pak.all;

machine core...

declarations...

port  { CLK, INPUT: in BIT;
CNT: out INTEGER range 0 to 7;
IS_LEGAL: out BIT}

process_front  {
wait until CLK’event and CLK = ’1’;
if (input = ’1’)

then PBS_TOKEN := ONE;
else PBS_TOKEN := ZERO;

end if;}

decl  { variable COUNT: INTEGER range 0 to 7;}

Figure 3

Figure 4

a. hardware synthesis results not available

Table 1: Experiments

metric cache parity bounce count0 pager2

number of productions 5 17 5 4 21

number of actions 2 2 2 3 39

lines of productions
 and actions

11 21 9 4 139

PBS size (lines) 41 48 36 41 187

procedural VHDL output 83 120 96 108 1269

number of NFA states 18 1020 13 30 1688

final number of states
(DFA)

3 16 5 4 536

number of transitions
with actions

3 4 2 6 548

compilation time 0.1 2.0 0.1 0.1 18.9

number of standard cells 9 26 14 30 ***a

relative area 23 35 45 102 ***a


