
UNIVERSITY OF CALIFORNIA
Santa Barbara

Symbolic Data Path Analysis

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Chuck Monahan

Committee in charge:

Professor Forrest D. Brewer, Chairman

Professor Malgorzata Marek-Sadowska

Professor P. Michael Melliar-Smith

Doctor Mario Nemirovsky

June 1997

ii

The dissertation of Chuck Monahan
is approved:

__

__

__

__
Committee Chairman

June 13, 1997

iii

June, 1997

Copyright 1997

Chuck Monahan

All Rights Reserved

iv

To my father.

v

Acknowledgments

First, I would like to thank my advisor, Professor Forrest Brewer, for his

guidance and support throughout my graduate studies at University of California,

Santa Barbara. While my notebooks contain entries which questioned the sanity of

his ideas, time has shown that the problem stemmed not from his vision but from

mine.

Also, I would like to thank the Committee members: Professor Margaret

Marek-Sadowska, Professor Michael Melliar-Smith, and Dr. Mario Nemirovsky

for helpful suggestions and comments helping to improve the presentation of this

work.

I would like to gratefully acknowledge contributions from Dr. Andrew

Seawright and Dr. Ivan Radivojevic′ both of whom added invaluable insights to

this topic and whom demonstrated that a Ph.D. in CAD was a feasible and

interesting proposition. A note of deep gratitude goes out to all of those that have

helped maintain and improve our C++ BDD package, HomeBrew, used

extensively throughout this project. Notable among this group are Dr. Andrew

Seawright and Andy Crews, and Anthony Stornetta. An additional note of

appreciation goes to all of these individuals, Hien Ha, and the other occupants of

room 2164 who have placed knowledge and enjoyment ahead of competition and

politics.

vi

This work was sponsored by donations from the Mentor Graphics Corporation

as well as UC-MICRO program. Without their generous support and willingness to

help academic research, this work would have never been realized.

I want to use this opportunity to express my thanks, one more time, to all of my

teachers and colleagues at: University of California of Santa Barbara, for their

contributions to my knowledge and enthusiasm over the twelve year period.

Finally, my deepest gratitude goes to my parents, Bernard and Peggy, who

instilled the belief in me that I had skills to develop yet granted me the flexibility to

nurture them. My support and love is extended to my sister, Joey, who always

extended them in return. And a debt of gratitude, whose only rival is the national

debt, is owed to Monette Stephens who convinced me to not only start but to finish

great things.

vii

VITA

Born Pleasanton, California, U.S.A. April 8.1967.

EDUCATION

M. S. Electrical Engineering, 1993.
Department of Electrical and Computer Engineering
University of California at Santa Barbara
Santa Barbara, CA, U.S.A.

B. S. Electrical Engineering, 1990.
Department of Electrical and Computer Engineering
University of California at Santa Barbara
Santa Barbara, CA, U.S.A.

FIELDS OF STUDY

Major Field: Computer Engineering

Specialization: System Level Computer-Aided Design
Professor Forrest Brewer

Minor Field: Computer Science

PROFESSIONAL EXPERENCE

Graduate Student Researcher, Department of Electrical and Computer Engineer-
ing, University of California, Santa Barbara September 1993.

Consultant/Owner, Monahan Consulting, Santa Barbara, CA November 1993.

Teaching Assistant, Department of Electrical and Computer Engineering, Univer-
sity of California, Santa Barbara September 1990.

PUBLICATIONS

Conference papers:

C. Monahan and F. Brewer, “Scheduling and Binding Bounds for RT-Level Sym-
bolic Execution”,Proc. IEEE Int. Conf. Computer-Aided Design, San Jose, CA.
Nov. 1997.

viii

C. Monahan and F. Brewer, “Concurrent Analysis Techniques for Data Path Tim-
ing Optimization”,33rd IEEE/ACM Design Automation Conference Proceedings,
Las Vegas, NV, June 1996.

C. Monahan and F. Brewer, “Symbolic Modeling and Evaluation of Data Paths”,
32nd IEEE/ACM Design Automation Conference Proceedings, San Francisco, CA,
June 1995.

C. Monahan and F. Brewer, “Symbolic Execution of Data Paths”,Proceedings of
5th Great Lakes Symposium on VLSI, Buffalo, NY, March 1995.

C. Monahan and F. Brewer, “Communication Driven Interconnection Synthesis”,
Proceedings of 6th International Workshop on High Level Synthesis, Dana Point,
CA, November. 1992.

ix

Symbolic Data Path Analysis

by

Chuck Monahan

ABSTRACT

In ASIC construction, design changes can occur at all phases of the product devel-

opment cycle. When changes occur late in the development cycle, say after data-

path synthesis and verification, it can be very expensive not to maintain a signifi-

cant portion of the pre-existing design. However, changes in this environment

require accommodation of the limitations of the pre-existing data-path, which

potentially restrict operand movement, operand storage, or control encoding.Re-

quired changes may be in the data-path structure, in the input data-flow specifica-

tion or may simply be attempts to remove critical communications which are

limiting the performance. A variety of problems arise from these consideration

including optimal memory operand binding, optimal function unit and communi-

cation binding, and optimal data-path constrained scheduling.

This thesis presents an automata model with which to systematically explore the

mapping freedom between a data-flow graph and a pre-defined data path. This

technique shows great potential for accommodating last minute design changes or

x

creating schedules around a core structure. Our model correctly represents the lim-

ited storage capacity, restricted communications structure, and restricted control

vector constraints of a real data path and can accommodate a variety of user speci-

fied constraints. An exact symbolic formulation of these constraints and of the

data-path-constrained operand movement are used to ensure correctness and

potentially generate optimal mappings. The systematic approach identifies all solu-

tions which comply with these constraints and minimize the number of cycles.

Various optimizations and practical heuristics are presented for both the automata

and its state encoding. The automata is implemented in a compressed binary deci-

sion diagram (BDD) representation to increase the efficiency of the automata exe-

cution.

Keywords: Binary Decision Diagrams; Data Paths; High-Level Synthesis;

Scheduling; Retargetable Compilers; Re-binding; Interconnection;

Timing; False Paths.

xi

Contents

Chapter 1. Introduction 1

1.1 An Example ..1

1.2 The Role of Change in the Design Process ...4
1.2.1 Background.. 4

1.2.2 Examples of change ... 6

1.3 Accommodating Late Changes ...8
1.3.1 Mapping data-flow graphs ... 10

1.3.2 Evaluating performance... 13

Chapter 2. Related Work 15

2.1 Synthesis Methodology ...15

2.2 Compiler Methodology ...20

Chapter 3. Problem Formulation 23

3.1 Modeling Data-Path Activity ..24

3.2 Competing Network Topologies ...27

3.3 Data-flow Alternatives ..29

3.4 Incorporation of Partial Data-Flow Map ..32

3.5 Benefits of Operand Modeling ..32

Chapter 4. Automata Representation 34

4.1 Input Specification ..34
4.1.1 Data path .. 35

4.1.2 Data-flow graph ... 40

4.2 Problem Specification ...42

4.3 Representing Data Paths ...43
4.3.1 Automata model... 43

4.3.2 Applying the automata... 46

xii

4.4 Transform Relation ...50
4.4.1 Relation construction ... 50

4.4.2 Memory mapping optimizations.. 55

4.4.3 Operand lifetime optimizations ... 57

4.4.4 State reduction techniques ... 59

4.5 Encoding ...60
4.5.1 Selected codes.. 61

4.5.2 Re-evaluating latch transform relations................................. 62

4.5.3 Register size constraints... 64

4.6 Additional Restrictions ...65
4.6.1 Control restrictions .. 66

4.6.2 Data-flow restrictions .. 67

Chapter 5. Single Topology Applications 68

5.1 Data-Path Routing ...69
5.1.1 Memory binding optimization ... 70

5.1.2 Routing Results.. 71

5.2 Data-Path Binding ...75
5.2.1 Converting operation schedules into bounds......................... 77

5.2.2 Binding Results.. 79

5.3 Data-Path Scheduling ...80
5.3.1 ALAP bound generation .. 81

5.3.2 Scheduling Results... 84

Chapter 6. Evaluating Multiple Networks 92

6.1 Scheduling on Multiple Data Paths ..92

6.2 Timing Evaluation ...94
6.2.1 Timing model... 95

6.2.2 Using the automata .. 102

6.2.3 Experimental Results ... 108

Chapter 7. Discussion 115

7.1 Summary ... 115

xiii

7.2 Future Research Lines .. 116
7.2.1 Better lifetime bounds.. 116

7.2.2 Cyclic data-flow graphs ... 117

7.2.3 Control data-flow graphs ... 118

Bibliography 119

Appendix A. Binary Decision Diagrams 126

Glossary 130

xiv

List of Figures

Figure 1.1: Example of performance trade-offs. 2
Figure 1.2: Idealized High-Level Synthesis Methodology 5
Figure 1.3: System overview 11
Figure 1.4: Scheduling example. 12
Figure 3.1: Data-path activity. 24
Figure 3.2: Pipelined ALU modeled as a compound component. 26
Figure 3.3: Disjoint topology alterations. 27
Figure 3.4: Merging alternative topologies into a single data-path design. 29
Figure 3.5: Example data-flow graph 29
Figure 3.6: Representing alternative operations. 31
Figure 4.1: Base component set. 37
Figure 4.2: Representing loadable register with base components. 38
Figure 4.3: Dedicated latch 56
Figure 4.4: Dedicated control line example 63
Figure 5.1: TMS32020 based data-path models 72
Figure 5.2: Dual register data path 73
Figure 5.3: Novel data-flow graph benchmarks. 74
Figure 5.4: Fluctuating ALAP bounds due to operand fanout. 84
Figure 5.5: Cycle by cycle comparison of performance 88
Figure 5.6: Resulting schedule and operand mappings. 90
Figure 6.1: Wire Delay Model 98
Figure 6.2: Latch’s output wire captures connection and functional behavior. 99
Figure 6.3: Multiplexer component variation: “switching element set” 100
Figure 6.4: Partitioned time line. 103
Figure 6.5: TMS32010 based data-path model and floorplans 109
Figure 6.6: Timing analysis overhead in routing. 111
Figure 6.7: Timing analysis overhead in binding. 113
Figure 7.1: ROBDD forms of f=AB+C using different orderings 127

xv

List of Tables

Table 2.1: Methodology Classification 16
Table 4.1: Behavioral Constraints 37
Table 5.1: Initial and Final operand bindings 75
Table 5.2: Data-Path Routing Results 76
Table 5.3: Data-Path Binding Results 80
Table 5.4: Exact scheduling results 86
Table 5.5: Heuristic schedules results 89
Table 6.1: Five combined topology benchmarks. 93
Table 6.2: Relative efficiency of multiple topology analysis. 93
Table 6.3: Physical Parameters 109

1

Chapter 1

Introduction

Integrated chip design and fabrication has become a fiercely competitive

market. The reduction of feature sizes in combination with increased die sizes have

dramatically increased the complexity of most chip designs. This complexity is in

conflict with the factor that increasingly distinguishes a product: time to market.

The realization that problems are inevitable in such a complex environment has

resulted in significant improvements in integrated chip/digital system verification.

While developments in automated synthesis have reduced the number of errors,

the continued interest in verification underscores the belief that errors still exist.

Equally important to the detection of errors is the correction of errors especially

when these corrections can be made at low cost. This thesis proposes a number of

techniques which aid the accommodation of changes, errors, or other forms of

modifications that occur late in the design cycle.

1.1 An Example

Assume a designer wants to implement the differential equation (diff_eq)

benchmark in a relatively short time frame. After considering the various options,

they decide to utilize the pre-existing DSP core that is shown in Figure 1.1 with its

2

accompanying floorplan. The problem is that the algorithm is taking too long to

run on the adopted architecture. Efforts to minimize the schedule and cycle time

have only obtained a 17 cycle schedule running at 37.4ns cycle. Realizing this

performance problem, the designer identifies the critical path, which is running

between the register file and the ALU, and introduces a bypass line (option A).

With the addition of this bypass line, the critical path becomes the line between the

register file and the multiplier. The addition of another bypass line (option B)

causes the critical path to return to the link between the register file and ALU, but

this time the path uses the original bypass line. The performance increases are

detailed under the heading “Critical Path Optimizations.”

a>b

RAM

Ext-Out

Ext-In t

pShift

acc

option A

option B
Pipelined TMS32010-based design

RAM

p reg

A
C

C

Xin

1000

2000

3000

4000

5000

1000 2000 3000 4000

Xout

t reg

MUL

pi
pe

 r
eg

Design floorplan

Figure 1.1Example of performance trade-offs.

pipe

ALU

*

MUL

bus

Critical Path Optimizations (critical path)
Orig: 17 cycles * 37.4 ns = 635.8 ns RAM -> Bus -> Shifter -> ALU -> Control
Opt A: 17 cycles * 33.4 ns = 567.8 ns RAM -> Bus -> Multiplier -> pipe register
Opt A&B:17 cycles * 33.1 ns = 562.7 ns RAM -> option A -> ALU -> Control

Rescheduling Optimizations
Orig: 17 cycles * 37.4 ns = 635.8 ns
Opt A: 16 cycles * 33.4 ns = 534.4 ns
Opt A&B:14 cycles * 33.1 ns = 463.4 ns

Rescheduling for Timing
Opt A&B:14 cycles * 32.7 ns = 457.8 ns
Opt B: 14 cycles * 32.2 ns = 450.8 ns

C
nt

rl

Shift

ALU

Control

3

At this point, the designer is wise to reinvestigate the scheduling possibilities.

Because of the increased interconnection, routing path combinations are now

possible which were formerly infeasible. The best schedule for each potential

design is listed under the heading “Rescheduling Optimizations.” As expected,

minor reductions to the schedule are possible since the data path relinquishes its

dependency on the global bus. These improvements coupled with the cycle time

improvements result in substantial performance benefits. Still, this rescheduling

only considered the timing benefits from utilizing a predefined critical paths. The

problem is that the scheduler did not have the ability to evaluate the timing options

in order to improve the critical path through rerouting. If the scheduler had such

ability it would be able to reduce the cycle time by rerouting operands through the

multiplier instead of over the original bypass line. In retrospect, the designer

would realize that “option A” is not required. This reduces the distributed RC and

further reduces the clock cycle to the values shown under the heading

“Rescheduling for Timing.”

This example is intended to demonstrate a number of key points. The first of

these is the flexibility which is inherent in a pre-existing data path. For example,

the final alteration showed that the data path was capable of routing operands

through a pipelined multiplier instead of a bus without requiring additional clock

cycles. This is impressive because the route through the multiplier incurs two

clock cycles of delay as operands pass through the pipeline register and register p.

The second point is the benefit of a quality scheduler/compiler which is capable of

utilizing such routing freedom in an existing data path. The third is the

unpredictable nature of alterations. The designer could have little intuitive notion

that “option B” would be a superior alteration. As this example shows, it is often

wise to consider various combinations of changes. The final point is the benefit of

merging a rating scheme (such as the timing used in this example) with the

4

evaluation or re-evaluation of high level decisions. This thesis will present flexible

data-path analysis techniques with which to explore such trade-offs.

1.2 The Role of Change in the Design Process

This section is intended to broaden the scope of the problems that can be

addressed by these techniques.

1.2.1 Background

The design process used to create a chip may be as custom as the chip itself.

Yet given that, there are a number of general statements which are applicable to

most designs. First, a typical design starts from a high level specification which

summarizes the intended behavior or support of the intended product. Such a

description, often transformed from a executable program into the form of a data-

flow graph, permits the designer to check the functional consistency of the design.

After a number of synthesis steps (high-level transformations), these high level

descriptions are eventually cast into an RT-level (register transfer level)

description. Often the RT-level structure is in the format of a data path where

physical components and subsystems may be identified. Ideally, adata-flow map,

linking the components of the high level description with the proposed data path, is

available. The data-path controller may be constructed from this data-flow map. At

this point, logic level synthesis tasks optimize the various RT-level components.

The complexity of these tasks often requires that the design be submitted in

portions, thereby restricting their “global view” of the system architecture. Finally,

these elements are merged into a single design, verified, and then submitted to a

foundry for production.

This design process is depicted in Figure 1.2 as a series of sequential steps.

This figure utilizes the conventional high-level synthesis view of the design

5

process, which partitions both the high-level transformation and the logic-level

transformation into a series of tasks. These tasks have an ordered set of

dependencies which are reflected in the figure. Unfortunately, the decisions made

Data-Flow
Graph

Data Path

cycle 0:
op1 ->bus1
op2 ->bus4
ALU -> op3
op3 -> latch2

cycle 1:
......

0x6CF -> cntrl

Figure 1.2Idealized High-Level Synthesis Methodology

Allocation

Scheduling

FU Mapping

Memory
Partitioning

Memory
Mapping

Bus Allocation

Bus Mapping

Data-Flow Map

Controller
Construction

Floorplanning

Routing

Verification

Controller
Programmingor

Chip

Fabrication

H
ig

h-
Le

ve
l T

ra
ns

fo
rm

at
io

n

Lo
gi

c-
Le

ve
l T

ra
ns

fo
rm

at
io

n

6

at one level of abstraction affect the lower levels, such as the affect that the

allocation of a bus has on routing and timing constraints. Since these effects may

not be evaluated until much later in the design process, they may only be estimated

when considering the options at a given abstraction level. The quality of these

estimates are a critical matter for the design process. While errors stemming from

underestimating can compromise a systems performance, overestimations can be

equally dangerous since it can result in wasted potential. Furthermore, this

specification of a sequential design process is idealized since a practicable

methodology incorporates various levels of feedback.

There are many options which are missing from the process depicted in

Figure 1.2, such as the use of a field programmable device or a DSP core and a

retargetable compiler. One option that is depicted is the use of a programmable

controller. This technique is used in a variety of products to allow the user to

customize the product. This capacity is extremely enticing since it permits changes

late in the design cycle without requiring any alterations to the low level design.

Still, many products require the reliability and higher performance of a static,

distributed controller interface.

1.2.2 Examples of change

As previously noted, feedback plays a critical role in the design process. Here,

the designer attempts to accommodate inconsistencies in one level of abstraction

by altering decisions which were made at higher levels. While the reasons for these

changes may be quite varied, there are two main classes of changes: changes to the

specification or changes required due to faulty estimations.

Changes to the specification of a design are extremely common. These

alterations may result from changes in the projected market or errors discovered in

7

the initial high-level specification. In addition to changes resulting from outside

forces, changes may result from sub-system integration. Sub-systems are used to

simplify the data-path design process by partitioning the system into manageable

sub-systems with well-defined interfaces. Miscommunication concerning such an

interface can require substantial changes to a sub-system. Even if such

miscommunications are avoided, the integration of these systems into a single

framework may induce unforeseen errors related to power or propagation delays.

Even more pervasive are errors resulting from faulty estimations made at

higher levels of abstraction. The precision with which the low level effects can be

estimated at the highest levels of decision making is obviously limited. This limit

is somewhat mitigated by steadily increasing the accuracy with each passing level

of abstraction. But, the capacity to utilize these measurements is limited as the

design becomes increasingly partitioned, as required by the complexity of the low-

level analysis. Examples of errors resulting from such poor estimates includes:

floorplanning constraints may require a smaller register bank, or timing analysis

may prohibit the chaining of a certain operation or require that a bus be partitioned

to reduce the propagation delay.

The use of feedback helps to accommodate these changes or errors. Many of

the efforts in CAD synthesis have become multi-disciplined, making the high-level

or logic-level transformation more of a single inter-related process instead of a

series of sequential steps, as denoted by the groupings in Figure 1.2. While

feedback within a given transformation is becoming more prevalent, the more

formidable challenges lie in using feedback from the low-level in the high-level

decisions. In this field, the primary interest is improving performance through

high-level modifications to take advantage of the realized RT-level or low-level

8

structure. Modifications to the high-level structure after the RT-level or low-level

structure has been created will be denoted aslate changes.

1.3 Accommodating Late Changes

Two interesting methods for accommodating a late change are: make minor

modifications to the data path and controller or modify the controller without

altering the data path. A third option, completely re-initiate the design process, is

typically unacceptable because of the amount of work which is wasted. This third

option is only desirable if a change to the high-level specification occurs early in

the design cycle. There are obvious problems with this approach for solving errors

resulting from faulty estimations, since it is difficult to formulate more accurate

estimations from a faulty design.

The option which maintains a majority of the data path is desirable since it

limits the time spent in the design and verification processes. The ability to

efficiently integrate changes into an existing system is directly related to types of

alterations which are feasible. The first constraint on this feasibility is the ability of

the existing design to incorporate change. Whereas an RT-level design can

accommodate large amounts of alterations, a design which has completed the

floorplanning and, potentially, routing portion of the design may only be able to

handle minimal amounts of alterations. The second constraint is the complexity of

evaluating such a modification. Selecting the ideal alteration is subject to the

computational complexity and the data-path freedom.

As powerful as alterations to the data path can be, limiting the alteration to the

controller can be even more desirable since it requires minimal modifications to

the existing structure. This technique tries to use the freedom inherent in the

existing data-path design, whether it be modified or not, to accommodate a

9

potentially modified data-flow graph. If the data path is not constantly using its full

utility, it presents the opportunity to incorporate an altered data-flow graph with a

minimal or no performance penalty. The chief benefit of this technique is the

savings of invested man hours. For some designs, this savings can outweigh the

increased performance resulting from more substantial alterations.

These two techniques for accommodating change may be extended to systems

which have no initial data-flow map. As seen in the introductory example, the need

to map a data-flow graph on to a preexisting DSP core or embedded processor may

exist. This field of applications is an equally compelling area of research which has

traditionally fallen under the field of retargetable compilers.

Regardless of whether the data-flow map is being generated or modified, the

mapping of a data-flow graph onto an existing structure benefits from the increased

accuracy in the estimates. Whereas high-level decisions previously relied on

estimations of lower level constraints, many of these constraints have been

evaluated. This increased accuracy can substantially aid the decision process

related to these high level trade-offs. While the quality of the estimations are

compromised by alterations to the data path or controller, the quality of the

estimation can only exceed those that were initially used to evaluate high level

issues.

While provocative, these approaches require modifications to the data-flow

map and potentially the data path. Alterations which are made by hand should be

discouraged in order to minimize any unforeseen human error. A number of

conventional compiler techniques are available including retargetable compilers

and micro-code compaction. But these techniques traditionally characterize only a

subset of the data path’s functionality in order to evaluate large problems in a

reasonable amount of time. Furthermore, these systems are not set up to utilize the

10

information present in an existing, although insufficient, data-flow map. This

thesis describes a system which characterizes the complete high-level functionality

of the data path in order to systematically explore the possible mappings while

maintaining the predefined structural design. This system is easily extended to

incorporate additional low-level information by which to analyze performance

trade-offs.

1.3.1 Mapping data-flow graphs

The required level of analysis is specific to the change which is to be

accommodated. An alteration to a bus may only require an alternative yet

compatible communication path. A tighter register constraint might require the

storage of an operand to be remapped to a different memory device accompanied

by a set of accommodating communications changes. But, in general, a change

may require alterations to the operation schedule which in turn requires remapping

of all affected units including function unit, memory, and bus elements. Thus, this

data-path-constrained scheduling implicitly contains the re-mapping of

operations, operand storage and communication problems. This thesis will,

therefore, concentrate on accommodating this problem and address subproblems

where appropriate. Figure 1.3 depicts the complete system which generates a

detailed mapping for a data-flow graph onto a data path compliant with a suite of

optional restrictions.

Traditional scheduling techniques do not adequately address data-path

scheduling constraints. Fundamentally, such techniques assume that the data path

contains an unspecified, universal switching network.1 However, the actual

switching network, a network of data buses and switching elements, defines a

1. The throughput of such switching networks is often bounded, but the functional model
acts as a cross-bar switch.

11

limited set of conditional paths between components over which operands can

transfer. In the absence of such restrictions, operand transfers are unlimited2 which

reduces the scheduling problem to one of maintaining operation precedence and

resource limits. Such constraints permit one to formulate simple bounds on the

solution space, such as ASAP and ALAP bounds and their generalizations. In

contrast, systems with predefined switching networks introduce a new set of

constraints upon operand transfers. To demonstrate the effect of these constraints,

consider the data path and data flow pair depicted in Figure 1.4. Without the data

path, the ASAP for the data flow is four cycles, but with the data path, the optimal

schedule is over twice as long. Clearly the constraints such as operand movement

and operand recomputation which were required by this example makes the classic

ASAP and ALAP bounds inappropriate. In particular, such constraints are not

adequately captured by communication bounds such as “bus limits” and require a

more detailed model of the interconnection structure.

2. unlimited or at most bounded in number

Data-Flow
Graph

Data Path

Data-path

scheduler

cycle 0:
op1 ->bus1
op2 ->bus4
ALU -> op3
op3 -> latch2

cycle 1:
......

0x6CF -> cntrl

Figure 1.3System overview

Control Restriction

Schedule Constraints

Register Constraints

Memory Binding

constrained

12

Compiler techniques offer many benefits over scheduling techniques but are

still inadequate for systematically addressing the data-path-constrained scheduling

problem. Compilers’ data-path models do incorporate limitations on operand

transfers. A limited set of “instruction sequences”, on to which the input data flow

is mapped, are defined to provide the efficiency required for large scale problems.

Even retargetable compilers generate an instruction set for the data path and then

compile the data flow using sequences from this instruction set. This technique

permits compilers to generate solutions to problems which are intractable for

schedulers. However, it is impractical for the compiler to efficiently merge the

tight communication and storage constraints without overlooking possible

solutions. Typically, only a small subset of possible communications are used

ca1 a2

o1

o2

o3

o4

Data-flow graph

3

Reg File

ACC

A

B

C

D

Data path

Element

Figure 1.4Scheduling example.

ALU

Schedule

State ALU ACC Reg

S0 {a1, a2, c}

S1 a1 {a1, a2, c}

S2 A o1 {a1, a2, c}

S3 B o2 {a1, c}

S4 o2 {a1, o2, c}

S5 a1 {a1, o2, c}

S6 A o1 {a1, o2, c}

S7 C o3 {a1, c}

S8 D o4 {c}

S9 {o4, c}

13

resulting in suboptimal results. For problems of suitable size (e.g. inner loop

optimization), higher quality results may be required. The techniques presented in

this paper are particularly valuable in highly constrained problems.

In this thesis, I seek to bound the solution space more accurately by using a

detailed symbolic model derived from the data path. This model accurately

represents constraints such as:

• Limited Operand Transfer - An operand may travel between components

only if the source device contains the operand, a bus exists between the

devices, and the control signals enable a transfer across this bus.

• Bus Conflicts - Buses can only transmit a single operand at a time. Opera-

tions which combine two operands on the same bus are excluded.

• Register Constraints - Memory devices have a limited number of operands

that they may store.

• Control Encoding Limitations - Specific combinations of control signals

may be illegal.

For data-flow graphs of appropriate size, these restrictions sufficiently bound the

solution space to permit the identification of optimal solutions to the data-path-

constrained scheduling problem. As will be shown, the set of restrictions increase

dramatically for re-mapping problems which utilize a pre-existing data-flow map

enabling the optimal analysis of much larger problem instances.

1.3.2 Evaluating performance

The above technique can generate thousands of solutions. The quantity of

solutions is only increased when alterations to the data path are considered.

Whereas a single element may be randomly selected, there are a number of

14

additional criteria by which the quality of each solution may be rated. If the design

is at the RT-level, the schedule length, register requirements, or control

requirements may be used to differentiate the various solutions. Additionally, low-

level designs may also incorporate timing and power information, which

heretofore could only be estimated, as a measure to distinguish designs. The

increased accuracy of these estimations results from the combinations of two

factors. First, the detailed layout information helps to construct more accurate

models of propagation delay or power models resulting from the interconnection

structure. Equally important is the existence of a detailed data-path description.

The specification of the routing options, including those paths formerly considered

false-paths, binding options, and scheduling options supported by the data path

permits high-level decisions to be reevaluated using the direct results as a measure.

With this capacity, one may be able to not only accommodate change as required

but to instigate change in order to improve the mapping of the high-level freedom

on the low-level design.

Towards this end, a symbolic data-path automata is presented which models

the execution freedom of several, alternative data paths. The automata can

incorporate rating information by which solutions may be selected. The

fundamental motivation for adopting this automata framework is its generality

which permits it to be applied to a variety of applications. Furthermore, a

combination of symbolic and reachable state techniques permit exact analysis of

the solution space with which to identify optimal solutions. Binary decision

diagrams (BDD’s) are utilized to implement the proposed automata techniques.

15

Chapter 2

Related Work

The central idea to this thesis is the generation and evaluation of data-flow

maps which enable a data path to support a data-flow graph. On the whole, this

topic is prevalent in many fields including compilers and control generators. When

the topic is expanded to incorporate data path alterations, additional fields such as

automatic synthesis, engineering change, and timing evaluations become pertinent.

While all of these fields are relevant, none match the scope of the system that is

presented here. Table 2.1 gives a rough overview of how the proposed system,

labeled “High-Level Appraisal”, differentiates itself from the more traditional

methodologies. These differences are discussed in ensuing sections. The first

section addresses synthesis methodologies for high-level synthesis and for

engineering change, and the second discusses compiler techniques for fixed

architectures.

2.1 Synthesis Methodology

The system presented in this thesis was initially designed as a technique for

synthesis. Many of the issues addressed inhigh-level synthesis[37,38,32,64,90]

(namely scheduling, operation binding, operand binding, and communication

16

binding) exist in my system. But the two methodologies are very different. The

essential difference is that high-level synthesis systems alter the schedule and

bindings in order to create a better data path, instead of altering the data path in

order to create more efficient high-level assignments. Essentially this is reversing

the cause and effect portion of the synthesis design. This change in methodology

Table 2.1: Methodology Classification

Methodology Given
Create/
Alter

Static Objective

High-Level
Synthesis

High-level
specification

Data-flow
map
&
data-path

n/a Create optimal
RT-level or
low-level
implementation

Engineering
Change

Combinational
network
&
new
combinational
specification

Combina-
tional
network

Data-flow
map

Minimize change
to original
network to fulfill
new specification

Compilers Instruction set
&
high-level
specification

Instruction
sequence

Instruction
set

Maximize system
performance

Retargetable
Compilers

Complete
ASIC design
&
high-level
specification

Instruction
set
&
instruction
sequence

Data-path
&
controller

Minimize
program memory
&
Maximize system
performance

High-Level
Appraisal

Data-path
&
data-path
alterations
&
high-level
specification

Data-flow
map
&
controller

Data-path Maximize system
performance

17

reflects the design environment of each problem. Whereas high-level synthesis

assumes an environment of unlimited data-path design freedom, my system

evaluates data-path cores with limited support of data-path modification. This is

why the component allocation is fixed (instead of variable) in my system.

To understand the motivation for the proposed methodology, it is important to

know the limitations of the top-down design methodology. High-level systems,

such as CADDY/DSL [20], Cathedral [7], CHIPPE [12], CMUDA[84], HIS [20],

SEHWA [78], traditionally use a top-down methodology. This methodology makes

decisions for the higher level of abstraction and uses these results to guide the

decisions about the lower levels. Even McFarland’s BUD (bottom-up design) [64]

utilized a top-down approach although it argued the importance of using detailed

low-level library modules with which to evaluate the high-level decisions, such as

design partitioning. While the top-down approach is effective, it has the

disadvantage that earlier decisions may not be easily revised. In particular,

synthesis systems rarely re-evaluate the high-level decisions when synthesizing

elements below the RT-level. A notable exception are floorplaners, such as Fasolt

[48], which consider rebinding communications to ease routing constraints. This

inability to reevaluate high-level decisions at lower levels of design can be a major

disadvantage when low-level synthesis identifies unpredicted problems in meeting

the design requirements. The traditional approach with which synthesis systems

handle these late inconsistencies is: “feedback and resynthesis.” But, the

effectiveness of this approach is inversely proportional to the scale of the

considered modifications. Therefore, feedback from the low-level design to guide

the high-level decisions is typically ineffectiveunless the low-level design remains

relatively constant. Thus the inspiration for this thesis: modify around the low-

level problems and then explore whether the high-level issues can accommodate

the changes. This concept was independently proposed by Miyazaki and Ikeda

18

[69], but their model utilized a heuristic ASAP scheduler approach in order to

analyze problems which are larger and control dominated.

This approach to accommodating design alterations late in the design process

is similar to the field ofengineering change control. In general, this research field

addresses the use of controlled alterations to a preexisting design to accommodate

some specification modification. The difference between engineering change and

the technique described in this thesis is that engineering change tries to identify a

minimal modification to the circuit to accommodate a predefined change in the

high-level specification while my technique tries to modify the high-level

specification to accommodate or optimize a predefined change to the data path.

Because of these differing viewpoints of accommodation engineering change

explores the freedom in the combinational logic level [83,91,36,10,59] and ignores

the sequential freedom. While this technique is effective for its intended goal, it

relies on the designer’s ability to capture the intended performance of the system in

a purely combinational format. By contrast, a high-level description of the

problem would allow a system to explore the freedom inherent in the existing data

path description and locate more effective solutions which require changes to the

data-flow map and minimal or no change to the data path. An example of applying

this technique is the alteration of operand transfers bindings, operation bindings,

and operand bindings to improve the cycle time of a system.

The measurement/estimation of cycle time benefits from that model that this

thesis describes. The main problem with timing calculations stems from the effects

of false (infeasible) paths which were initially discussed in logic level combination

analysis [33,21,80] but also effect RT-level models. While the use of path-

sensitization has removed many false paths from the timing analysis [72], RT-level

are hindered through the use of fully defined binding information. This hinderance

19

is becoming more prevalent as the timing models expand to incorporate

propagation, switching, and control delays.[12,70,68] But these problems result

from the fact that high-level decisions are traditionally evaluated in the absence of

low-level information. These constraints are fortunately missing from my system

enabling it to make up for the constrained data-path environment by more exact

timing analysis. This subject is addressed in Section 6.2.

The internal data-path representation borrows heavily from data-path models

resulting from the high-level synthesis community while also expanding these

models to increase the design flexibilty. The earliest of these models were specific

to register and multiplexer designs[77,79,76,41] but later expanded to incorporate

register files[87] and pre-designed data path portions[34,73]. However, these

systems universally rely on restricted data path models and with a few exceptions

do not allow a predefined data paths. Instead, these systems construct an

appropriate data path for a proposed data-flow graph. For example, although

Parbus[34] and Splicer[76] allow predefined structures, both require limited

interconnection networks (in order to bound the problem) which restricts the type

of designs which may be modeled. Another example of restricted design

description is Cathedral II[73] which requires the data path portion to be compiled

from a portion of the data flow.

Before preceding to the next section, a final related research line of formal

verification systems [11,17,42] should be noted. This field analyzes the execution

freedom of an existing data path to ensure the correctness of the design. Although

there are some obvious parallels, my model attempts to coordinate high-level

components which are assumed to functionally correct. Therefore, my approach is

free to introduce abstractions and simplifications which do not seriously detract

from the power of the system but greatly enhance the speed.

20

2.2 Compiler Methodology

The automated generation of an instruction sequence to perform a specified

task is traditionally though of as compiling. The freedom of each compiler is

dependent upon the environment in the instructions are being generated. Speaking

in general terms, the most liberal environment is in high-level synthesis which can

allocate resources to aid the program execution. A slightly more constrained

environment is that of retargetable compilers which may alter the set of

instructions (assuming a VLIW architecture). Finally, the most restrictive

environment is that of a compiler which is limited by the fixed instruction set of

the target architecture.

For high-level synthesis, operation order is constructed through scheduling.

Traditional scheduling determines a execution order of operands which preserves

operand precedence and resource constraints in the absence of control conditions.

Techniques which utilize heuristics[18,31,76,79], ILP[44], bipartite graphs[85],

ROBDD[81], and reachable state analysis[92,27] have all been proposed. A

common component among such techniques is the use of ASAP and ALAP

bounds to limit the solution space and increase analysis speeds. In this area,

Timmer demonstrates that such bounds can effectively linearize the solution space

for certain problems.[85] Despite the individual merits of each scheduling

technique, these techniques were developed for partially-defined data paths and do

not fully model the resource constraints of a complete data-path design. Before

being applied to a pre-specified data path, the assumptions including operand

movement and operation recomputation and their effects on both the bounds and

the scheduling techniques must be reevaluated.

An area of research which is well-suited for fully specified data paths is

retargetable compilers. Retargetable compilers generate code which support a data

21

flow on a pre-specified ASIP or DSP architecture. This code generation is typically

split into the task of identifying an “instruction set” for the architecture and then

generating the code from this instruction set. While the task of generating the

instruction set may be automatic, as described by Leupers[50,51] and Van

Praet[88], it fails to utilize the data flow to eliminate large portions of the data path

which do not concern the task at hand as we have previously demonstrated[71].

While the techniques for mapping the application data-flow graph into this

instruction set vary, they are often characterized by tree pattern matching, as

described in [4]. In a restricted view, such pattern matching techniques can

produce optimal matches. But, the quality of the solution is limited by the quality

of the instruction set. Furthermore, this matching technique assumes a static model

of the target data-flow graph which is inappropriate to operand recomputation.

And while the instruction set may be expanded to accommodate commutative

operands, mapping associative operations is much more difficult.

Presently, the field of retargetable compilers has moved past the traditional

problem of generating code are addressing a variety of specialized problems to

optimize the resulting code.[52,54,55] Some of these problems are specific to a

given architecture, but all are intended to give retargetable compilers an additional

edge to make them practical. A survey of these problems may be found in [61].

Most of these problems are too specialized for the context of this thesis, and

therefore shall not be reviewed on an individual basis. A notable exception is the

work done by Liao on minimizing register or accumulator “spills”[54]. While

Liao’s work addresses the limited size of registers, it focuses on a single memory

store and does not consider operand recomputation.

Of the various compiler techniques, those proposed by Massalin[62] and later

expanded by Granlund and Kenner[39] share the closest parallel with this thesis.

22

These superoptimizing techniques use reachable state analysis of the instruction

set to identify shorter instruction sets to perform equivalent data manipulation.

While this work does generate optimal solutions, it is centered on identifying

equivalent operation sets. This work requires a low-level system description and

requires extensive modeling of operand values to enable pruning. Accordingly, the

sequence of target instructions must be extremely compact in order to generate

results. Furthermore, the input representation uses a detailed description of the

instruction set instead of a direct data-path description and is therefore ill-suited

for systematically analyzing data path alterations.

In closing, I would like to acknowledge the important work directed at

incorporating control dominated and reactive systems. While this thesis adopts a

traditional view of handling control, many researchers are expanding the capacities

of schedulers[43,81,89] and retargetable compilers[24,52] to handle control data-

flow graphs. While currently unsupported, these techniques must eventually be

integrated into the system which is proposed in this thesis.

23

Chapter 3

Problem Formulation

In order to automate engineering change within a predefined structure, both the

structure and the potential alterations must conform to a predetermined format.

This chapter presents an overview of the various elements of the format which was

selected for this work. This format is composed of four powerful techniques which

allow the designer to explore a significant portion of the modification freedom.

First, a uniform yet general model of data-path designs is adopted which strives to

maintain a balance between specification freedom and complexity. Second,

techniques for evaluating a set of data-path alterations are presented. Third, the

definition of data-flow graphs is expanded to permit a fuller set of alternative yet

equivalent operation sequences. Fourth, implementation details of the data-flow

map, potentially stemming from previous data-flow maps, may be specified ahead

of time to constrain the computational complexity. These techniques enable the

utilization of user-motivated suggestions reflecting the fact that this approach is

intended for controlled modification not for automated synthesis.

24

3.1 Modeling Data-Path Activity

Any attempt to model data-path activity is faced with the challenge of creating

a symbology with which to describe the data path. The variety of data-path

architectures, clocking schemes, and mixed operand types all combine to make a

formidable problem. In this work, the activity on any data path is expected to fall

under the framework depicted in Figure 3.1. The key to this framework is

identifying a minimum set of RT-level behaviors from which an abstracted, high-

end data path model can be expressed. The use of these basic behavioral types

frees the system from modeling the detailed working of the individual

components. It is this aspect which is crucial to the modeling of non-trivial

designs.

The RT-level operation of any data path is as follows: Operands which are

retrieved from either memory or the external world are passed through a common

network of switching and combinational elements. The combinational logic can

construct either new operands or control signals, such as the result of comparing

operands

Figure 3.1Data-path activity.

operands

Memory

External
World

Controller

Switching

Combinational
Logic

Logic

External
Output

signals

operands

operands

operands

operands

operands

State Transition

External
Input

F
unction U

nits

Multiplexers

V0

V1

V2

Vn

NV V 0 V 1× V 2 …× V n××=

25

two operands. Whereas as the control signal is sent directly to the controller, the

new operands return to the network of switching and combinational elements.

Some of the retrieved or computed operands will be sent to memory devices or

external devices from where they may affect the system on future cycles. Thus the

system symbolically models operands and not operations. This permits detailed

models of switching and storage units behavior while allowing conventionally

operation scheduling.

A given data path is transformed into this model by mapping the various RT

component of the data path using a set of specified component types. Memory

devices are modeled as either latches or register files. Both external output and

combinational logic can be modeled as function units. In this model, the

transmission of an operand through an external output is captured as the

transmission of a control signal. To prevent any data inconsistencies resulting from

reading an operand twice from the external world, external inputs are modeled

separately from functional units which, by contrast, may reproduce an operand as

often as required. Finally, multiplexers are used as the sole model of switching

logic which moves existing operands through the network. Any RT component

which may not be directly mapped into one of these component types must be

modeled as acompound component. A compound component is a component

comprised of multiple base components to represent the various behavioral

elements. Figure 3.2 displays an example of a compound component, a pipelined

ALU, which must distinguish its switching behavior as well as its memory

component from the combinational logic behavior.

This data-path model is converted into a finite state automata through the

following steps. The state of the data path, V, is comprised of the current set of

operands in the various memory devices plus operands from the external world

26

and signals sent to the controller. The input to the automata is the set of control

signals, which are not depicted in Figure 3.1, sent from the controller to the

individual data components. These signals identify the set of operands which are

retrieved, routed, created, and ultimately define the next state of the data path. A

single phase clocking scheme is adopted in this model which permits the

synchronization of the various state elements denoted by the bar in Figure 3.1.

From these restrictions, a transform relation, N, is constructed which represents

this movement of operands by specifying the operating conditions under which

any two states of the data path may be linked.

The problem addressed in this work is to identify a correct mapping for a given

data-flow graph by exploring feasible data-path activity using reachable state

analysis on the corresponding automata. The transition between these automata

states will be restricted not only by the data-path limitations but by the creation of

only those operands which are requested by the data-flow graph. For those

problem of the appropriate size, an exact search of the reachable states from a

given initial state is feasible. Such a search permits the identification of an optimal

Figure 3.2Pipelined ALU modeled as a compound component.

pipe

27

series of data-path activity which links this initial state to a final state. Correct

although possibly suboptimal mappings may be generated for problems for which

exact enumeration is not feasible.

3.2 Competing Network Topologies

Alterations to the data path are modeled by multiplenetwork topologies. Each

network topology describes a unique interconnection of data-path components

which, on its own, constitutes a valid data path. The difference between any two

topologies may be as slight as altering the fanout of a bus or as complex as

replacing a significant portion of the data-path design. Most alterations between

two topologies may be specified as a modified wire connectivity, modified

switching elements, replaced component, or a combination of such modifications.

The set of alterations which are considered can be very complex. The set of

topologies, identified by , can be composed of multiple alterations being

evaluated in concert. In this case, the set of topologies may be partitioned as

 were each represents a set of alterations which is

evaluated in a separate portion of the data path. Figure 3.3 depicts an example of

two disjoint alteration sets affecting the interconnection and the component type of

a single data-path design.

ϒ

ϒ ϒ1 ϒ2 …× ϒn× ×= ϒi

pipe *mult

ϒj
ϒi

Figure 3.3Disjoint topology alterations.

, ,
,

υi,1 υi,2 υi,3

υj,1 υj,2

m1

m2

m1

m1

mult

28

There are benefits derived from analyzing the set of different topologies

concurrently instead of each topology individually. In a concurrent analysis, large

portions of the analysis need not be duplicated for topologies which share some

similar structure. Such similarity can result from many factors, such as: 1) the

operational capacity of one topology is a subset of the capacity of an alternative

topology. 2) large portions of the data path are common to all topologies. 3) the

interaction between the set of disjoint topologies can create a common behavior

for various sub-topologies. 4) the implied data-path mapping limits possible use of

the data path. While the individual analysis may be shared through the use of a

cache, the cache overhead and replacement policy can undermine their benefit and

becomes a major complexity factor. This is not to suggest that concurrent analysis

will always generate superior efficiency, but there are benefits when evaluating a

series of data-path topologies which share a similar framework as demonstrated in

Section 6.1

The specification of competing topologies merges the designs into a super

structure which represents a single data path. The data-path specification utilizes

topology variables to label the topology dependent elements. These labels appear

only on connections between wires and component input ports, as shown in

Figure 3.4. This format requires that all components appear in the data-path

description even if they are only dependent upon a single topology. The use of the

topology labels act as switches which limits the conditions under which operands

may be passed to a given device. This permits a device which is specific to a given

topology, such as the pipeline multiplier, to be ignored during those topologies for

which it is not defined. However, topology labels do not act as true switches,

whose settings may vary from cycle to cycle, since they must be consistent setting

during every state transition. With the addition of these topology requirements,

29

representation of multiple competing topologies is accommodated by the automata

model.

3.3 Data-flow Alternatives

A data-flow graph is an acyclic directed graph which denotes the operation

precedence inherent to the completion of a procedure. Figure 3.5 shows an

example of such a graph. Starting from a set of initial operands (operands a

through e), a series of operations are specified which create additional operands

(operands o1 through o5). Each operation identifies a set of input operands and a

pre-specified behavior with which to combine these input operands. Each input

pipe *mult

Figure 3.4Merging alternative topologies into a single data-path design.

υi,1υi,2

υi,3

υi,1∪υi,3

(υi,1∪υi,3)∩υj,1

(υi,1∪υi,3)∩υj,2
υi,2∩υj,2

υi,2∩υj,1

υj,2

υj,1

m1

m2

a b

<<

*
o1

c

d

e

+

*

++

+

*

Figure 3.5Example data-flow graph

o2

o3

o4

o5

++
o2

o3

c
Input operands

Operation behavior

30

operand is identified by a directed edge pointing from either an initial operand or a

computed operand to an operation. Additionally, a set of final operands, as in

operand o5, may be identified whose presence indicates the successful completion

of the data-flow graph.

Not every data-path component may compute a given operation. The binding

of an operation to a function unit must occur within the confines of an appropriate

map which specifies the set of hardware components which may compute an

operation. Schedulers traditionally use such anoperation map to define a set of

selected mathematical operations which are mapped to a set of supporting function

units. Each data-flow operation then identifies a mathematical operation from this

operation map. Additionally, operation maps can describe potential algebraic

transforms, such as commutativity of operands, for an operation. Such

transformations increase the chance that an operation may be scheduled. Despite

all of this flexibility, operand maps do have some limitations in describing

operations on a pre-existing data path. The fundamental problem is that the

operand map is required to specify all of the alternative options for an operation.

Yet, there are some alternatives which do not just require an equivalent device but

use an entirely different mathematical operation, such as a shift instead of a

multiply, or strength reductions in which several operations are replaced by several

others.

The following approach was developed to accommodate a more complete set

of alternative computations. First, each operation has a direct association with a

data-path component. This technique has the additional advantage of being able to

specify the exact mapping between input operands and the input ports of the

selected data-path component. Second, each operation lists the operand which it

creates. Third and more importantly, multiple operations may specify a common

31

resulting operand. In this situation, any one of these operation sequences is

sufficient to create the resulting operand. The existence of multiple operations only

increases the set of alternatives with which the operand may be created. Figure 3.6

shows an example of four operations capable of computing operand op3

independently. These operations converge at aalternative join represented as a

square point. This join is different than the joins typically associated with CDFG’s

(control data-flow graphs) which will permit only one of the operations to fire

based upon a condition. Instead, the alternative join permits any of thealternative

operations to occur if the data path may support it.

The ramifications of the use of alternative operations which converge at an

alternative join are many. First, this specification shifts the focus from the

execution of the operation to the computation of the resulting operand. This shift

works well with the data-path model which models the restricted movement and

computation of operands. Second, alternative means of computing an operand

need not consist of a single operation but may utilize a series of operations as the

shift/add alternative listed in Figure 3.6. This permits the evaluation of algebraic

transformations, such as associative operations, as well as the strength reductions

c5

op3

op2

op1

*

<<

+

Figure 3.6Representing alternative operations.

*

+

32

shown in the example. Third, it removes the burden of representing all possible

alternatives in a consistent table format of an operation map. Admittedly, the use

of an operation map makes the data-flow specification much more concise.

Therefore, the user must be careful to maintain the complexity of the data-flow

graph by using the freedom of alternative operations wisely.

3.4 Incorporation of Partial Data-Flow Map

While the operation of the data path is limited by the data-path specification

and the data flow graph which is being analyzed, additional restrictions may limit

its operation. These restrictions may reflect system requirements, such as

synchronization states from the external interfaces. Or, they may reflect a desire to

maintain portions of a pre-existing, albeit inadequate, data-flow map to minimize

the amount of resynthesis to be performed. In either case, it is important to

incorporate these restrictions since they significantly reduce the search space

analyzed in an exact search. In fact, the increased efficiency which results from

such constraints makes it desirable to overconstrain the problem at the outset and

then slowly relax the constraints on the data-path map until a feasible solution is

identified.

3.5 Benefits of Operand Modeling

There are many benefits derived from the choice of modeling the operand

movement through the data path. First, the movement of operands can be cast as a

condition of the switch setting and the network topology, permitting the integration

of multiple competing topologies into a single specification. Second, the modeling

of operands allows alternative operations to be considered with greater freedom

than traditionally modelled. Since an operand does not need to distinguish which

operation produced it, the system is relieved from the burden of cataloging

33

operations encountered in operation-based systems. But all of these benefits are

secondary to the chief benefit of this system: the detailed analysis of where

operands are actually moving.

Instead of merely approximating the behavior of the data path, my model

characterizes the operation of the data path. This permits the system to not only

identify bounds of the data path’s performance, such as minimal schedule length,

but to evaluate the means with which these bounds are met. This characterization

is critical to the support of performance analysis of the data-path operation. Here,

the exact movement of operands can be labeled by their system requirements, such

as time or power, and then used to make selective trade-offs to increase the system

performance. Additional system requirements, such as memory usage or control

requirement, may also be extracted from this type of model.

34

Chapter 4

Automata Representation

The backbone of the proposed technique is the ability to symbolically cast the

restricted movement of operands through an existing set of data paths as an

automata. Reachable state analysis of such an automata performs an exact search

over the potential solution space from which a set of optimal solutions may be

extracted. This chapter formalizes many of the techniques which were outlined in

Chapter 3. Initially, a description of the input formats of both the data path and

data-flow graph is presented. This is followed by an outline of the system

objectives. Having presented these objectives, the components of the automata

model and its application may be described. The remainder of the chapter

addresses a number of practical issues required to make this automata model

practicable. These issues are organized by: optimizations to the system, encoding

issues, and the use of constrained data-flow maps.

4.1 Input Specification

In this section, the format for specifying the data path and data-flow graphs are

presented. The formats were selected to permit the specification of a wide variety

35

of designs. Still, a series of restrictions are placed in the input format, but they are

mainly designed to clarify behavior that would be otherwise ambiguous.

4.1.1 Data path

The following assumptions are made concerning the data paths to be modeled.

First, the data path is assumed to be fault free. This assumption permits the data

path to be modeled at the high level. Thus, the data-path model uses a RT-level

description, and its values are symbolically represented as operands. The

development of self-modifying circuits (most notably, circuits implemented with

FPGA’s) requires the second assumption to be specified: both the structure and

control interface for the data path are assumed to be constant (time-independent).

The data-path model permits a limited specification of its control portion.

Control signals travel from the controller to the components in order to instruct

them as to how to behave. The data-path components may generate signals which

are sent to the controller to specify the operation of future cycles. But the

components are not permitted to generate signals which are directly sent as control

inputs to other components. Such interaction between components presents many

challenges that will not be addressed here. Finally, the interaction between signals

coming from the data path and signals emanating from the controller is left

unspecified.

The data path is modeled as a tuple . Each element, ci, of C is a data-

path component defined by . The set defines a set of control lines,

and the set defines an ordered set of unidirectional input ports which connect to

component ci. The set defines an unordered set of unidirectional output ports

which is partitioned into to distinguish the output ports which

emit operands, , from those that emit signals, .1 While two components

C Ψ,()

Σi Φi Θi, ,() Σi

Φi

Θi

Θi Θi ′ Θi″∪=

Θ′i Θ″i

36

may share common control lines, they must always have disjoint input and output

port sets. The functions and will be used to identify the associated

component from either a input or output port specification.

A number of useful data-path attributes may be gathered from these

definitions. The set describes the complete set of control lines, {σ1,σ2,..,σn}, as

defined by . The set describes the complete set of output ports,

, as defined by . , and are defined as the sets of

operand and signal output ports.

Operands are transported between output and input ports over the data path’s

set of wires. I impose the constraint that each wire emanates from only one output

port but may fanout to drive many input ports.2 The set of associated input ports

can be redefined with each changing network description. To accommodate this

flexibility of the wire descriptions, a set is defined for each input port,

, where each pairs an output port, , and a subset of network topologies,

, over which the output port drives . These sets must be defined in such a

way that an input port is never driven by two output ports for a given network

description.

Component behavior

Each data-path component is assigned one of the five behavior types listed in

Figure 4.1. Memory elements are represented by either latches or register files.

Switching logic, used to conditionally transfer existing operands to different wires,

is distinguished from combinational logic which creates new operands. In general,

1. Bidirectional ports are modeled by combinations of unidirectional ports, switching ele-
ments, and switching control restrictions.
2. Designs which drive a line from multiple sources typically utilize coordinated switching
elements. Such designs are accommodated by merging these switching elements into a
single switching component with a single source.

C φ() C θ()

Σ

Σ Σii
∪= Θ

θ1 θ2 … θm, , ,{ } Θ Θii
∪= Θ′ Θ″

Ψi Θ ϒ,()

φi ψ Ψ∈ θ

ϒ′ ϒ⊆ φi

37

all switching components are modeled as multiplexers, and combinational logic

blocks are referred to as function units. The external input components allow

operands to be loaded onto the data path. The arrangement of these components

and their connecting wires must ensure that each loop described by a consistent set

of directional ports contains at least one memory device to prevent feedback races.

All additional constraints are based upon the component’s behavioral type and are

summarized in Table 4.1.

The external input component has a unique behavior. While an external input

introduce new operands to the data path much like a function unit, it must not be

permitted to generate the same operand twice. While such behavior is permissible

for function units, it implies an external storage device which often does not exist.

For those cases where it does, additional memory devices and switching devices

Figure 4.1Base component set.

Latch Register File Function UnitMultiplexer

Inputs Inputs InputsInput

Outputs OutputsOutput

ControlControl
Outputs

Control

External Input

Outputs

ControlControl

Table 4.1: Behavioral Constraints

Behavior Restrictions

Latch

Register file

Multiplexer

Function unit

Ext input

Φi 1= Θi 1 Θ′i ∅=,= andΣi ∅=, ,

Θ′i ∅= and Σi Θi=

Φi 0> Θi 1= Θ′i ∅= and, Σi log2 Φi()≥, ,

Φi 0> and Θi 0>

Φi ∅= Θi 0> andΘ′i ∅=,,

38

can be specified to model the explicit behavior. The set of output ports associated

with external inputs shall be represented by the set . Note that external outputs

do not require a special device behavior and are modeled as single input function

units which only produce signals to the controller to note the transmission of

particular operands. While a similar behavior may be achieved with the use of a

register file, the function unit’s ability to restrict the operand set used as input

operands makes for a more efficient specification.

The behavior of many conventional data-path components will not directly

correspond to one of these base behaviors. Such components are modeled as

compound components by partitioning their various functional components and

then connecting these components with wires. For example, a loadable register is

broken into a latch and a multiplexer, as in Figure 4.2, to model the optional

selection of storage. Given such techniques, the register file may appear to be a

redundant entry in the set of base components since it could be modeled as a

network of latches and switching elements. In fact, the register file’s inclusion in

the base set addresses a state representation issue instead of a functional issue. This

problem with the state representation occurs when each element in an array of

registers are functionally equivalent and equally accessible. Such register

arrangements permit a factorial number of arrangements of the same set of

operands. To prevent such explosive growth in operand/memory mapping, these

register arrays are identified by the user as “register files” to permit specialized

Θ°

load
load

Figure 4.2Representing loadable register with base components.

⇒

39

map encodings. Register files which do not comply with this description, such as

those with specialized or limited access to certain elements, must be modeled as a

network of switching logic, latches and/or register files.

Data-path operation

All activities of a data path are determined by its set of control lines during

each clock cycle. The control is currently modeled under the assumption that the

data path uses a single-phase clocking structure. As this model is not intended for

timing verification, it is assumed that the control signals are well-defined and

consistent over the span of a clock cycle.

The set of control lines, ∑ = {σ1,σ2,..,σn}, are partitioned into two groups:

those which control register file operand access and those which control all other

component types. The motivation for this partition stems from the special

encodings which will be used for register files. The register files store operands as

an unordered set instead of placing them in specific memory locations. While this

representation prevents factorial growth, it undermines the retrieval of operands

from Boolean addresses. Therefore symbolic requests must be made to retrieve an

operand in the absence of these addresses. The control lines to the register file

transmit a symbolic value for each output port which specifies the requested

operand. The notation of shall be adopted to represent the request operand k

from the output port of a register file. Such requests are satisfied only when the

operand is an element in the register file’s state encoding. The other set of control

lines transmit Boolean values to multiplexers, function units, and external inputs.

The specification of each multiplexer, ci, must contain an encoding ,

defined over , with which to select any input port . To ensure that a

unique input port can be identified for a given control setting, these encodings

must be specified such that . The

σk θ,

θ

σi φ()

Σi φ Φi∈

φj φk, Φi∈ σi φj() σi φk()∩ ∅=()∃

40

requirements placed on the control lines of function units and external inputs will

be detailed in the data-flow graph portion of the input specification.

While the set of feasible control vectors is bounded by the enumeration of the

control line combinations, combinational constraints may restrict the set of

permissible values to model complex interconnect or control word encoding. Such

constraints exist when the control bits of the data path are heavily encoded such as

in vertical micro-coded controllers. Such restrictions are modeled as additional

constraints upon the set of state transitions and simplify the automata construction.

4.1.2 Data-flow graph

Data-flow graphs specify the dependencies between operands and operations.

For this system, these graphs form directed, acyclic hypergraphs. A data-flow

graph is a tuple (P, E) where P is a mixed set of operands and signals and E is a set

of operations. The set P may be partitioned into where are

the set of operands used by the data path, are the signals sent to the controller,

and null is a special operand denoting “no operand.” Each operation, , is

defined as the four-tuple . The first element, , identifies an output

port which will produce the result. The data-path component associated with the

output port must be either a function unit or an external input. The operation of the

this component is expressed in the control vector, , which is defined over the

appropriate . The input operands to this device are specified as an ordered set of

input operands, , where . The number of

input operands must equal the number of input ports of the device to permit a

matching of input operands to input ports.3 The final element of the operation

specification is the resulting operand or signal, . Note, iff

3. If no operand is associated with a specific port, the null operand is used as a place
holder

P′ P1 null{ }∪ ∪ P′

P1

e E∈

θ σ Π p, , ,() θ

σ

Σi

Π π1 π2 … πn, , ,()= πi P′ null{ }∪∈

p P′ P1∪()∈ p P′∈

41

, otherwise . Additionally, the final subset of operands, , are

identified as those operands which may be read through external inputs, as

identified by . Given this definition of operations, an operand p1 is said to

be a parent of operand p2 and p2 is said to be the child of p1 iff

.

There are some non-traditional elements of this data-flow graph model. 1) I

utilize a null operand to denote don’t care information in the system. The null

operand is used to represent either an operand that lays outside or any

operand regardless of whether it lies inside or outside of P. This first case is useful

when describing any potential operand which is not explicitly defined by the data-

flow graph as might be required by an initial condition. A need for the second case

arises when formulating an operand constraint, such as an input operand

requirement, but any operand qualifies to meet the constraint. 2) The use of

alternative operations means that there are no restrictions on the number of

operations which may generate any operand pk. Each of these multiple operations

provides a unique, alternative method to generate the operand. While the use of

alterative operations may utilize a variety of function units, they must use a

consistent set of output ports to prevent an operand from being specified as both a

signal and non-signal. 3) The operation mapping explicitly lists a function unit’s

output port. Traditionally, this association is made by an operation map. But, the

large disparity in function unit descriptions combined with the potential for highly

tailored operations made such an operation table impractical. The enumeration of

the associative and commutative operands as well as equivalent function unit

listings, which are traditionally handled by the operation map, is accommodated

through the use of alternative operations. 4) No two operands may be equivalent,

where equivalency between two operands p1 and p2 is defined by EQ. 4.1. When

θ Θ′∈ p P1∈ P0 P′⊆

Π ∅=

e∃ E∈ p1 Π p2= p∩∈

P′ P1∪()

42

equivalent operands are detected, they should be merged into a single operand p2;

this can be done either automatically or manually.

(EQ 4.1)

4.2 Problem Specification

This thesis investigates a methodology for modeling the constrained flow of

operands across a set of network topologies. By modeling only the set of physical

constraints, optimal mapping of a data-flow graph may be generated for a

predefined architecture. The particular constraints which are modeled consist of: 1)

an initial distribution of operands, 2) the limited routing capacity of the various

data path topologies, 3) the limited set of operands to be constructed, as defined by

the data-flow graph, and 4) any additional predefined constraints on scheduling or

bindings. An automata representation of these constraints is constructed to

facilitate an exact analysis of the data path freedom through reachable state

analysis. This analysis is performed until a state is generated which matches an

identified final state of the data path.

The novel elements of this technique are the optimal solutions which are

generated and the model of the data-path activity. While the system utilizes some

unique techniques such as the data path model, network topologies, and alternative

operations, these techniques are only secondary issues through which the power of

the system is extended. While the benefit of the optimal solutions is pellucid, the

data-path-activity model is less overt. The ability to make quantitative evaluations

of the data-path activity is increased by modeling the movement of operands,

which are the principal cause of timing delays and power consumption, instead of

the execution of operations.

ei ej i≠, E θi=θj σi σj∩ ∅≠, Π,
i
=Πj p i p1= p j p2=, ,()∈∃

43

4.3 Representing Data Paths

This section introduces the notation for the automata-based data-path model.

This notation is intended to detail the operation of the automata model. Once these

details have been described, the utilization of the automata to solve scheduling and

engineering change problems can be presented.

4.3.1 Automata model

A symbolic automata is used to represent the storage of operands in memory

components, the motion of operands on the switching network, and the creation of

operands in function units. In its most general form, this automata is defined by the

six-tuple .

V represents a finite set of states. Each state represents the status of the external

inputs, the set of generated signals, and the contents of each of the data path’s

memory components. This set may be partitioned into the various disjoint

components where V0 lists which operands may

have been loaded through external inputs, V1 specifies the set of generated signals,

and each Vi for i>1 denotes the current contents of a single memory device. In

general, each is defined over the set of pertinent operands, . Whereas the sets

external operands (P0) and signals (P1) have been defined in the context of the

data-flow graph specification, for i>1 to reflect the fact that any operand

may be stored in a memory device. The range of each is dependent on the data

path portion being represented by the state space. For example, the set of signals

which have been produced at a given clock cycle can potentially be any of the

unordered subsets which can be constructed from . This is reflected in the

notation , where denote the enumeration of all possible subsets

of any random set, S. By utilizing the proper set of operands, similar formulations

may be defined for the status of the external inputs and the contents of register

V ϒ Σ N, S0 Sf, , , ,()

V V 0 V 1× V 2 …× V n××=

V i Pi

Pi P′=

V i

2
P1

P1

V 1 P1
= S 2 S

44

files. In contrast, a latch has a hard constraint on the number of operands which

may be present on a given cycle: one operand. Therefore, the state space defined

for a latch is defined as , where denotes the enumeration of all

subsets of zero or one element from of any random set, S. While similar

specification could accommodate the finite size of a register file, I choose to

represent the state space of register file as and then apply a

transformation constraint which ensures that the size constraint of a register file is

not violated. The set V is used to represent the present state of a data path, and a

second set of variables V′ are defined similarly to represent the next state.

While V is the set of possible states, the set of feasible states is constrained by

the movement of operands permitted by the set of network descriptions, , and the

set of control lines, , introduced in Section 4.1.1. State relations are defined by

the transform relation N. This relation maps the set of feasible next states for each

network topology, given the set of present states. Whereas N is traditionally

defined over , the presence of multiple network topologies requires N to

operate over . While the set of feasible states for a given network

topology are limited by , may be omitted from N since control line

settings are not restricted by previous control lines values. I write as

the symbolic representation of this state relation. While describes

the transform relation for the entire machine, separate transform relations may be

defined for each portion of the state space denoted by Ni as .

In this case the transform relation may be rewritten as

 to ensure that each sub-relation

utilizes a compatible set of control settings. The process for constructing each

element of this relation is found in Section 4.4.

V i Pi
1= S1 S 1+

V i Pi
*=

ϒ

Σ

V V ′→

ϒ V ϒ V ′×→×

Σ V V ′→× Σ

N ϒ V V ′, ,()

N ϒ V V ′, ,()

ϒ Σ V× ϒ V ′i×→×

N ϒ V V ′, ,() N i ϒ Σ V V ′i, , ,()
i

∩[]
σ Σ∈

∃=

45

Such individual transform relations are well defined for a given state, network

description, and control vector because of the restrictions placed upon the input

format. First, the restriction that each wire has a single source and that each input

port connects to a single wire for a given network topology means that any

combination of a network topology and a control vector describes a set of distinct

paths through the switching network. Restricting latches to a single operand and

the use of control lines to select operands from register files means that only

distinct operands may appear at any path source emanating from a memory device.

Restricting the data-flow graph to contain only unique operations means that only

distinct operands may be produced by function units given a set of distinct

operands at the inputs and a control vector. In the absence of a direct mapping

between a given combination of a state, network, and control-vector and the

operation for a given device, the operand produced by that device is the null

operand. The absence of cyclical paths ensures that each path destination will have

a distinct operand associated with the path’s source.

These set of operands which appear at the set of output and input ports have the

following effect on the state. Given a state v from the state V, the next state may be

described in terms of the sub-states, v0, v1, ..., vn, pertaining to the individual

components of the state vector. If P0,j defines the set of operands retrieved by

external inputs during the clock cycle j, then the set of external inputs grows to

equal after cycle j. Caution must be taken to ensure,

. While the contents of a latch are defined as , all other

devices utilize , where Pi,j is the operand set associated with either

 (for i = 1) or (otherwise). A register-size constraint is violated for the ith

register file when . To maintain the consistency of the design,

Vi must be replaced by the combination of operands.

v ′0 v 0 P0 j,∪=

v 0 P0 j,∩ ∅= v ′i Pi j,=

v ′i v i Pi j,∪=

Θ″ Φi

V i RegisterSizei>
V i

RegisterSizei

46

 and represent a set of initial and final states for the

automata. The ability to specify sets of initial and final states gives the designer

greater flexibility in determining both the proper initial and final state for the

automata. Each of these state sets are defined by the user, and they must be defined

such that a execution from any initial state to any final state over a consistent

network description is valid since the system does not presently support

conditional linkage between specific initial and final states. Moreover, each initial

state must be defined in exacting detail to prevent the “invention” of operands.

This includes specifying the content of V0 and V1 (typically set to) in addition

to the other Vi’s. While empty register files may be set to , empty latches must

be initialized with a null operand. In contrast to the initial states, the final states

should specify their requirements in a sparse format. These specifications will list

the minimal required signal and memory bindings to complete the operation of the

system. The user will place no constraint on since this set of state variables

are only used to restrict the set of allowable operations during a clock cycle.

4.3.2 Applying the automata

As applications of the automata are quite diverse, this section is divided into

two major topics. The first topic is the application of reachable state analysis for

the proposed automata system to the scheduling problems. The second topic

details how particular solutions may be extracted.

Applications

The intended applications of this model make extensive use of symbolic

reachable state analysis. While the particulars of the reachable state set is specific

to the intended application, linking states from with states from

 is the primary interest. Therefore, I wish to compute , the set

S0 ϒ V,() Sf ϒ V, ′()

∅

∅

V ′0

S0 ϒ V,()

Sf ϒ V, ′() Sj ϒ V,()

47

of reachable states on the jth iteration of the clock. The set of reachable states after

a single clock iteration, , is computed by:

=

(EQ 4.2)

In general, the set of reachable states after the jth iteration is:

, where

. (EQ 4.3)

Additionally, is defined as the total reachable state set, where

. Such sets represents the cumulative state history

after the jth iteration.

Eventually, one of the following conditions will be satisfied:

 or . In the first case, a j

clock cycle execution of the data-flow graph is identified. This execution is

represented by the automata’s use of state transitions linking an initial state and a

final state. In the second case, the reachable state set has reached as steady state

indicating that the exploration of the data-path freedom has been exhausted.

A minimum-cycle scheduler is defined as a system which identifies the set of

state transitions satisfying where j is minimized.

Upon , the scheduler reports the infeasibility of the

scheduling problem.

A bounded minimum-cycle scheduler is defined similarly but with an

additional maximum cycle bound, k. Infeasibility is reported if

 thus omitting the need to maintain .

S1 ϒ V,()

S1 ϒ V, ′() S0 ϒ V,() N ϒ V V ′, ,()∩[]
v V∈

∃=

S0 ϒ V,() N i ϒ Σ V V ′i, , ,()∩[]
i

∩[]
σ Σ∈

∃
v V∈

∃

Sj ϒ V, ′() R j ϒ V V ′, ,()[]
v V∈

∃=

R j ϒ V V ′, ,() Sj 1− ϒ V,() N i ϒ Σ V V ′i, , ,()∩[]
i

∩[]
σ Σ∈

∃=

T j ϒ V,()

T j ϒ V,() Si ϒ V,()
i 0=

j

∪=

Sj ϒ V,() Sf ϒ V ′,()∩ ∅≠ T j ϒ V,() T j 1− ϒ V,()=

Sj ϒ V, ′() Sf ϒ V ′,()∩ ∅≠

T j ϒ V,() T j 1− ϒ V,()=

Sk ϒ V, ′() Sf ϒ V, ′()∩ ∅= T j ϒ V,()

48

In cases such as these, where the number of clock cycles are minimized, the

following reduction may be applied. This reduction utilizes the fact that state sets

need not be disjoint . And more importantly, these

common states may not lead to a minimal solution since any states reachable from

this set are reachable from and must be reached at least a cycle later.

Reductions to have the important benefit of reducing the complexity of

the reachable state computation. Therefore, =

is introduced from which the reachable state computation is modified to use:

.

A cycle-constrained scheduler is defined as a system which, given a cycle

constraint k, identifies the set of state transitions satisfying

, i.e. a solution exists in k cycles. Infeasibility is

reported if there are no elements of which satisfies this objective.

Since this scheduler does not attempt to minimize the number of state transitions,

the reduced state sets, , can not be used.

Information extraction

After the successful execution of the reachable state analysis, the set of state

transitions which connect and in j cycles are determined by

reviewing the set of state relations, , generated during the reachable

state analysis. This review starts by pruning the final set of reachable states by the

set of final states, as in . The set of state

transitions which led to this set of final states are identified by limiting the known

state transitions by the set of next states, as in

. Furthermore, the set of states

from the previous cycle which are essential to this set of state transforms may be

identified and used to successively generate

Sj ϒ V,() T j 1− ϒ V,()∩ ∅≠

T j 1− ϒ V,()

Sj ϒ V,()

S′j ϒ V,() Sj ϒ V,() T j 1− ϒ V,()−

R j ϒ V, V, ′() S′j 1− ϒ V,() N i ϒ Σ V V ′i, , ,()∩[]
i

∩[]
σ Σ∈

∃=

Sk ϒ V, ′() Sf ϒ V, ′()∩ ∅≠

Sk ϒ V, ′()

S′j ϒ V,()

S0 ϒ V,() Sf ϒ V ′,()

R j ϒ V V ′, ,()

S°j ϒ V ′,() Sj ϒ V ′,() S∩
f

ϒ V ′,()=

R°j ϒ V V ′, ,() S°j ϒ V ′,() R j ϒ V V ′, ,()∩=

S°j ϒ V,() R°j 1+ ϒ V V ′, ,()
V ′
∃=

49

the preceding until a pruned state relation is defined for every state transition.

The resulting ordered set of state transitions represent every feasible solution

found during the reachable state analysis. A single solution is represented by any

series of relations where and

.

Each of these relations lack the related control information which was removed

in EQ. 4.3. While this removal is not essential, it dramatically reduces the

complexity of representing each relation and thereby the complexity of producing

the schedule set. Furthermore, the complexity of recomputing the associated

control information for each state relation set drops significantly when the set of

relations are utilized to prune the relation construction.

Such transform relations contain the essential system information. The states

specify the memory mapping for every operand. The network descriptions identify

the data-path connectivity requirements. The control information specifies the

data-path functionality including operand generation (scheduling and function unit

binding) and operand transfers (bus binding). With the exception of the register

address lines, this control information also describes the minimal support required

by the data path’s controller.

Solutions can be graded in terms of their system requirements. For example,

solutions which use minimal size register files, which simplify circuit verification

by using a minimal number of functional units, which use a consistent set of

control vectors, or whose set of operand transfers minimize cycle time may be

identified by evaluating the requirements placed on the data path. Furthermore,

detailed power models can be made since both the operands and their bus

assignments are known for each execution cycle. While this set of evaluations is

R°j

r °o r °1 … r °f, , ,() r °i R°j ϒ V V ′, ,()∈

r °i r °i 1− R°i ϒ V V ′, ,()∩∈

R j° ϒ Σ V V ′, , ,() R j° ϒ V V ′, ,() N i ϒ Σ V V ′i, , ,()∩[]
i

∩=

50

useful for pruning solution elements, they generally require the construction of the

solution set to identify the “minimal cost” before such pruning can be employed.4

If the solution set still contains multiple elements after the set has been pruned to

optimize system requirements, a representative solution may be selected at

random.

4.4 Transform Relation

The individual transform relations, , are the key to the

reachable state analysis. This section presents techniques for the construction and

optimization of these transform relations. Initially, construction techniques capable

of generating the transform relations directly from the input specification are

presented. Unfortunately, the representation of these relations can be cumbersome

and minimizing these relations is essential for processing large problems.

Therefore, the following sections present a series of optimization steps to reduce

the size of the transform relations. Whereas the first two techniques preserve the

exact nature of the reachable state, the third employs a heuristic which may be

used to address problems which would otherwise be intractable.

4.4.1 Relation construction

As noted in Section 4.3.1, any given state, network topology, and control

vector will specify a well defined next state. But, constructing the transform

relation by enumerating these conditions is inefficient. The transform relation

contains a regular structure due to common topology elements, redundant control

encodings, converging states, and a sparse operation set which results in the

production of null operands by function units for most state and control vector

4. While some pruning can occur while generating the solution set, this ability is limited
by the fact that states only encode the present state of the machine.

N i ϒ Σ V V ′i, , ,()

51

combinations. Therefore, a more efficient construction process which builds the

relation directly from the input specification is preferred.

Instead of building the transform relation in one step, the construction process,

which is presented, builds a series of sub-relations. The first relation,

, describes the set of feasible connection paths over the switching

network for a given input port in terms of the network topology, control line

settings, and output ports. Since function units cannot pass existing operands5, this

relation represents the data path’s complete ability to route operands during a clock

cycle. The second relation, , describes the relation between state

bits, control settings, and output ports required to retrieve specific operands from

memory devices. The third relation, , is similar to the second

relation, but it describes the conditions under which an operand is produced by a

function unit or external input. Both the second and the third relation utilize the set

of output ports to describe where the operands are retrieved or generated. The

intersection of this port information with the first relation, , will

maintain only those ports which can drive and which can provide operand pk

under compatible control encodings and consistent network topologies. This

intersection succinctly specifies how to get an operand to a specific location by

combining the generation of the operand with the routing requirements. This

separation of the generation and the routing of operands permits the operand

requirements to be selectively formulated for only those locations where they are

suitable. Placement of operands at the input ports of function units and memory

devices shall be the principle use of this capacity.

5. Functional blocks capable of both passing existing operands and creating new operands
are modeled as a combination of function units and multiplexers.

Ωi ϒ Σ Θ, ,()

M k Θ Σ V, ,()

Fk Θ ϒ Σ V, , ,()

Ωi ϒ Σ Θ, ,()

φi

52

The output port relation, , associates the set of output ports which

can drive an input port, , with their required network and control settings of the

switching network. Each of these relations are constructed by analyzing each of

the network-dependent output ports associated with . If one of these output ports

belongs to a multiplexer, a recursive construction is used to incorporate the

reachability of the multiplexer’s input port set. In such cases, each set of output

ports, as defined by , associated with each of the multiplexer’s input

port is subject to the input selection encodings, , from the multiplexer

specification, as in:

 where .

This definition will converge because of the data-path restriction that memory

devices are contained in each loop described by a consistent set of directional ports

in a given network topology. Furthermore, the lack of feedback paths strictly

through multiplexers permits a depth first evaluation of for every

wire in a single pass of the data path.

The relation is defined for every operand to represent

the set of conditions under which pk is retrieved from a memory device. These

conditions combine state encodings, output ports, and potentially control

encodings. To aid the definition of state encoding requirements, the set of Boolean

variables and are defined to specify an operand’s presence or absence in a

memory device, where and . The retrieval of an

operand is dependent upon the operand’s presence and, in the case of the register

file, the operand requested for the output port. Any requests made by such register

file control lines are specific to a particular output port of the register file, as

specified in the first part of EQ. 4.4. By contrast, a latch has only a single output

Ωi ϒ Σ Θ, ,()

φi

φi

Ωl ϒ Σ Θ, ,()

φl σi φl()

Ωi ϒ Σ Θ, ,() υj

σi φl() Ωl ϒ Σ Θ, ,()∩
φl Φk∈
∪

θj

∩
ψj Ψi∈
∪=

ck C θj()=() mux=

otherwise

Ωi ϒ Σ Θ, ,()

M k Θ Σ V, ,() pk P′∈

v i k, v i k,

v i k, pk V i∈↔ v i k, pk V i∉↔

53

port and no control lines which makes the retrieval condition a relatively simple

combination of requiring the operand’s presence and noting where the operand

will appear, as shown in the second part of EQ. 4.4.

(EQ 4.4)

The relation is defined for each operand to represent

the set of conditions under which pk is introduced to the data path as a combination

of state encodings, control encodings, and output ports. In the case of external

inputs, the relation must reference to ensure that pk has not been previously

loaded. As opposed to the previous relations which were defined for each data-path

component, is defined over the set of operations from the

data-flow graph. The corresponding data-path components are derived from the

operation specification, as in:

where each defines a relation for each operation, e. This

operation based construction allows the system to disregard components which are

inappropriate for a given operand.

The relation, , has distinctly different formats for

function units and external inputs. Function units () require that all of the

proper input operands appear at the correct input ports. This accounts for the main

portion of the relation specification where the generation of the input operands by

either function units, external input, or memory devices is intersected with the

routing requirements to the specific input port. After this intersection is taken, only

the control and network topology is of interest. Therefore, the port requirements of

the input operand may be removed. This intersection may be skipped when null is

specified as the input operand.6 While operations using external inputs do not

M k Θ Σ V, ,() θ σk θ, v i k,∩ ∩
θ Θi∈
∪()

c i reg file=
∪ θi v i k,∩()

c i latch=
∪∪=

Fk Θ ϒ Σ V, , ,() pk P∈

V 0

Fk Θ ϒ Σ V, , ,()

Fk Θ ϒ Σ V, , ,() F ′
θi σi, Π,

i
pk Φj c j C θi()=(), ,

Θ ϒ Σ V, , ,()
ei p i pk=

∪=

F ′
θ σ, Π p Φ, , ,

Θ ϒ Σ V, , ,()

F ′
θ σ, Π p Φ, , ,

Θ ϒ Σ V, , ,()

Φ ∅≠

54

require input operands, they require that the operand pk was not previously loaded

by checking . In addition to the specification of either input operand or

external input requirements, adds the requirements on

the control vectors and specifies the new output port, as in:

 where

In order to represent chaining of operations, the definition of each

is potentially dependent upon other ’s. But the acyclical nature of

the data-flow graph ensures that such dependencies are not self referential. While

 can depend on and the set of rela-

tions, neither of these relations depends upon on . These facts per-

mit a depth first construction of this set of relations.

The individual transform relations, , are defined by the

system’s ability to load and maintain operands. If denotes the

ability to load or maintain operand pk, then the individual transform relations may

be constructed from their set of associated operands using:

, where (EQ 4.5)

which ensures that the status of every operand is defined for any combinatorial of

state, control, and network combinations. The definition of

depends on the type of device being considered. For example, both V0 and V1

must check whether the operand was previously generated or if it was created dur-

ing this cycle. While the relation, , specifies the conditions under

which an operand is created, must be careful to use only those output ports

6. Alternatively, may be defined as .Fnull Θ Σ V V ′e, , ,() M null Θ Σ V, ,()∪ Θ′

pk V 0∉

F ′
θ σ, Π p Φ, , ,

Θ ϒ Σ V, , ,()

θ σ Fπ Θ ϒ Σ V, , ,() M π Θ Σ V, ,()∪() Ωφ ϒ Σ Θ, ,()∩[]
θ Θ∈

∃
π Π φ Φ∈,∈

∩()∩ ∩

θ σ v 0 k,∩ ∩[]

Φ ∅≠

Φ ∅=

Fk Θ ϒ Σ V, , ,()

F l Θ ϒ Σ V, , ,()

Fk Θ ϒ Σ V, , ,() M k Θ Σ V, ,() Ωi ϒ Σ Θ, ,()

Fk Θ ϒ Σ V, , ,()

Ni ϒ Σ V V ′, , ,()

N ′i k, ϒ Σ V, ,()

N i ϒ Σ V V ′i, , ,() N i k, ϒ Σ V V ′i, , ,()
pk Pi∈
∩=

N i k, ϒ Σ V V ′i, , ,() v ′i k, N ′i k, ϒ Σ V, ,()∩() v ′i k, ϒ Σ V××() N ′i k, ϒ Σ V, ,()−()∩()∪=

N ′i k, ϒ Σ V, ,()

Fk Θ ϒ Σ V, , ,()

N ′0 k,

55

associated with the external input devices which it is supposed to be monitoring.

Therefore,

 and

.

By contrast, the operands stored in memory devices may originate from another

memory device, as well as being created, and must be routed to the proper input

port. While these two constraints are common for all memory types, the transform

relations for register files (EQ. 4.6) are more complex than those for latches

(EQ. 4.7). These simplifications stem from a latch’s single input port as well as its

inability to maintain pre-existing operands.

(EQ 4.6)

(EQ 4.7)

4.4.2 Memory mapping optimizations

The formulation of exploited the observation that an operand

may be produced by only a subset of the data path’s function units and external

inputs. A similar argument could be made that an operand need not be stored in

every memory device. For example, Figure 4.3 depicts a component arrangement

where operands in latch, l, must feed directly into the multiplier. Since use of the

multiplier is only defined for a specific subset of operations, only those operands

which would be defined as an input operand for such an operation need be stored

in that latch. Therefore the set of operands, Pi, used by a memory device, ci, are

redefined to contain only these essential operands. Since instead of

, the complexity of each as well as the set of unique

feasible states are reduced. Furthermore, the quality of the results of the reachable

state analysis are maintained since these excluded operands can not effect that data

N ′0 k, ϒ Σ V, ,() v i k, Fk Θ ϒ Σ V, , ,() Θ°∩[]
θ Θ∈

∃∪{ }=

N ′1 k, ϒ Σ V, ,() v i k, Fk Θ ϒ Σ V, , ,()[]
θ Θ∈
∃∪{ }=

v i k, Fk Θ ϒ Σ V, , ,() M k Θ Σ V, ,()∪() Ωφ ϒ Σ Θ, ,()∩[]
θ Θ∈

∃
φ Φi∈
∪∪

Fk Θ ϒ Σ V, , ,() M k Θ Σ V, ,()∪() Ωφ ϒ Σ Θ, ,()∩[]
θ Θ∈

∃

Fk Θ ϒ Σ V, , ,()

Pi P′⊆

Pi P′= N i ϒ Σ V V ′i, , ,()

56

path’s ability to create operands. Whereas the restrictions on

came directly from the data-flow operations, these restrictions stem from the data

path’s ability to support such operations.

To accurately limit the operand bindings for a memory device, requires

detailed knowledge of the connectivity restrictions over multiple clock cycles.

This connectivity analysis is compiled into a series of sets, , where each set

indicates the output ports which can be connected to input port by traversing no

function units, x memory devices, and as many multiplexers as required. The

construction of utilizes each output port and its associate component type

which may connect to the specified input port as shown in EQ. 4.8. The network

topology associated with each potential output port is not utilized, since these sets

define the behavior for all topologies. A series of sets is defined for each input port

for values of x between and including 0 to the number of memory devices.

 where (EQ 4.8)

To identify the set of memory devices which are applicable to an operand, the

following observations are made. First, the data flow graph indicates the set of

function unit input ports that an operand can appear. Second, the final state

Fk Θ ϒ Σ V, , ,()

latchl

Figure 4.3Dedicated latch

Mult

τi x,

φi

τi x,

τi x,

τφl x,φl Φk∈
∪

θj τW φl() x 1−,φl Φk∈
∪∪

θj

ψj Ψi∈
∪=

ck multiplexer=

ck latch or register file=

otherwise

57

requirements specifies the set of memory unit input ports at which an operand can

appear. Third, operands must travel to these input ports by a combination of wires,

memory device and multiplexers. The possible routes which could be taken may

be represented as a collection of output ports which can reach a given input port

regardless of the number of required clock cycles. Such a set of outputs ports is

defined for each input port, as the set, . Finally, given the list of

input ports defined by the first two conservations, all of the output ports which can

route the operand pk to any of the locations it may want to reach can be

determined.

The set of output ports of interest to operand pk are defined as . Each

port set is defined by both the final state specification and set of operations which

use pk, as in:

where identifies the input port associated with operand pk. When consider-

ing the requirements placed on the final state, it is important to include the output

ports of memory device specified in the final state as well as the ports which can

reach this device. This prevents the operand from being excluded from the essen-

tial memory device. Form this set of output ports, the operand list,

, is generated for each memory device with which to

simplify EQ. 4.5. Additionally, the relations may be simplified to

only consider components ci where .

4.4.3 Operand lifetime optimizations

The set of relations may be significantly reduced by noting that on any clock

cycle j, each transform relation need only represent the set of states reachable from

. It is sufficient if the relation is defined over any where

φi

φi τ′i τi x,x
∪=

Ω′ pk()

Ω′ pk() Θ′i τ′φ()
φ Φi∈
∪∪

v i k, Sf V()∈
∪{ } τ′φe j p k,ej pk Πj∈

∪{ }∪=

φei pk,

Pi pk
pk P′∈
∪ Θi Ω′ pk()⊆=

M k Θ Σ V, ,()

Θi Ω′ pk()⊆

Sj ϒ V,() Sj″ ϒ V,()

58

. Therefore, the set of relations are

utilized instead of , where represents the

state relation . This new set of relations are generated

dynamically for each iteration of the reachable state analysis.

The dynamic construction of transform relations is performed as follows. On

each clock cycle, the set of operands, P′, is partitioned into a set of dead and a set

of potentially active operands. The optimal set of dead operands, Dj, is defined to

include operands whose presence in the next state at clock cycle j does not affect

the reachable state analysis. The set of active states, Aj, is defined as .

Given this partition, the individual transform relations may be represented as:

, where (EQ 4.9)

While this representation is much smaller than the general transform, it

requires operands to be selected for the set Dj. The following observations are

made about constructing such a set. If Dj is defined as the optimal set of dead

operands, a suboptimal set Dj′ will be either or . In the first

case, the functional behavior of is maintained. The only sub-

optimality is that will be more complicated than it needs to

be. In the second case, does not represent the complete set of

reachable states. While this may cause the reachable state analysis to overlook

reachable states, it will not generate any non-reachable states. Therefore, the sub-

optimality of the second set classification is that it may generate sub-optimal but

correct results.

Each Dj set is constructed by analyzing the lifetimes of the operand set. An

operand’s lifetime is defined as the first cycle on which it may be scheduled (birth)

Sj ϒ V,() Sj″ ϒ V,()⊆ N °i j, ϒ Σ V V ′i, , ,()

N i ϒ Σ V V ′i, , ,() N °i j, ϒ Σ V V ′i, , ,()

Σ Sj″ ϒ V,()× ϒ V× i ′→

A j P Dj−≡

N °i j, ϒ Σ V V ′i, , ,() N °i j k, , ϒ Σ V V ′i, , ,()
pk A j Pi∩()∈

∩=

N °i j k, , ϒ Σ V V ′i, , ,() v ′i k, N ′i k, ϒ Σ V, ,()∩() v ′i k, ϒ Σ Sj ϒ V,()× ×() N ′i k, ϒ Σ V, ,()−()∩()∪=

D j ′ D j⊆ D j ′ D j⊄

N °i j, ϒ Σ V V ′i, , ,()

N °i j, ϒ Σ V V ′i, , ,()

N °i j, ϒ Σ V V ′i, , ,()

59

and the last cycle on which one of its children may be scheduled (death). Such a

lifetime constitutes the cycles during which an operand must be present in the set

of active operands. Operand pk should remain in the set of dead operands until the

following test is passed.

(EQ 4.10)

But unfortunately, no such test exists to determine when pk should return to the

dead list. Subsequent sections will detail the best methods for bounding the death

of an operand, but even these may be insufficient. For these cases, an operand’s

death condition may be estimated as the cycle j if every child of the operand is

present in every state of . This estimate may cause the set of dead vari-

ables to fall under the classification hence this can be viewed as a heu-

ristic speedup.

4.4.4 State reduction techniques

For problems of sufficient size, exact analysis is not practical. Such problems

require the use of heuristics such as the “operand death approximation” discussed

in Section 4.4.3. This technique pruned the transform relation, .

An alternative approach involves pruning the set of states, . Here, the

elements of the state set are evaluated based on the number of operands which

have been computed. Towards this goal a new set of variables, , are introduced.

While V and V’ describe the existence of operands in terms of specific locations,

 describes operands present in the entire system as well of those that have

completed their lifetime. Whereas and represented a set of states, it is

simpler to describe as a set of bits, , where each and

represents that the corresponding operand p either exists in the data path or has

produced all of its children. The evaluation of these conditions is preformed by

traversing the data-flow graph in reverse order, evaluating a operand only after all

Fk Θ ϒ Σ V, , ,() Sj ϒ V,()∩() ∅≠

Sj ϒ V,()

D j ′ D j⊄

N i ϒ Σ V V ′i, , ,()

Sj ϒ V,()

V ″

V ″

V V ′

V ″ p0 p1 … pn, , ,{ } p i P′∈

60

of its children have been evaluated. Each evaluation sets pk iff

 where is the set of p’s children.

I define as the state set, , after the set of have

been evaluated. This permits each of the state elements to be evaluated in terms of

the number of operands that it has produced. At this point one may prune based on

the existence of specific operands or on the basis of the quantity of operands. This

type of heuristic will be referred to as a “maximum utilization” heuristic.

The intersection of the functions, 7, and identifies the

subset of states which have at least m operands present or expired. The maximum

number of operands present in a state set may be identified by iteratively

increasing m’s value. Requirements on the number of operands may then be

enforced based this upper bound and a variety of user specified options. Such

techniques enable the system to prune those elements which have grown stagnant

or are not producing sufficient operands to have a practical impact on the solution

set.

4.5 Encoding

I chose to represent the symbolic variables of this model with Boolean

encodings. Boolean encodings have an advantage over other types of

representation in that they can utilize conventional binary decision diagrams

(BDD’s). While these encodings are efficient, the encodings selected for the

latches require that their associated transform relations be reevaluated.

Additionally, the encoding selected for the register files, permit the specification of

the register constraint to be expressed in a more exacting format.

7. The function may be concisely represented in a graphical, Boolean format with

only nodes using binary decision diagrams.

pk V i∈
i

∪() Bp V ″⊆()∨ Bp

Sj ϒ V V ″, ,() Sj ϒ V,() V ″

V ″
m

Sj ϒ V V ″, ,()

V ″
m

m V ″⋅

61

4.5.1 Selected codes

The set of symbols to be encoded include V, V′, , , and . The encodings

for the first three of these sets are based on the decomposed sets {V0, V1, V2,...,

Vn}, {V ′0, V′1, V′2,..., V′n}, and {σ1, σ2,.., σn}. The encodings selected for V0

and V1 are one hot encodings defined over and bits suitable for defining

any subset of loaded external operand or signals. The encodings selected for Vi for

i>1 depend upon the associated device type. Since register files may contain any

subset of P′, each operand is assigned a one-hot encoding to represent any

unordered operand set in bits. But a one-hot encoding would be inefficient for

a latch since latches contain one operand at most. Therefore, a set of unique binary

encodings are used to represent the elements of the set requiring

 bits. I choose to add an additional bit, the “null bit”, to identify the

null operand from the other operands. The null operand is added to this set because

a set of binary encodings can only denote the presence of an operand and is

inappropriate to denote an empty set. The set of encodings for V′ are selected to be

identical to those of V. The bits of V and V′ are interleaved to reduce the size of the

BDD’s representing the various relations.

The encodings selected forσi depends on the type of control line. As noted in

Section 4.1.1, control lines transmit either Boolean or symbolic values.

Representation of the Boolean controls simply mirrors the Boolean encodings

specified in the data path and data-flow graph descriptions. Since symbolic control

lines are utilized by registers for specifying a single operand from the set P′, the

content of these lines are encoded with the representation employed for encoding

latch contents.

The set of network topologies, , use a binary encoding scheme since each

design topology is disjoint. As noted in Section 3.2, the topology alterations can

Σ ϒ Θ

P0 P1

P′

P′ null{ }∪

lg P′() 1+

ϒ

62

often be partitioned into a set of partition sets , where each

 constitutes a network change for an individual wire which may be considered

independent to any other . In such cases, greater efficiency results by encoding

each over a separate set of binary encoding to promote sharing during common

topology alterations.

Binary encodings are utilized to encode each output port in . This is possible

since any term from any of the relations which operate over the set of output ports

always identify a single output port.

4.5.2 Re-evaluating latch transform relations

These encodings force us to revisit the construction of the transform

. While register files dedicate a Boolean value for each

operand with which to represent both existence and absence, latches share the bits

with all the operands. This sharing requires us to only represent an operand’s

existence since representing its absence would interfere with the representation of

other operands. Therefore, is redefined for latches from its

original specification in EQ. 4.9 to:

.

We are assured that any pair of and will be

disjoint since each combination of a state, network topology, and a control line

setting will result in at most one operand appearing at the input of a latch.

Therefore the individual transform relation for latches can be redefined as:

where .

The use of is essential to make sure that

 is defined for all control and present state combinations,

ϒ ϒ1 ϒ2× …× ϒn×=

ϒi

ϒj

ϒi

Θ

N °i j, ϒ Σ V V ′i, , ,()

N °i j k, , ϒ Σ V V ′i, , ,()

N °i j k, , ϒ Σ V V ′i, , ,() v ′i k, N ′i k, ϒ Σ V, ,()∩()=

N ′i k, ϒ Σ V, ,() N ′i l, ϒ Σ V, ,()

N °i j, ϒ Σ V V ′i, , ,() N °i j null, , ϒ Σ V V ′i, , ,() N °i j k, , ϒ Σ V V ′i, , ,()
p k A j P i∩()∈

∪∪=

N °i j null, , ϒ Σ V V ′i, , ,() v ′i null, Σ Sj ϒ V,()×[] N ′i k, ϒ Σ V, ,()
p k A j P i∩()∈

∪−{ }∩=

N °i j null, , ϒ Σ V V ′i, , ,()

N °i j, ϒ Σ V V ′i, , ,()

63

. represents the cases when latch i contains

an undefined operand.

This introduction of null variables into the relation may cause useless states to

appear in the set of reachable states. Let be the cofactor of the jth set

of states with respect to the ith memory device containing operand pk and

 be the set of states where the operand, pk, is absent. Any state

defined by is a state set whose elements have

either a null or an operand in memory device, i, but are otherwise equivalent.

When solving the data-path constrained scheduling problem, the set of states

reachable from a state containing a null are also reachable from an equivalent

states which contains an operand. Therefore, this subset of states of

 which intersect with may be removed from the set

of states .

Given this observation, may be altered to produce fewer

states Sj(V′) which meet the above criteria. First it should be noted that certain

control lines only influence the next state information for a specific Vi′. Figure 4.4

depicts an example circuit where the latch, l, has a dedicated control line,σk. The

problem is that once the latch contains a null operand, the evaluation of every

control combinations will result in the latch maintaining the null operand. But for

Σ Sj ϒ V,()× N °i j null, , ϒ Σ V V ′i, , ,()

Sj ϒ V,()
v i k,

Sj ϒ V,()
v i k,

Sj ϒ V,()
v i null,

Sj ϒ V,()
v i null,

∩

Sj ϒ V,()
v i null,

Sj ϒ V,()
v i null,

Sj ϒ V,()

N °i j, ϒ Σ V V ′i, , ,()

σk

Figure 4.4Dedicated control line example

latchl

64

this example, the next state analysis need only analyze the variableσk when

evaluating as in:

Since ,

 can be defined over . Smoothing out

this extra variable increases the chance that some will be

defined for those cases were the latch needlessly maintains the null operand. Fur-

thermore, this reduction may be applied to all other transform relations since they

are not defined overσk. The set of dedicated control lines may be identified

through the analysis of the data-path structure. Once identified, a new set of con-

trol lines, , may be utilized instead of , where is the set of control lines

which affect either register files or multiple memory components.

4.5.3 Register size constraints

Ensuring the constraints placed on a register’s size is complicated by the

encoding selected for register files. As noted in Section 4.3.1, the contents of each

of the register files is described as . But this model causes the

quantity of operands to steadily increase. To accommodate register constraints,

register files must allow for operands to be lost or overwritten. Therefore, the set of

present states are expanded to accommodate the loss of any operand, k, in any

register file, j, as in: . This last step is effective for

an ROBDD structure, where the representation of is simpler than

the representation of . In fact, the simplicity of this expanded representation

can be exploited to reduce the complexity of the transform relation

.

N °l j, ϒ Σ V V ′i, , ,()

R j ϒ V V, , ′() σm Sj 1− ϒ V,() σk∃ N °l j, ϒ Σ V V ′i, , ,()()∩[
σm σk≠

∃=

Sj 1− ϒ V,() N °i j, ϒ Σ V V ′i, , ,()∩[]
i l≠
∩∩]

σk∃ N °l j, ϒ Σ V V ′i, , ,() σk∃ N °i j k, , ϒ Σ V V ′i, , ,()()
pk A j Pi∩()∈

∪=

N °l j, ϒ Σ V V ′l, , ,() Σ σk−() Sj ϒ V,()×()

N °i j k, , ϒ Σ V V ′i, , ,()

Σ′ Σ Σ′

v i ′ v i Pi j,∪=

Si ϒ V,()
v j k,

v j k, v j k,∪()∩

v j k, v j k,∪()

v j k,

N i ϒ Σ V V ′i, , ,()

65

The following constraints are used to remove states which exceed the specific

register file size from this expanded state set. A constraint is built for each register,

i, over the set of Boolean variables belonging to Vi in the format:

.8 The intersection of the state set and the set of register

constraints maintains only those states which comply with the register size bound.

4.6 Additional Restrictions

Until now, the automata has executed under the assumption that every element

of the data-flow mapping was unknown. There are many cases where a portion of

the mapping is known or fixed by an external requirement. Consider examples

where 1) operations interfacing with external devices are pre-scheduled, 2) large

portions of the schedule are pre-determined but need final scheduling, 3) a memory

mapping is required which implements a specified schedule, or 4) the

compatibility of a completely defined data-flow map and a given data path must be

tested.

Meeting these specifications restricts the behavior of the data flow graph,

providing an opportunity to reduce the solution space. The formulation of these

restrictions is highly dependent upon the nature of the data-flow map specification.

Some constraints are easily incorporated into the transform relation, while others

are more suitable as a constraint on the set of next states. These restrictions shall be

specified as an ordered series of relations where each

 can restrict either the input vector, the set of next states, or both,

making EQ. 4.3 become:

8. The number of BDD nodes required for the representation of for any BDD ordering equals

χ′i
P′
j

j 0=

RegisterSizei

∪=

χ′i
P RegisterSizei⋅()

χ0 χ1 … χn, , ,()

χj ϒ Σ V, ,()

R j ϒ V V ′, ,() Sj 1− ϒ V,() χj ϒ Σ V ′, ,() N °i j, ϒ Σ V V ′i, , ,()∩∩[]
i

∩[]
σ Σ∈

∃=

66

The transformation of a given constraint into a set of such restrictions will be

presented as follows. Initially, the representation of control encodings and data

flow graph restrictions shall be presented in this section. These restrictions are

completely general to any application. But, the increased efficiency derived from

operand storage and operand scheduling restrictions have demonstrated sufficient

merit that they are presented as specific applications which appear in Chapter 5.

4.6.1 Control restrictions

Any restrictions placed on the control encoding may be specified as a set of

allowable encodings, . Control restrictions model several properties. They

can restrict combinational constraints placed on the control lines. Such constraints

may result either from heavily encoded control bits, as found in vertical micro-

coded controllers, or from component dependencies which maintain power

limitations by restricting simultaneously active components. Additionally, control

constraints provide an easy means to impose restrictions on the data-path

specification. This technique would act as an alternative to editing the input

specification in order to either minimize errors introduced into the specification or

permit cycle dependent restrictions on the data path. Finally, cycle-dependent

restrictions may be used to ensure the use of a component, such as an external

input port. But, restrictions on the production of operands are best cast as

scheduling restrictions.

When such restrictions are cycle independent, the construction of

 and may easily incorporate of the restrictions

placed on the control setting. But, such alterations are cumbersome in the case of

cycle-dependent restrictions. In this case, it is often more efficient to use

when constructing .

χj Σ()

M k Θ Σ V, ,() Fk Θ ϒ Σ V, , ,()

χj Σ()

N °i j, ϒ Σ V V ′i, , ,()

67

4.6.2 Data-flow restrictions

Typical data-flow graph restrictions are posed as constraints on the set of

operations. These restrictions prevent certain operands from being created, they

are typically used to specify a subset of operations to use. This technique can be

utilized to specify function unit bindings for the creation of an operand by

retaining only the operation(s) associated with the selected device(s). In the

absence of directly modifying the data-flow-graph specification, these restrictions

may be incorporated into the formulation of (if cycle

independent) or the formulation of (otherwise).

Fk Θ ϒ Σ V, , ,()

N °i j, ϒ Σ V V ′i, , ,()

68

Chapter 5

Single Topology Applications

Both this chapter and the succeeding chapter demonstrate the applicability of

the automata model to a variety of problems. While Chapter 6 addresses issues

specific to multiple network topologies, this chapter presents issues pertinent to

both single and multiple topologies. These issues pertain to constrained operation

of a data flow. Whether accommodating an error late in the design cycle or porting

the data flow to a core data-path, the designer will be faced with a number of

constraints in addition to those imposed by the data path. Large amounts of testing

and verification may be maintained if previously analyzed schedules and memory

bindings are maintained. These constraints may be defined for the entire system or

for only critical portions such as external interfaces. While these additional

constraints may be modeled as additional burdens to the system, they should be

seen as opportunities to restrict the operational freedom of the data path and the

resulting automata model. By incorporating these constraints wisely, efficiency of

the reachable state analysis is increased permitting the designer to analyze

alternatives with greater accuracy.

This chapter will demonstrate how the reachable state analysis can incorporate

a variety of external constraints. Initially, the most restrictive constraint, memory

69

binding constraints, will be analyzed. This section is followed by scheduling

constraints. The final section shows that constraints derived purely from the data

path itself may be construct in the absence of external constraints. Each of these

sections will conclude with a result section which demonstrates how the

techniques reviewed improved the system performance when analyzing a

consistent set of benchmarks. The results will always focus on mapping a data-

flow graph onto a data path with a single network topology in order to omit any

misleading results stemming from multiple topologies. The effect that multiple

topologies has on the reachable state analysis will be analyzed in Section 6.1.

5.1 Data-Path Routing

The principle challenge to executing a data-flow graph under the restriction of

predefined operand mapping is insuring that the data path can support the routing

and the creation of operands required to meet this constraint. Circumstances which

are of particular interest to this data-path routing are the following: 1) designers

may verify the feasibility of a fully specified data flow map, 2) implementation

faults may be avoided by finding alternative routes, or 3) a partially defined data

flow map may be completed by finding links for either undefined states or

undefined potions of the data path. In any of these cases, the designer may specify

the known constraints as a series of constraints on the next state of the machine.

These constraints shall be represent as , where

each represents either a single or multiple states of the data path for a

given cycle. It is important to compose the constraint in terms of to ensure that

any state pruning occurs as early as possible. While specifications for the operation

set leading to this state may be as detailed as possible (denoting when operations

will occur or identifying which of operation alternatives were used), this section

will assume that no operation information has been provided.

χ0 V ′() χ1 V ′() … χn V ′(), , ,()

χj V ′()

V ′

70

5.1.1 Memory binding optimization

The availability of these ’s dramatically redefines the reachable state

analysis since the reachable states are known a priori; just the feasibility of the

state transitions are left unspecified. This description gives the misleading

indication that reachable states need not be applied in this environment. But the

system can only be reduced to the verification of state transition if every element

of the data path is defined for every clock cycle and if every state in can

be reached from a state in . In general, it is simpler to maintain the

reachable state approach since it provides a minimum amount of overhead and is

able to quickly accommodate alterations in the problem specification. While each

state constraint may be applied directly to the reachable state, as in:

,

this would be inefficient since each is defined for many operands which will

not be allowed to be stored in device ci. By incorporating the restriction into the

following dynamic construction of , any illegal operand/memory pair is

omitted.

.

This formulation of the memory constraints incorporates both the flexibility

and efficiency desired by the user. The use of reachable state analysis allows the

user to always identify solutions even when portions of the memory bindings are

omitted. Additionally, the constraints from the defined memory bindings reduce

the complexity of each reachable state computation, and the limited states

constrain the set of reachable states to consider.

χj V ′()

χj V ′()

χj 1− V ′()

R j V V ′,() Sj 1− V() χj V ′() N °i j, Σ V V ′i, ,()∩∩[]
i

∩[]
σ Σ∈

∃=

N i j, °

N i j, °

N °i j, Σ V V ′i, ,() χj V ′() N °i j k, , Σ V V ′i, ,()∩[]
pk A i∈
∩=

71

5.1.2 Routing Results

The feasibility of this technique is demonstrated by analyzing a series of

benchmarks. Each benchmark pairs a data path and data-flow graph from the set of

selected data paths and data flows discussed in the ensuing sections. The

application program which performs this analysis was written in C++ and utilizes

an in-house BDD package. All executions were run on a 141MHz SPARC Ultra

with 416MB of memory.

Data path Benchmarks

Five different data paths, each with unique challenges, were selected to be used

in the evaluation of the automata system. Four of these data paths are variations of

the high level description of Texas Instruments’ TMS32010 DSP processor. The

first of these four design mirrors the TMS32010’s data-path portion, the second

design incorporates a second global bus to investigate the effect of added

connectivity. The third and fourth designs are similar to the first two designs

except that a two-cycle pipelined multiplier replaces the single cycle multiplier.

Each of these four designs were coded utilizing the base component set introduced

in Section 4.1.1 and are depicted as a composite in Figure 5.1. The dashed lines

represent a second bus which was added for the two-bus examples. The addition of

the second bus permitted the A multiplexer and the t latch to be replaced by a

single multiplexer, B. For those design with the pipeline multiplier, a latch and

second pipeline stage are inserted between the multiplier and multiplexer C.

The fifth benchmark demonstrates the applicability of the automata model to

designs with multiple, dedicated register files. While such architectures are

accommodated by a variety of compiler techniques, there are few such

benchmarks in the literature. Therefore, I introduce a “Dual Register” data path

which is used as our fifth benchmark and is depicted in Figure 5.2.

72

Data flow Benchmarks

The scheduling benchmarks utilized four data-flow graphs: differential

equation (diff_eq), 3x3 determinant (3x3_det), differential heat release

computation (dhrc), and elliptic wave filter (ewf). The determinant benchmark is a

new benchmark and is specified in Figure 5.3a. Additionally, the dhrc benchmark

contained many operations specific to memory index operations which were

inappropriate for the control model of this thesis. Therefore, the modified dhrc

benchmark shown in Figure 5.3b was utilized. Although not depicted, each of

these data flows specify commutativity for each operand pair under the assumption

Register
File

ALU

latch t

data
bus

Figure 5.1TMS32020 based data-path models

mult

ROM

AB

ACC

C

>> latch p

73

that the ALU supports both forms of subtraction. Finally, each of these data-flow

graphs were checked for redundant operations (as defined by EQ. 4.1) and

automatically merged such operands during each execution.

The mapping of these data-flow graphs on to the specified set of data paths is

dependent upon the initial and final state conditions. Table 5.1 specifies the initial

and final bindings used in the benchmark suite. The table details not only the

memory contents but the also the conditions on the external variables and control

signals. The initial and final states selected for the diff_eq and ewf benchmarks

facilitate the inner-loop nature of the data flow. By contrast, the 3x3_det and dhrc

benchmarks compute a result which is returned to the register file or exported.

Initial state entries which correspond to latches and contain “∅” utilize the null

operand to indicate that no variable is present. The final states contain a number of

entries with hyphens, indicating that no requirements are placed on the content of

these states.

Input port

Multiplier

Reg File

Figure 5.2Dual register data path

Constants

ROM

Adder

Reg File

Output port

ALUmult

>>

74

Run time complexity

The set of benchmarks were executed on a reachable state analysis machine

using a series of memory bindings. These memory bindings indicated a single set

of operand bindings for each cycle of the data path execution. Each operand

binding was potentially incomplete since the content of empty latches were not

specified.

Table 5.2 depicts the resulting run times for running the reachable state

analysis for this routing problem on the benchmark set. The benchmarks are

organized by the data-flow graphs and the data path utilized. The number of cycles

associated with the execution of each benchmark is listed in the “# Cycles”

column. In addition to verifying the existence of appropriate state transition, each

dv

pj pk

a1

v a0pi

a2

<<

*
-

*

<< +

*

<<

<<

+ +

<<

*

<<

+

output port

++

+

**

*

Figure 5.3Novel data-flow graph benchmarks.

+ +

** * *

**

* *

e i d h f g e

+

*

+

+

a b c

res

a)3x3 determinant benchmark. b) Modified dhrc benchmark.

res det
a b c
d e f
g h i

=

75

execution verifies that the memory bindings complied with the specified register

constraint denoted under the column “Register Size”. Since our system permits the

binding for specific memory devices to be omitted, this register constraint is

imposed on each S(V), instead on each . Because of the efficiency resulting from

the binding restrictions, an exact reachable state analysis was performed. The

execution times for constructing the set of relation sets and performing this

reachable state analysis including the enforcement of register constraints are

shown in the final column. The increase in execution times reflect the increasing

complexity of the data-flow benchmarks.

5.2 Data-Path Binding

There are numerous cases were a designer wishes to schedule operations on

specific cycles when mapping a data-flow onto a data path. For example, the data

Table 5.1: Initial and Final operand bindings

Data
Flow

State
tms32010-based designs dual register file

reg t p acc ext./sig mult reg adder reg ext./sig.

diff
eq

initial x, y, z ∅ ∅ ∅ ∅ x, z y ∅

final x’, y’, z’ - - - y’ < a x’, z’ y’ y’ < a

3x3
det

initial a, b, c,
d, e, f,
g, h, i

∅ ∅ ∅ ∅ a, b, c,
d, e, f,
g, h, i

- ∅

final res - - - - - res -

dhrc

initial pi, pj, pk,
dv, v

∅ ∅ ∅ ∅ pi,
dv, v

pj, pk ∅

final - - - - res - - res

ewf

initial t2, t13, t18,
t26, t33,
 t38, t39

∅ ∅ ∅ in ∅ t2, t13, t18,
 t26, t33,
 t38, t39

in

final t2’, t13’, t18’,
t26’, t33’,
 t38’, t39’

- - - - - t2’, t13’, t18’,
 t26’, t33’,
 t38’, t39’

-

χj

76

path may have established interface constraints which must be met. Therefore, the

execution of the operand loading and signal generation corresponding to external

synchronizations must occur on predefined cycles. Alternatively, a designer may

wish to reevaluate the data-flow map generated while synthesizing an RT-level

design. While the RT-level structure may have been constructed from a schedule,

the synthesis might have underestimated some penalties. In this case, the designer

Table 5.2: Data-Path Routing Results

Data Flow Data Path # Cycles Register Size Run Time (sec)

diff_eq
tms32010

single
cycle mult.

1 bus 17 3 0.62

2 bus 12 4 0.76

pipeline
 mult.

1 bus 17 3 0.83

2 bus 12 3 1.06

dual register file 12 3, 3 0.36

3x3_det
tms32010

single
cycle mult.

1 bus 20 9 0.86

2 bus 13 9 1.03

pipeline
 mult.

1 bus 20 9 1.00

2 bus 13 9 1.49

dual register file 22 10, 2 0.80

dhrc
tms32010

single
cycle mult.

1 bus 22 5 0.88

2 bus 19 5 1.20

pipeline
 mult.

1 bus 23 5 1.22

2 bus 21 5 1.79

dual register file 19 3, 3 0.81

ewf
tms32010

single
cycle mult.

1 bus 60 10 3.88

2 bus 41 9 3.67

pipeline
 mult.

1 bus 60 10 4.58

2 bus 41 9 4.90

dual register file 43 2, 9 4.66

77

may wish to reevaluate the binding and routing options to determine a better

utilization of the existing system

In the presence of a set of scheduling bounds, the mapping of a data-flow graph

onto a data path becomes a problem of binding. Three binding problems must be

addressed: 1) where are the operands going to be stored, 2) which function units

will perform the operations, and 3) which buses will transmit the operands to the

proper memory and function units. As opposed to the data-path routing problem,

the data-path binding problem lacks a set of predefined states with which to bound

the reachable state analysis. While this can greatly enhance the complexity of the

reachable state search, there are a number of bounds which may be extracted from

the scheduling information to limit this resulting complexity.

5.2.1 Converting operation schedules into bounds

Scheduling constraints may be specified in a variety of ways. The constraint

may specify which operation must occur on a given cycle or may just identify the

resulting operand without identifying the operation that creates it. Additionally, the

scheduling constraints may specify when an operand is created, when it is not

created, or both. Finally the constraints may be specified for every operand or for

only a subset of the operands. The following discussion will define the

assumptions required for each constraint generated.

For any case where operand pk must be created on cycle j, two constraints,

and , may be generated. The first restriction, , ensures that pk was created

by restricting the control vectors, . If the

scheduling constraint lists an operation, e, instead of merely, an resulting operand,

the control setting of the operations may be incorporated into the constraint, as:

. This constraint may be

χj

χj 1− χj

χj ϒ Σ,() Fk Θ ϒ Σ V, , ,()[]
θ Θ∈
∃

v V∈
∃=

χj ϒ Σ,() σ Fk Θ ϒ Σ V, , ,()[]
θ Θ∈
∃

v V∈
∃{ }∩=

78

expanded to ensure the resulting operand is stored, , if the

data path cannot chain the operand into another operation. Such chaining

restrictions can occur because of either scheduling constraints on the child

operands or a lack of switching paths between the appropriate function units.

Furthermore, is only satisfied for the combination of topologies

and present states defined by

.

This constraint may be applied much more effectively when restated over the set of

next state variables as to preserves only those states which permit pk

to be created on the following cycle.

Two constraints may be employed when the scheduling constraints specify the

only times during which an operand must be created. First, the operand’s actual

birth cycle and its inclusion in the set of active operands may be easily determined

from the scheduling constraints. This bound is much more efficient than the “birth

test” introduced in Section 4.4.3 since it delays the introduction of an operand until

it is actually needed. Unfortunately, this information is insufficient to generate any

bounds on the death of an operand. Second, the information concerning the

computation of an operand may be used to formulate more concise

’s. These relations, which denote the conditions under which an

operand is maintained or loaded, can utilize the knowledge of when an operand

may or may not be created or maintained. This restriction is simplest stated by

substituting either or for

.

The final set of constraints require scheduling constraints for multiple

operands. Whereas the schedule for pk defined its birth cycle, the schedule of pk’s

χj V ′() v ′i k,()
i

∪=

Fk Θ ϒ Σ V, , ,()

χj 1− ϒ V,() Fk Θ ϒ Σ V, , ,()[]
σ Σ∈
∃

θ Θ∈
∃=

χj 1− ϒ V ′,()

N ′i k, ϒ Σ V, ,()

M k Θ ϒ Σ V, , ,() Fk Θ ϒ Σ V, , ,()

M k Θ ϒ Σ V, , ,() Fk Θ ϒ Σ V, , ,()∪

79

children define when pk will die. This constraint is still just an upper bound since

alternative operations may permit one of pk’s children be created without the use

of pk. Still this bound provides an important measure for managing the complexity

of the reachable state analysis. Additionally, constraints may be derived for the gap

between an operand’s creation and the operand’s use. Since an operand cannot be

created without its parent operands, a series of constraints can be formulated to

ensure that at least one set of the parent operand exist on the cycles preceding the

scheduled operation. But this constraint must be formulated carefully to ensure

that it only addresses parent operands which may no longer be scheduled and that

it captures the exclusive nature of alternative operations are modeled. Therefore

each operand has a set of alternative constraints, one for each alternative operation,

which are combined to ensure that a set of parent operands exist or can be created,

as in:

 where

5.2.2 Binding Results

Table 5.3 depicts the resulting run times for exact exploration of the binding

freedom in the suite of benchmarks. Each of these executions utilized a fully

defined schedule and employed all of the techniques presented in this section.

Similar to the “routing” run times reported in Table 5.2, these “binding” run times

reflect an exact search over the reachable states as well as the enforcement of

register constraints. It is quite interesting to note the modest growth in the run

times in comparison to those generated when consider the routing options. This

growth is restrained as a result of the efficiency of the constraints derived from the

schedules.

χj Σ V ′,()
v ′i m,i

∪
tautology

{

pm Πl∈
∩

el p l pk=

∪=
j lastbirth pm()>

otherwise

80

5.3 Data-Path Scheduling

When designers port a data-flow graph onto a core data path, they do not have

the luxury of a preexisting schedule or predefined bindings. In this environment,

the designer must schedule a data-flow graph within the constraints of the data

path. For problems of sufficient size, optimal solutions may be generated. The

essential difference which distinguishes problems which may be solved exactly

Table 5.3: Data-Path Binding Results

Data Flow Data Path # Cycles Register Size Run Time (sec)

diff_eq
tms32010

single
cycle mult.

1 bus 17 4 0.76

2 bus 12 4 0.92

pipeline
 mult.

1 bus 17 3 1.02

2 bus 12 4 1.24

dual register file 12 3, 3 0.51

3x3_det
tms32010

single
cycle mult.

1 bus 20 9 0.85

2 bus 13 9 1.00

pipeline
 mult.

1 bus 20 9 1.17

2 bus 13 9 1.51

dual register file 22 10, 2 0.88

dhrc
tms32010

single
cycle mult.

1 bus 22 5 1.22

2 bus 19 5 1.51

pipeline
 mult.

1 bus 23 5 1.59

2 bus 21 5 2.09

dual register file 19 3, 3 0.95

ewf
tms32010

single
cycle mult.

1 bus 60 10 5.31

2 bus 41 9 4.80

pipeline
 mult.

1 bus 60 10 5.75

2 bus 41 9 5.96

dual register file 43 2, 9 6.66

81

from those that can’t, is the clarity with which the lifetime of each operand may be

bounded. Therefore, this section initially presents a technique for bounding the

lifetime of an operand. The merits of this technique and other optimizations steps

will be contrasted in the concluding result section. Additionally, the benefits of

employing heuristic to approximate an operand’s lifetime will be presented.

5.3.1 ALAP bound generation

While lifetimes of an operand can not be determined exactly, they may be

bounded relative to some cycle limit. Such cycle limits are provided with the

bounded minimal-cycle scheduler and the cycle-constrained scheduler defined in

Section 4.3.2. From such a limit,ALAP (as late as possible) bounds can be derived

for the operation set based on the routing restrictions imposed by the data path. In

general, an ALAP bound specifies the last feasible cycle on which a operation may

be performed and still effect the final state. The limitations are derived from a

combination of the operation dependencies and the data path resources which

permit these operations to be performed. From these ALAP bounds which are

computed for each operation, an upper bound on the death of an operand may be

determined. Since an operand is no longer required after all of its children have

been produced, the operand pk can be considered dead once the cycle equals

.

The requirements placed upon an operands position, as defined in the data-flow

graph and the set of final states, are utilized to improve the quality of the ALAP

bounds. For example, each operation specifies an output port for each resulting

operand. Also, an operation specifies a set of operand and input port pairs which

must be satisfied. Each final state encoding specifies where an operand must be

stored. The set of input ports corresponding to these final storage locations

constitute a set of destinations for the set of final operands. The transfer of

max ALAP ei()[]
ei E∈ pk Πi∈

82

operands from these output ports to the required input ports will often incur a

sizable delay with which to bound the operating speed.

The data path can provide many obstacles to the movement of operands. First,

the switching network limits the amount of connectivity. Second, operands cannot

traverse function units since acyclical data-flow graphs prevent an operation which

recreates the same operand. Third, while operands can traverse memory devices,

they will suffer the delay of a cycle. These limitations combined with the

constraints derived from the simultaneous transfer of multiple operands account

for a majority of the cycles in a schedule. Useful scheduling bounds may be

derived by formalizing the minimal delay of a single operand traversing from

specific locations. The minimal delay between a given output port, , and input

port, , shall be denoted as . These delays may be extracted from the

 sets introduced in Section 4.4.2 by identifying the minimal x value where

.

Each operation is assigned an ALAP bound based on the time it takes to route

the resulting operand to its specified position. These bounds start with the set of

operations which produce control signals (). The ALAP bound for these

operands is set to the cycle limit, “last cycle”, to reflect the fact that any signal may

constitute the final operation. Next, those operations whose resulting operand

appears in the final state specification are evaluated. The bound for these

operations is computed from the delay required to store the resulting operand, pk,

into the memory devices specified in the final state set. Since the user can specify

multiple, alternative final states, each state is evaluated separately to determine

which provides the smallest delay. Still, the evaluation of each final state must

ensure that the operand is sent to all of that state’s specified memory devices, but

θ

φ τ φ θ,()

τφ x, θ()

θ τφ x, θ()∈

Π ∅=

83

the operand is allowed to utilize the input port which provides quickest route to

that memory device, as in:

The ALAP bound for the remaining set of operations determines that last cycle on

which the operation result could be used as an input operand. This is formulated

as:

where the notation identifies the input port of cj (where) asso-

ciated with operand pk.

These ALAP bounds differ dramatically from the computation of traditional

ALAP bounds. One difference is the fact that this proposed method utilizes

resource constraints in terms of routing restrictions instead the number functional

unit types. But, the central difference stems from the accommodation of the

recomputation of an operand. Because of this capacity, the ALAP bound above

must maximize the ALAP bound instead of the minimizing it. Use of the minimal

bound indicates the last cycle on which an operation could fulfill the timing

requirements of all of the subsequent operations. Since there is no guarantee that

this operation result will be used for all of the subsequent operations, the ALAP

bound is based on the result which can fulfill the requirements for one of the

children (subsequent) operations. This policy means that operations may have an

ALAP bound which is later than the ALAP bound of a child operation as shown in

Figure 5.4. Fortunately, this policy accommodates the fact that not every operation

must be executed since any operation may have an alternative.

While powerful, these bounds suffer from the fact that they do not model the

constraints resulting from multiple communications acting in concert. More exact

ALAP e() last cycle min max minτ φ θ,()
φ Φi∈

()
v i k, Sj∈Sj Sf V()∈

−=

ALAP e1() max ALAP e2() τ φe2 p1, θ,()−[]
e2 E∈ p1 Π∈

=

φei pk, c j C θi()=

84

bounds could be derived by partitioning the data flow graph and generating ALAP

bound for each portion. Data-flow graphs which produce multiple final operands

are of particular interest. If the computation of each of the final operands were

described as a separate data-flow graph, the interaction of the intermediate

operands could be studied more closely. By executing a reachable state search and

then reviewing the generated states, a set of ALAP bounds may be derived for each

of these new data-flow graphs. This review of the reachable states would

determine the last cycle on which each operand actually aided the completion of

the data-flow graph and specify this cycle as a tentative ALAP bound. These

tentative bounds are then reconfigured to accommodate the final cycle for the data-

flow portions working in concert. While promising, this technique poses a number

of challenges in order to extract an operand’s death from a review of a reachable

state search. Since these challenges have not been presently addressed, this topic is

a suitable candidate for future research.

5.3.2 Scheduling Results

A minimum-cycle scheduler as described in Section 4.3.2 was constructed.

This implementation provided a series of command line options to explore

different characteristics of the solution set. This permitted a series of questions to

Figure 5.4Fluctuating ALAP bounds due to operand fanout.

eb

ea

ec ALAP = x

ALAP = x - 3

ALAP = x - 2

τ = 2

τ = 4

τ = 3

85

be asked of each data-flow/data-path pair: 1) what is the minimal number of cycles

required for executing the data-flow regardless to register size constraints, 2) what

are the minimal register sizes which permit this cycle bound to be met, 3) how may

heuristics be used to reduce the execution time, yet still find a solution complying

with the register constraint and cycle bound, and 4) extract a detailed schedule

report using this last technique. If the problem specification proved too large for

exact analysis, heuristics were employed to approximate a minimal number of

cycles followed by steps 2 through 4 to minimize register constraints and extract a

solution. For these later cases, both the “death approximation” and “maximum

utility” heuristics from Section 4.4.3 and Section 4.4.4 were employed.

Minimal schedule identification

Table 5.4 lists the results for finding the optimal, minimal-cycle schedules as

determined through the use of a bounded minimum-cycle scheduler. Surprisingly,

the use of the pipeline multiplier in the tms32010-based designs did not have a

negative effect on the schedule length for either of the 3x3_det benchmarks or the

diff_eq/single-bus benchmark. Exact results for the suite of ewf benchmarks were

not produced because our BDD package began swapping. In addition to its

increased complexity, the structure of ewf data-flow graph results in a number of

fluctuating ALAP bounds. While this problem may be overcome by the use of

breadth-first BDD algorithms, it provides an estimate for the limitations for this

proposed system.

The execution times listed in Table 5.4 demonstrate the relative merit of the

memory mapping optimization (Section 4.4.2) and the ALAP bounds (Section

5.3.1) in terms of each benchmark.1 The quality of the resulting schedules are not

modified by either of these techniques since no heuristic pruning is involved. Still,

86

the complexity of the reachable state analysis and the resulting run times are very

dependent upon the pruning techniques employed.

The first column, “Neither” lists the run times resulting from executing the

reachable state analysis utilizing every optimization except for memory mapping

and ALAP bounds. The “Mem” column lists the run times when memory

mappings were optimized. Substantial benefits are visible in data paths which

contained memory devices dedicated to a function unit input such as the “t latch”

in the single bus tms32010 designs. The benefit for each of these single bus

benchmarks is relatively uniform for each data-flow graph. This result is expected

since the reduction to the state space is dependent upon the data-flow graph’s

1. Efforts to run the automata without the other optimizations, such as dynamic relation
construction (Section 4.4.3) or latch relation optimization (Section 4.5.2), quickly cause
the reachable states analysis to become intractable.

Table 5.4: Exact scheduling results

Data
Flow Data Path

#
Cycles

Run Time (sec)

Neither Mem F-ALAP D-ALAP Both

diff

eq

tms32010

single

cycle mult.

1 bus 17 250.2 125.5 240.4 195.2 96.7

2 bus 12 22.9 22.8 23.0 18.6 18.5

pipeline

 mult

1 bus 17 565.7 350.2 539.6 301.8 191.7

2 bus 13 109.4 109.1 97.2 51.2 36.7

dual register file 12 15.2 15.1 16.4 16.1 16.2

3x3

det

tms32010

single

cycle mult.

1 bus 20 4,745 1,487 3,627 2,099 687

2 bus 13 267 279 188 93 94

pipeline

 mult

1 bus 20 11,215 5,412 8,109 2,625 1,396

2 bus 13 798 813 475 77 78

dual register file 22 415 420 412 383 398

dhrc
tms32010

single

cycle mult.

1 bus 22 2,508 486 2,259 790 168

2 bus 19 1,051 1,053 664 334 277

pipeline

 mult

1 bus 23 16,045 2,353 13,242 1,180 274

2 bus 21 1,534 1,561 1,032 325 327

dual register file 19 103 106 107 38 38

87

operation set. The occasional increase in execution times associated with the other

benchmarks reflects the overhead due to the computation of the sets.

The results for the proposed ALAP bounds are compared against two sets of

run times. In addition, to the run times listed under “Neither”, a set of run times are

listed corresponding to bounding the reachable state analysis with ALAP derived

solely from the function unit resources, “F-ALAP”. The results from using this

traditional bound are mixed. Examples containing the dual-register file data path or

the diff_eq data-flow graph show only slight improvements in run times, if any. By

contrast, the ALAP bounds derived from the complete set of data path resources,

“D-ALAP”, demonstrate a consistent set of improvements.

Figure 5.5 demonstrates how these benefits are realized for a particular

example. Here we see the constant growth in the set of reachable states, until the

set is intersected with the set of final states. By employing the ALAP bounds, the

size of the reachable state set is reduced as the analysis approaches the anticipated

final clock cycle as elements are removed which have no impact on the solution

set. Finally, when these techniques are combined with the memory mapping

(corresponding run times are in listed in column “Both”) the size over all cycles is

limited by reducing the set of states from which the reachable state analysis must

consider.

Scheduling and register constraints

Table 5.5 is a compilation of the best known schedules subject to register

constraints. The additional scheduling results were derived by loosely constrained

heuristics. These results are contrasted with those derived from traditional

scheduling using data-path estimates. No published results are available for the

τ

88

dual register file design. A comparison of the available results underscores the

additional delay mandated by practical, pre-existing designs.

Each value listed in the column “Register Size” corresponds to the minimal

register size which met the minimal cycle constraint. In the case of the dual-

register-file data path, the size of the multiplier register file proceeds the adder

register file. Asterisks indicate when the register size matches the register

requirements of either the initial or final state specification. Multiple factors

combine to determine whether a schedule may fit within such a minimal register

size including: the data path, data-flow graph, and the availability of extra latches,

such as those found in the set of tms-based data paths. For example, the additional

pipeline latch reduces the register requirements for the “diff_eq” benchmark.

4 8 12 16 20

N

od
es

(
S j(

V
))

5,000

10,000

15,000

20,000

0
Cycle #

Neither
Color
FU - ALAP
DP - ALAP

DP - ALAP & Color

Figure 5.5Cycle by cycle comparison of performance

Benchmark: dhrc & 1 bus/single cycle mult tms32010

Bounding technique:

89

The run times listed in the right column of Table 5.5 correspond to running the

application with individually tuned heuristics. The interaction of the data path,

data flow, register constraint, and selected heuristics cause a high variance in the

run times. Most important, is the dramatic rise in run times for the benchmarks

a. Scheduled with no bus constraint.

Table 5.5: Heuristic schedules results

Data
 Flow

Data Path

Cycles
Register

Size

Run
Time
 (sec)

Traditional
Schedulinga

Data-Path
Constrained

diff
eq

tms32010

single
cycle mult.

1 bus
7

17 4 16.44

2 bus 12 4 3.41

pipeline
mult

1 bus
8

17 3* 23.54

2 bus 13 4 11.80

dual register file - 12 3, 3 15.69

3x3
det

tms32010

single
cycle mult.

1 bus
10

20 9* 142.49

2 bus 13 9* 107.79

pipeline
mult

1 bus
12

20 9* 221.72

2 bus 13 9* 86.45

dual register file - 22 10, 2 99.68

dhrc
tms32010

single
cycle mult.

1 bus
10

22 5* 24.00

2 bus 19 5* 5.78

pipeline
mult

1 bus
12

23 5* 17.34

2 bus 21 5* 10.51

dual register file - 19 3, 3 4.52

ewf
tms32010

single
cycle mult.

1 bus
27

60 10 918.92

2 bus 41 9 410.24

pipeline
mult

1 bus
28

60 10 766.05

2 bus 41 9 397.48

dual register file - 43 2, 9 4,594.63

90

using the ewf data-flow graphs. This rise is due to the poor ALAP bounds resulting

from the data-flow graph structure as well as the increased complexity of the

operation set.

Figure 5.6 displays a representative solution produced by this scheduling

technique. This example displays the results of mapping the diff_eq benchmark on

the single-bus, single-cycle multiplier tms32010-based data path with a register

constraint of three. While the data flow which is listed in the figure has already
Differential Equation mapping

State t p Acc Reg ROM y’ < a

S0 {x y z} {a dx c3 c5}

S1 c5 c5 c5 {x y z} {a dx c3 c5}

S2 y op2 y {x y z} {a dx c3 c5}

S3 dx op2 y’ {x y z} {a dx c3 c5}

S4 dx op2 y’ {x y z} {a dx c3 c5} X

S5 dx y’ op2 {x z y’} {a dx c3 c5}

S6 x op1 op2 {z y’} {a dx c3 c5}

S7 op2 x op1 {z y’} {a dx c3 c5}

S8 op2 op4 x {z y’ op1} {a dx c3 c5}

S9 c3 op4 x {z y’ op1} {a dx c3 c5}

S10 c3 op3 op10 {z y’ op1} {a dx c3 c5}

S11 op10 op10 op3 {z y’ op1} {a dx c3 c5}

S12 op3 op10 op10 {z y’ op1} {a dx c3 c5}

S13 op3 op7 op10 {z y’ op1} {a dx c3 c5}

S14 op3 z x’ {z y’ op1} {a dx c3 c5}

S15 x’ x’ z {x’ y’ op1} {a dx c3 c5}

S16 x’ x’ z’ {x’ y’} {a dx c3 c5}

S17 x‘ x‘ x‘ {x’ y’ z’} {a dx c3 c5}

Differential
Equation
specification

op1 = dx * x;
op2 = c5 * y;
op3 = c3 * z;
op4 = op1 * op2;
op5 = dx * op3;
op6 = x - op4;
x’ = op6 - op5;
y’ = dx + y;
z’ = op1 + z;
cntrl <- y’ < a;

Figure 5.6Resulting schedule and operand mappings.

91

merged two redundant operations into a single operation resulting in op1, this

merger was left out of the benchmark specification requiring the application to

perform the merger. The ability to create such schedules and memory binding is

essential for providing the constraints used in the previous sections.

92

Chapter 6

Evaluating Multiple Networks

The capacity to specify multiple network topologies is extraordinary beneficial

when comparing competing designs. In this case, alternative but similar alterations

to a data path are evaluated. The capacity of each data path are modeled as

exclusive topologies, but all topologies may be modeled concurrently. This

concurrent analysis is very effective when topologies share a common

functionality differing only in terms of delay or power. Topologies which contain a

limited amount of functional difference can receive a substantial benefit from

concurrent analysis. Initially, this chapter will review the penalties for such

functional differences. Later, the incorporation and evaluation of timing

information are presented.

6.1 Scheduling on Multiple Data Paths

The ability to evaluate multiple topologies is a very tempting proposal, but as

the ensuing results will show, the efficiency derived from this technique is subject

to many factors. Table 6.1 lists five data-path benchmarks which are constructed

from the set of tms32010-based designs presented in Section 5.1.2. Each

benchmark specifies the set of data-path topologies which are included in the data-

93

path specification. The benchmarks are designed to incorporate a common theme,

such as the pipeline multiplier, or as in the case of the last benchmark incorporate

all four of the topologies. The run times resulting from a exact reachable state

analysis on each of the benchmarks are specified in Table 6.2. Whereas the run

times listed in Table 5.4 resulted from scheduling on a single data path, these run

times are the result of analyzing two or more data paths concurrently. The time

required to schedule each of the data-flow graphs is listed under the appropriate

columns labeled “run time”. The ratio of these run times over the sum of the run

times from individual analysis are listed in the column “efficiency”. Efficiency

Table 6.1: Five combined topology benchmarks.

Data-Path
Topologies

1 bus &
1-cyc. mult.

1 bus &
pipe. mult.

2 bus &
1-cyc. mult.

2 bus &
pipe. mult.

1 bus X X

1-cyc. mult. X X

2 bus X X

pipe. mult. X X

all X X X X

Table 6.2: Relative efficiency of multiple topology analysis.

Data-Path
Topologies

diff_eq 3x3_det dhrc

run time efficiency run time efficiency run time efficiency

1 bus 393.52 136.5% 338.18 16.2% 654.47 166.2%

1-cyc. mult. 54.51 47.3% 181.49 23.2% 676.31 151.7%

2 bus 88.45 160.2% 335.83 194.8% 492.95 81.6%

pipe. mult. 170.83 74.8% 187.90 12.7% 1,208.69 201.4%

all 125.99 36.7% 466.19 20.6% 278.83 26.7%

94

values which are less than 100% identifies those cases where concurrent analysis

achieved superior results.

The relative efficiency varies greatly from example to example. Many times, a

great savings results from the disparity of topology designs. While multiple

topologies are analyzed, the results will identify the best topologies. If the

topologies differ significantly, the performance of one topology can lower the

maximum cycle bound dramatically. The ALAP bounds generated from this lower

cycle bound help the performance of the system. This is why the 3x3_det

benchmark was scheduled faster on the “1 bus” and “pipe. mult.” examples.

Additionally, the diluting of performance which results from combining a large

number of topologies helped to make the data path which combined all four

topologies generate consistently superior results. At the same time, the mixture of

topologies is not a panacea. For example, the quality of ALAP bounds suffer from

the mixing of topologies, since the topology from which the cycle bound was

derived might not be the same topology which provides the minimal operand

transfers. Regardless of the ALAP bounds, the exact state sets which become

merged and the efficiency of the system to merge them may incur substantial

overhead. While one expects a BDD structure to merge state sets efficiently, the

results show that many topology pairs defied this expectation.

6.2 Timing Evaluation

The logical extension to the modeling of operand movement is the modeling of

operand transmission delay. Such delay information permits the quantization of

timing penalties and cycle time requirements. Such analysis, as shown in the initial

example presented in Section 1.1, gives the designer a critical advantage when

reviewing changes to the data path or data-flow map. This section will detail how

such clock cycle modeling may be incorporated into the automata model which

95

has been presented. After a discussion of timing model utilized for measuring the

cycle time, the expansion of the automata model is discussed. The section

concludes with a review of some experimental results.

6.2.1 Timing model

Delays through a data path are incurred as operands traverses wires, switching

elements, combinational logic, until finally reaching a destination: a storage

element or the controller. The termoperand path will be used to define any path

over a consistent network topology which starts at either an external input port or

memory unit, traverses any number of function units and multiplexers, and ends at

the input port of a memory unit or a function unit’s signal output port. Given a data

path, an upper bound may be placed on the maximum data-path delay of a network

topology by enumerating each operand path and computing the associated delay.

While the cycle time of the data path need not exceed the maximum of these

delays, it could be considerably less. This is because the set of paths through a data

path may contain a number offalse paths which will never be utilized. The cycle

time can be set unnecessarily high if it is based on one of these false paths. False

paths can occur for a variety of reasons: an operand path may require conflicting

control settings making it infeasible, faster redundant paths through the data path

may alleviate the need to use a more costly path, or operands are never transferred

along a specific path even though it is feasible and unique. After detailing the delay

models, I shall demonstrate how these false paths are avoided.

Component Delays

The data-path specification for each component ci is expanded to include

timing delays. The format for expressing these delays is based on the behavior of

the component being modeled. A set ofread delays is defined for each operand

generating component (external inputs and memory devices) where each delay is

96

dependent upon the output port and control settings. Similarly a set ofthroughput

delays is defined for components which process operands (multiplexers and

function units), but these delays are dependent upon the input port, output port, and

control settings. Finally, a set ofload delays are defined for memory devices which

are solely defined by the input port. In general, the delay for a component ci may

be retrieved by the function . These delays may contain a special delay

of “ ” to denote that an input port is not used for some output and control

combinations. Additionally, the appropriate passing parameters of are set to

null when retrieving read or load delays.

While the control lines feeding the data-path components are assumed to be

defined for the entire active clock cycle, the delay of transporting the generated

signals to the controller must be modeled. Presently, the delay required to produce

a signal and route it to the controller is lumped into a single throughput delay. If

this model is insufficient, experience has shown that the interconnection delay for

signals can be adequately modeled after some minor modifications to the data-path

specification. This can be achieved by modeling the signals as operands which are

connected to specialcontroller components.

Wire delays

Propagation delays occur as operands are transferred through wires. These

delays are dependent upon the physical routing of the wire as well as the portion of

the wire which the operand traverses. Presently, my system supports propagation

delays which are either computed dynamically or submitted in a pre-computed

format. The availability of the dynamic computation allows the user to preview the

effect of a network modifications without undergoing lengthy interconnection

modelling, but the thoroughness of these calculations are limited by the input

specification. Whenever more detailed analysis is required, the propagation delays

∆i σ φ θ, ,()

∞−

∆i

97

can be computed by the proper application and then submitted with the data-path

input.

These dynamic propagation delay estimations are derived from a wire’s

physical properties as described in each network topology. While the data-path

specification does not currently handle the specification of routing information, it

does allow layout information to be associated with the set of input and output

ports. This positional information is utilized to estimate the physical layout of each

wire. This layout information is combined with the wire’s circuit properties to

compute the propagation delay. But, only a single conservative delay is computed

for each wire topology instead of a delay for each path across the wire. While

extensions to the propagation delay model are feasible, it is still preferred to

precompute the delay models externally by tools capable of modeling the actual

routing information.

The transmission delay is dependent upon the distributed RC (resistive

capacitance) of the wire, the resistance of the driver, and the cumulative

capacitance of the taps. Wire layout is approximated by the bounding box which

contains the wire’s set of drivers and taps. The wire length and its associated

distributed RC are estimated as a function of half the perimeter of the Manhattan

bounding box. The driver resistance is assumed to be constant. The cumulative tap

capacitance is a function of the number of connecting points of the wire. The 50%

rise time, appropriate for static CMOS circuits, is computed from these three

values using the approximation in Bakoglu[5] p.204. Figure 6.1 displays an

example wire configuration, its actual physical properties, the estimated model,

and its timing equation.

Alterations to a network topology effect the wire delay by removing and

inserting elements from a wire’s set of connection points. Proper modeling

98

requires instantiating each set of viable connection points to determine the range of

propagation delays for each wire. Unfortunately, these sets of connection points

can not be easily extracted from the data-path specification format. The assembling

of such a list must be performed by analyzing the topology conditions under which

any input port can connect to an output port, , such as:

A delay can be subsequently computed for each unique set of input ports, and then

each delay and its associated network topologies is stored with each input port.

The function is utilized to retrieve the delay of input port for a given net-

work topology.

RD

CT

CT

CT

CT

RD

4CT

Wire topology Circuit characteristics Circuit approximation

Figure 6.1Wire Delay Model

bounding box

l

h

, ,Rw l h+() Runit= Cw l h+() Cunit= CL CT
taps
∑()=

t50% 0.4RwCw 0.7 2.3() RDCw RDCL RwCL+ +()+=

Vss

Vss

θi

ϒj k, φj∩() ϒ ϒj k,−() φj∩()∪[]
ψ

j̇ k,
Ψj∈ θj k, θi=
∃

φj Φ∈
∩

∆i υ() φi

99

Revisiting restricted component set

It is useful to review the compatibility of a timing model and set of component

behavioral types from Section 4.1.1. The set behavioral types was restricted in

order to define a minimal set of base components. While the complexity of the

automata construction is reduced dramatically by adopting this minimal

component set, this set increases the complexity for the timing specification.

Therefore, the following modifications are made:

The propagation delay along a wire to an input port may be pre-specified as

zero even when propagation delays are dynamically computed. This alteration is

required since wires are used for two different purposes. While they are primarily

used to model the interconnection structure of the data path, they are also used to

join basic components when modeling compound components. It is important that

wires used for compound components do not complicate the timing model by

introducing nonexistent delays. Therefore wires which are used solely for this

purpose can be identified and assigned a zero delay for all input ports.

Additionally, any wire, such as the one in Figure 6.2, may fan out to describe items

both in the interconnection structure and compound components. These wires will

have timing delays, but the dynamic computations of these delays must distinguish

latch

load

Figure 6.2Latch’s output wire captures interconnection and functional behavior.

100

which connection points should be omitted from the delay computation.

Furthermore, the input ports which are not used to model the interconnect structure

should have a zero propagation delay. Therefore, accommodations have been made

to identify these special connections.

Additionally, the multiplexer description is expanded to model the switching

elements used to drive buses. While functionally equivalent to a multiplexer, a set

of switching elements have multiple output ports from which a single wire may be

driven. Each of these output ports will be directly associated with an appropriate

input port and will share a common name, as shown in Figure 6.3. This association

with an input port permits the system to identify the set of topologies under which

an input, , and its output are not required, . These conditions

are then used to determine the minimal set of drivers which must exist for a given

network topology, from which the positional and capacitive effect can be added to

the computation of . This formulation shall be written in terms of the

associated input ports, as in:

since all of the output ports in a set of switching elements share a common name.

This utilization of a common output port name alleviates any changes to the

φj+1

θi

φj

φj+2

θi
θi

Σi

Figure 6.3Multiplexer component variation: “switching element set”

01

00

1-

φi ϒi ϒi j,()
ψi j, Ψi∈

∪=

∆i υ()

ϒj φj∩() ϒ ϒj−() φj∩()∪[]
φj Φi∈
∩

Ψi

101

specification to accommodate an input port being potentially driven by multiple

output ports for a given network topology. The deficiency of this nomenclature is

the difficulty it presents in specifying delays associated with a given output port.

But, this can only be of interest to applications which use predefined timing delays

since dynamically computed ones are based solely on the network topology. In the

case of these predefined timing delays, the output-port-dependent delays may be

restates in terms of the throughput delay of the switching element.

Computing delays through the network

The computation of delays through the network utilizes techniques standard to

propagating delays through a graph. This analysis cumulates successive delays that

emanate from primary inputs (external inputs or memory devices) until reaching a

primary output (memory devices or output port for signals). When multiple delays

merge at a single node, the maximum of the compatible delays is selected. This

straight forward task is complicated by the fact that multiple delays are propagated

along a single path. The multiple network topologies means that a single path may

contain many network-dependent delays. Additionally, delays which converge at a

single device can use disjoint control settings, as in a multiplexer, which

introduces control-dependent delays. Therefore, the delay at a given point in the

data path is dependent upon both the network and control settings. This relation

between a delay and the network and control dependencies is maintained as an

ordered pair. I choose create a set of these pairs for each input and output port

where each element, is expressed as . Additionally, those

false paths arising from conflicting control settings shall be automatically

eliminated as a resulting of maintaining the control requirements. The delay for an

input, , is defined by the output port, , to which it is connected and the

∆′i
δ′i j, t i j, Λi j, ϒ Σ,(),()

φi θ

102

propagation delay. As formulated below, if there is no output port associated with

the input port, the delay is infinite.

 where

The notation represents the summation of the timing val-

ues for common topology and control settings. This notation allows the delay for

an output port to be defined in terms of the slowest path, as in:

Recall, that an input port which is not used for a given control setting will have a

delay of with which to counteract any input-port delays of .

6.2.2 Using the automata

Those false paths which are infeasible due to control conflicts are removed

during the computation of delays for each operand path. Still, a large number of

feasible operand paths exist which may never be used to complete the execution of

a data-flow graph. The execution of the automata may be used to

distinguish the paths which are used from the false paths. Furthermore, the relation

may be expanded to incorporate timing information, denoted as

, with which to grade the solution set and identify the data-

flow map which requires the minimal clock-cycle time. This section will

demonstrate how the timing values are introduced to the automata model and used.

Constructing the automata

After computing the delays for the set of operand paths, delays are defined for

the set of input ports to the memory devices and the output ports dedicated to the

transmission of control signals, . In order to distinguish the false paths of this

system, the timing information for each operand transfer is integrated into the

∆′φi
σ υ,()

∞
∆φi

φ θ υ, ,() ∆′θ σ υ,()+(){=
∅ θ=

otherwise

∆i φ θ σ, ,() ∆′j σ υ,()+

∆′θ σ υ,() max ∆i φ θ σ, ,() ∆′φ σ υ,()+[]
φ Φi∈

()=

∞− ∞

N ϒ V V ′, ,()

N ϒ Σ V V ′ ∆°, , , ,()

Θ″

103

automata. But this technique presents a problem: how to integrate timing values

composed over the set of real numbers with an automata composed of discreet

components?

The solution lies in transforming the set of timing values into a set of discreet

values. While one may generate a discrete value for each unique timing value, this

set could be quite large. Instead, a set of user defined timing ranges are utilized to

cluster the timing values. In addition to such timing ranges, the user may define a

maximum and minimum timing bound with which to limit the timing analysis, as

shown in Figure 6.4. Any delays exceeding the maximum bound are defined as

illegal resulting in an unsuccessful transfer of an operand. All delays which are

less than the lower bound are considered legal but simply do not require timing

analysis. In the absence of such user defined bounds, the bounds are automatically

defined by the maximum and minimum delays computed for the data path.

The range of timing values between these timing bounds may be partitioned

into a number of timing ranges. If the user simply wants to verify that a clock cycle

exists below some specified time, they may specify equivalent timing bounds to

indicate that no timing analysis beyond the exclusion of operand transfers is

required. Otherwise, is defined as the set of timing

combinations where each Boolean symbolically represent one of the timing

ranges. Moreover, the use of disjoint timing variables allows the description of

Time

t1 t2 tn
maxmin not allowed

unmarked

Figure 6.4Partitioned time line.

∆° δ°1 δ°2 …× δ°n××=

δ°i

104

multiple timing. This feature is useful when describing the set of timing delays

associated with a set of operand transfers which occur in a single cycle. More

importantly, it permits all of the timing delays stemming from all operand transfers

over all cycles to be represented in single format. This format permits the user to

identify the clock cycle time by just reviewing the set of final states instead of

reviewing the history of state transitions.

The relation is defined for each input port to a memory device

and every output port used to transmit control signals. The relation, denotes the set

of permissible control and network setting under which an operand may reach the

input port. This relation is constructed directly from the set of

pairs, where and each is mapped into the set of times which all have

the appropriate timing range, , specified. This set of timing ranges are

represented as .1 The important idea is that the requirements on all of the

timing ranges are left unspecified except for the timing range which is known to

occur.

The alterations to the automata are device dependent. While the relation for

external inputs is not effected by the introduction of the timing model, each

 for i>0 is. For the group of control signals, the control setting

which are used to transmit a signal out of an output port are labeled with timing

information. This labeling is performed on an operand by operand basis. In order

to match the pertinent output ports is handled by labeling each with

the proper output port as shown below:

1. If < minimum bound, is used in the relation.

Λ°i ∆° Σ ϒ, ,()

t i j, Λi j, ϒ Σ,(),()

t i j, t max< t i j,

δ°i

∆° δ°i∩

t i j, ∆°

N i ϒ Σ V V ′i, , ,()

Λ°i ∆° Σ ϒ, ,()

N ′1 k, Σ V,() v 1 k, Fk Θ Σ V, ,() θ Λ°θ ∆° Σ ϒ, ,()∩()
θ Θ″∈
∩∩

Θ
∃∪=

105

For memory devices, the timing delays is added in terms of each ,

since the delays are incurred only as operands are loaded into memory devices.

This labeling is performed by replacing

in EQ. 4.6 and EQ. 4.7 with

.

While this alteration leaves a zero timing delay associated with the act of maintain-

ing an operand in a register file, it is assumed that this oversight will not effect the

clock cycle.

Expanding operand non-transfers

The construction of each requires more than just the

addition of timing information. The introduction of timing penalties creates a new

problem which must be addressed. Previously, the omission of an operand from

the next state occurred only if the operand could not be routed to the correct

position, as described by . But with the introduction of timing

restrictions, it may make sense not to load an operand even when it is feasible in

order to forego the timing penalty. In case of the general relation, this change

means that must be considered for all combinations and that it should be

accompanied by the complete set of timing patterns to avoid restricting the timing

constraints. This redefines EQ. 4.5 as:

Because of the encoding scheme selected for latches, this restriction effects the

latch transform equation by redefining the conditions under which the null variable

may be loaded as all feasible conditions, as in:

N ′i k, Σ V,()

Fk Θ Σ V, ,() M k Θ Σ V, ,()∪() Ωφ Θ()∩[]

Fk Θ Σ V, ,() M k Θ Σ V, ,()∪() Ωφ Θ() Λ°φ ∆° Σ ϒ, ,()∩ ∩[]

N i k, ϒ Σ V V ′i ∆°, , , ,()

N ′i k, ϒ Σ V, ,()

v ′i k,

N i j k, , ϒ Σ V V ′i ∆°, , , ,() v ′i k, N ′i k, ϒ Σ V ∆°, , ,()∩() v ′i k, ϒ Σ Sj ϒ V,() ∆°×××()∩()∪=

N °i j null, , ϒ Σ V V ′i ∆°, , , ,() v ′i null, Σ Sj ϒ V,() ∆°××[]∩=

106

This constraint causes problems for the optimization introduced in Section

4.5.2 which reduced the conditions under which the null operand was considered.

The loss of this reduction technique is a serious set back since it is a powerful tool

with which to make the reachable state analysis practical. But this can be

overcome by the following observation: the set of solutions that this analysis

overlooks are characterized by an increased use of the null operand. The benefits

of both techniques may be found by running the reachable state analysis in two

phases. In the first phase, the automata is run in the absence of timing information

utilizing all of the reduction techniques and the reviewed to generate the series of

states, , essential to finding the solution set, as shown in Section 4.3.2.

Each of these state sets are then transformed into state restrictions to be

applied on the second phase of the reachable state analysis which includes timing

analysis. This reduces this second phase to a data-path routing problem. The use of

these state restrictions significantly reduces the set of feasible states resulting from

combinations of non-null operands (and) enough to mitigate the effect of

the increased presence of the null operands. To accommodate this increase of null

operands, each is constructed by introducing the null operand into each

possible latch encoding from which it is missing. For a data path with a single

latch, such a change would appear as:

The complications of converting the state encodings for multiple latches is allevi-

ated by the choice of operand encodings for the latch. By cofactoring the “null

bits” for each latch encoding, the set of states are expanded to accommodate null

operands in any location for which they were previously forbidden in a single

BDD operation whose complexity is bounded by the size of .

S°j ϒ V ′,()

χj ϒ V ′,()

P′ P″

χj ϒ V ′,()

χj ϒ V ′,() S°j ϒ V ′,() S°j ϒ V ′,()
v i null,

v i null,∩∪=

S°j ϒ V ′,()

107

Analyzing the results

Having defined how to generate a new set of relations,

the execution and use of these relations may now be presented. The initial state

may be redefined over this set of timing combinations as

 to indicate that any combination of timing

values is valid. Restrictions are then placed on which timing variables must be

present with each succeeding state transitions. When the set of states intersects the

set of final states, the set of timing restrictions associated with each possible

solution may be formulated as . These

timing constraints may, in turn, be applied to additional data-flow graphs to

determine how their timing constraints interact. Regardless as to the number of

data-flow graphs which are analyzed, the system will wish to identify the

minimum cycle time. As opposed to the use of network topologies where the

relative value of a topology is difficult to formulate, timing ranges have an intrinsic

preferential order. This order is utilized to automatically identify the minimum

clock cycle time and generate the associated data-flow maps. By successively

restricting the timing ranges which are allowed, the set of timing constraints may

be pruned until only no constraints are feasible. The minimum clock cycle time is

defined as the maximum timing range which causes the timing restriction to

become invalid. Assuming that the timing partitions are arranged in the order of

their timing ranges, the timing requirements may be reduced by one timing range

at a time, as in

Each successive omits the set of timing constraints which use an operand

transfer from the range . The which causes this set to become null is the

minimal timing range, , required for the completion of the automata. A mini-

N i ϒ Σ V V ′i ∆°, , , ,()

S0 ϒ V, ∆°,() S0 ϒ V,() ∆°×=

Sj ϒ V, ∆°,() Sf ϒ V,()∩[]
v V∈

∃
υ ϒ∈

∃

δ°i Sj ϒ V, ∆°,() Sf ϒ V,()∩[]
v V∈

∃
υ ϒ∈

∃∩
i n=

1

∩

δ°i

δ°i δ°i

δ°min

108

mal timing restriction may be generated from this timing range and applied to the

solution set as:

This set of remaining solutions define the feasible network topologies and their

associated final state which meet this minimal cycle time bound and complete in j

cycles.

6.2.3 Experimental Results

The efficiency of such timing techniques is demonstrated by analyzing a set of

benchmarks. All of the benchmarks utilize the data path represented in Figure 6.5.

This data path, shown here in terms of compound components, is functionally

equivalent to the tms32010-based data path with a pipelined multiplier and a single

global bus presented in Section 5.1.2. The single cycle multiplier was not utilized

for this section since its timing delays dominated the timing analysis and skewed

the results. As opposed to the previous examples, eight different topologies

stemming from three disjoint alterations are considered. Two of these alteration

concerned whether switching elements M1 or M2 would be realized by a

multiplexer or bus switch model. The third alteration considered including the

direct line between the register file and the multiplier shown in dashed lines. The

effects that these alterations have on the propagation delays are modeled by the

dynamic computation presented in Section 6.2.1. The floorplan used to compute

these values are displayed at the bottom of Figure 6.5. This positional information

was combined with the physical properties listed Table 6.3 to generate the

estimated delays. The same delay computation was used to generate the results

described in the introductory example in Section 1.1. For the data path considered

here, the propagation delays along a single wire ran as high as 2.32ns.

Sj ϒ V, ∆°,() δ°i
i min 1+=

n

∩∩
δ° ∆∈ °

∃ Sf ϒ V,()∩

109

The four data-flow graphs discussed in Section 5.1.2 were analyzed on this

P

Reg
File

>>

ALU

ACC

T

Figure 6.5TMS32010 based data-path model and floorplans

pipeline

M2

M1

External
Output

R
A

M

R
O

M

XO XI

A
C

C

tp

A
LU

Shift

1.0

2.0

3.0

4.0

5.0

1.0 2.0 3.0 4.0kµ
Bus floorplan Multiplexer floorplan Buffered line floorplan

External
Input

Mult 1Mult 2

pi
pe

R
A

M

R
O

M
XO XI

A
C

C

tp

A
LU

Shift

1.0

2.0

3.0

4.0

5.0

1.0 2.0 3.0 4.0 kµ

Mult 1Mult 2

pi
pe

R
A

M

R
O

M

XO XI

A
C

C

tp
A

LU

Shift

1.0

2.0

3.0

4.0

5.0

1.0 2.0 3.0 4.0 kµ

Mult 1Mult 2
pi

pe

mult

Table 6.3: Physical Parameters

Parameter Symbol Value

Output port resistance Rd 2 kΩ
Output port capacitance Cd 60 ff

Input port capacitance Ct 20 ff

Wire resistance Rw 0.166Ω/micron

Wire capacitance Cw 0.176 ff/micron

110

data path. Initially these benchmarks were analyzed in terms of a data-path routing

problem. Such routing problems, as discussed in Section 5.1, utilize a predefined

set of memory binding for operand storage. Attempts to minimize the cycle time in

this constrained environment is another means of determining the minimal cycle

time for a complete design. The binding that were provided for these runs were

selected to ensure that they were valid assignments for any of the eight topologies.

The analysis then reported the minimal cycle and the set of associated topologies

on which the cycle time was realized.

The actual designs that are selected are highly dependent upon a number of

issues: binding freedom, floorplans, and physical parameters of the topology. But

these issues are not the focus of this work. Since the techniques which have been

presented are based on providing the designer an efficient means to analyze and

rate these issues, this section shall concentrate of the efficiency issues.

As shown in the chart in Figure 6.6, the efficiency of the system are dependent

upon a number of factors. The efficiency is dependent upon the timing bounds

which are selected. The selection of an appropriate maximum timing bound can

restrict a number of feasible paths thereby reducing the complexity of the state

transformations. Likewise a minimum timing bound helps to reduce the extra

states which result when timing bits distinguish states which would previously be

equivalent. Figure 6.6 utilizes four point styles to show the relative overhead

encountered when either no bounds, just a minimum, just a maximum, or both a

minimum and maximum (also described as atight bound) are used. The actual

timing bounds are listed with the data-flow graph key since the appropriate bounds

fluctuated according to the data path being considered. An additional factor to this

overhead is the number of allocated timing partitions which is shown along the x-

axis. Despite these two factors, the primary factor is the data-flow graph which is

111

being analyzed. Obviously, execution times will reflect the length and complexity

of the data-flow graph being analyzed. To mitigate this effect, each run time was

divided by the complexity of the data-flow graph. This complexity was modeled

by the increase in execution time when analyzing the data-path with a single

timing variable and tight timing bounds. By dividing the increases in execution

time over a data-path routing without timing analysis by this factor, the overhead

rating utilized in this graph is derived.

Some general trends which are visible in the plot deserve attention. First off,

the rate of overhead is relatively consistent across all data-flow graphs operating

under similar timing bounds. This consistency is observable partially because of

the logarithmic scale. Still, general trends are observable in terms of the different

no bounds
min bound
max bound

max/min

dhrc

diff_eq
3x3_det

elip

Timing Variable

ru
n

-
no

_ti
m

e
tig

ht
_t

im
e

-
no

_t
im

e

Figure 6.6Timing analysis overhead in routing.

1

10

100

1 5 10 15 20

36.6: 36.8 ns
29.0: 29.2 ns
42.0: 42.2 ns
36.5: 36.7 ns

112

timing bounds and timing variables. For example, use of both a minimum and

maximum timing bound constraints the timing region so tightly that only a couple

actual timing delays are ever marked, and therefore the efficiency was independent

of the number of timing partitions (or timing markers). A more interesting

phenomenon occurs when only a single bound is applied. The overhead is initially

smaller if the applied bound limits the maximum timing value because paths which

violate this bound are removed from the data-path analysis. But as the number of

timing partitions increase, the overhead of a maximum timing bound overcomes

that of a minimum timing bound. The source of this change of efficiency can be

best understood when one realizes that the maximum and minimum bounds are

practically equivalent. By selecting either a minimum or maximum bound, one is

choosing to analyze either the top or bottom half of the timing spectrum. When one

considers the bottom half, all communications are labeled since the top half are

deemed infeasible. By contrast, an analysis of the top portion of the spectrum

leaves all communication paths as feasible but only labels those paths with a

substantial delay. Additionally, there are a larger number of communications

whose timing delay are characterized by the lower half of the timing spectrum.

This means that an analysis of the top half of the spectrum will leave a majority of

the communications unlabeled and therefore does not suffer when more timing

labels are introduced. Finally, an analysis of the complete timing spectrum starts

off with the same efficiency of placing a minimal bound. But as multiple timing

partitions are allocated, communications from the lower half of the spectrum

become labeled and the overhead increases at a dramatic rate.

These same trends are observable when the timing analysis is applied to data-

path binding. As shown in the comparative results of Table 5.2 and Table 5.3, the

efficiency of these two techniques are very competitive. Therefore, the efficiency

plotted in Figure 6.7 is very similar to that of the previous charts. This similarity is

113

further underscored by plotting the overhead instead of the run times. Since run

time of performing the data-path binding problem without timing analysis is

subtracted from the run time, the relative amount of overhead may be compared.

The plots look surprisingly similar. The resounding principle of these results is the

need to limit the number of timing partitions until the effective bounds may be

generated. Once they are obtained, the granularity of the timing analysis may be

dramatically increased without adding substantial overhead.

Unfortunately the results for the combination of timing and data path

scheduling are not as uniform. The problem stems from the unconstrained nature

of the analysis combined with the explosive growth resulting from expanding the

analysis of operand non-transfers. Of the example data-flow graphs, only diff_eq

could be scheduled in the presence of timing analysis. But even here, substantial

1

10

100

1 5 10 15 20

no bounds
min bound
max bound

max/min

3x3_det

Timing Variable

Figure 6.7Timing analysis overhead in binding.

diff_eq

dhrc
elip

ru
n

-
no

_t
im

e
tig

ht
_t

im
e

-
no

_t
im

e

114

amounts of overhead were incurred as the run time leapt from 500 to 17,826

seconds as a tight timing analysis was performed on the same data path. Clearly,

more efficient means of modeling operand non-transfers must be derived before

this technique may be applied to larger data-flow graphs. Until that time, the model

is still highly suited towards modeling the scheduling freedom in short data-flow

graphs such as CISC instructions.

115

Chapter 7

Discussion

7.1 Summary

This thesis presents a symbolic model to represent the execution freedom of an

existing data path. The exploration of this freedom gives designers their first

opportunity to generate optimal schedules and binding information for a given

data-flow graph. While other researchers have explored parallel methods to

generate quality schedules, I know of no work which is capable of capturing the

freedom of data-path activity that is presented in this work. The central novelty of

this approach is the exact nature in which data path activity is pruned. Instead of

characterizing the data path by an artificial set of orthogonal operations, this

technique considers any operation which is feasible as defined by the data-path

design and any external constraints imposed by the user. This approach coupled

with the reachable state technique allows optimal solutions to be proved by

construction.

The power of this technique is enhanced by additions to the data-path and data-

flow-graph models, as well as, a number of processing techniques to keep this

technique practical. The decision to model the positional status of operands was an

immense benefit. By shifting the focus away from operations and on to operands,

116

techniques, such as register constraints, alternative operations, operand

recomputation, multiple topologies, and timing models, were incorporated with a

minimal amount of overhead. The price of this technique is the cost of representing

the multiple instances of the same operands in different data path locations. This

requirement hinders the reachable state analysis by creating a large number of

feasible states. To combat this issue of feasible states and make the technique

viable, the following exact pruning techniques were developed: memory mapping,

operand lifetimes, ALAP bounds, encoding techniques, and two phase executions.

These pruning techniques permit the identification of optimal schedules for data-

flow graphs containing sixteen operations on a practical data-path. These figures

are suitable for scheduling micro-code instructions or tight inner loops. The scale

of the suitable problem size can be expanded dramatically through the use of

scheduling and binding constraints.

7.2 Future Research Lines

While this work has addressed many issues which are required to make this

model practicable for real-world systems, a variety of related open research topics

still exist. This section shall summarize the most pressing issues and list some

tentative thoughts on how to address them.

7.2.1 Better lifetime bounds

The single factor which curtails the size of the suitable problems is operand-

lifetime bounds. These bounds help to reduce the complexity at a given cycle by

reducing the number of operands which are modeled. This reduction in states, in

turn, increases the efficiency of the reachable state analysis. While Section 5.1 and

Section 5.2 displayed that effective lifetimes can be generated from a detailed set

of constraints, one would expect many applications to have less detailed

117

constraints. One can expect constraints will exist for external interfaces but that

there will be minimal scheduling constraints for the rest of the chip in order to

maximize the design freedom. Forming accurate lifetime bounds in the presence of

such minimal constraints proves to be a daunting task. The top issues, in relative

order of complexity, are: the recomputation of operands, the restrictive movement

of operands, and the combined interaction of operands. The key to overcoming

these issues will be in exploiting their restrictive nature to formulate lifetime

constraints. An example of this was demonstrated in the ALAP bounds presented

in Section 5.3.1 which utilized the restrictive nature of the operand movement to

generate stronger ALAP bounds.

7.2.2 Cyclic data-flow graphs

The restriction that all data-flow graphs be acyclic helped simplify the

automatic construction of the automata. But, this constraint is overly restrictive. A

number of operands may be recomputed from their child operands. The most

pressing example of this is a 32-bit operand which is partitioned into two 16-bit

operands. The original operand may be recreated by simply merging the two child

operands at a significant cheaper cost in terms of data path resources. This example

is meant to demonstrate two points: 1) that cyclic data flows are common in real

world designs, and 2) that accommodating cyclic data flows will enable the

modeling of data paths with different sized bus widths. The alterations that cyclic

data-flow graphs will require are: 1) a fixed point algorithm to incorporate the

cyclic dependencies into the formulation of , and 2) a re-

evaluation of the effect of cyclic bounds on lifetime bounds such as the ALAP

bound.

Fk Θ ϒ Σ V, , ,()

118

7.2.3 Control data-flow graphs

The present representation allows control signals to sent to the controller, but

the scheduler does not incorporate these control decisions into the scheduling

decisions. Control data-flow graphs must be partitioned into a set of individual

data-flow graphs with a consistent interface of operand placement in order to be

scheduled on the present system. The main problem with this approach is the

difficulty to generate the proper operand placement for the interface conditions.

Additional benefits, such as loop unwinding and speculative execution, which

have been developed for control data-flow graphs may not be explored. Efforts to

address these issues will face many challenges but will be characterized by the

incorporation of control settings into the data-path state format.

119

Bibliography

1. S. B. Akers, “Binary Decision Diagrams”,IEEE Trans. Computers, pp.509-
516, June 1978.

2. P. Ashar and M. Cheong, “Efficient Breadth-First Manipulation of Binary
Decision Diagrams”,Proc. IEEE Int. Conf. Computer-Aided Design, pp.622-
627, San Jose, USA, Nov. 1994.

3. R. I. Bahar,et al., “Algebraic Decision Diagrams and their Applications”,
Proc. IEEE Int. Conf. Computer-Aided Design, pp.188-191, San Jose, USA,
Nov. 1993.

4. A. Balachandran, D. M. Dhamdhere, and S. Biswas, “Efficient Retargetable
Code Generation Using Bottom-Up Tree Pattern Matching”, Computer Lan-
guages, pp.127-140, 1990.

5. H. Bakoglu, Circuits,Interconnections, and Packaging for VLSI, Addison-
Wesley Publishing Company, 1990.

6. J. Benkoski,et al., “Timing Verification Using Statically Sensitizable Paths”
IEEE Trans. CAD/ICAS, pp.1073-1084. Oct. 1990.

7. I. Bolsens,et al., “Assessment of the Cathedral-II Silicon Compiler for Digi-
tal-Signal-Processing Applications”ESA Journal, pp.243-260, 1991

8. G. Borriello,et al., “Embedded System Co-Design: Towards Portability and
Rapid Integration,”Hardware/Software Co-Design, M.G. Sami and G. De
Micheli, EDs., Kluwer Aacademic Publishers, 1995.

9. K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient Implementation of a
BDD package”,Proc. 27th ACM/IEEE Design Automation Conf., pp.40-45,
Orlando, USA, June 1990.

10. D. Brand, et al., “Incremental Synthesis”,Proc. IEEE Int. Conf. Computer-
Aided Design, pp.14-18, San Jose, USA, Nov. 1994.

11. R. Brayton,et al., “VIS”, Proc. of the First Int. Conference on Formal Meth-
ods in Computer-Aided Design, pp.248-256, San Jose, USA, Nov. 1996.

12. F. Brewer and D. Gajski “Chippe: A System for Constraint Driven Behav-
ioral Synthesis”IEEE Trans. CAD/ICAS, pp.681-95, July 1990

13. R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipula-

120

tion”, IEEE Trans. Computers, pp.677-691, Aug. 1986.

14. R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-Deci-
sion Diagrams”,ACM Computing Surveys, pp.293-318, Sep. 1992.

15. R. E. Bryant and Y.-A. Chen, “Verification of Arithmetic Circuits with
Binary Moment Diagrams”,Proc. 32th ACM/IEEE Design Automation
Conf., pp.535-541, San Francisco, USA, June 1995.

16. R. E. Bryant, “Binary Decision Diagrams and Beyond: Enabling Technolo-
gies for Formal Verification”,Proc. Int. Conf. Computer-Aided Design,
pp.236-243, San Jose, USA, Nov. 1995.

17. J. R. Burch,et al., “Symbolic Model Checking for Sequential Circuit Verifi-
cation”, IEEE Trans. CAD/ICAS, pp.401-424, April 1994.

18. R. Camposano, “Path-Based Scheduling for Synthesis”,IEEE Trans. CAD/
ICAS, pp.85-93, Jan. 1991.

19. R. Camposano,et al., “The IBM High-Level Synthesis System”,High-Level
VLSI Synthesis, R. Camposano and W. Wolf, eds., Kluwer, 1991

20. R. Camposano and W. Rosenstiel, “A Design Environment for the Sythesis
of Integrated Circuits”,11th Symp. Microprocessing and Microprogramming
EUROMICRO ‘85, Brussles, Belgium, pp.211-215, Sept. 1985.

21. H.-C. Chen and D. Du, “Path Sensitization in Critical Path Problem” ,Proc.
IEEE Int. Conf. Computer-Aided Design, pp.208-211, San Jose, USA, Nov.
1991.

22. H. D. Cheng and C. Xia, “High-Level Synthesis: Current Status and Future
Prospects”,Cicuits Systems Signal Process, pp.351-400, 1995

23. H. Cho,et al., “Algorithms for Approximate FSM Traversal”,Proc. 30st
ACM/IEEE Design Automation Conf., pp.25-30, Dallas, USA, June 1993.

24. P. Chou, E. Walkup and G. Borriello, “Scheduling Issues in the Co-Synthesis
of Reactive Real-Time Systems,”IEEE Micro, Aug. 1994. pp.37-47.

25. E. M. Clarke,et al., “Multi-Terminal Binary Decision Diagrams: An Effi-
cient Data-Structure for Matrix Representation”,Int. Workshop on Logic
Synthesis, pp. 610-615, 1993.

26. R.J. Cloutier and D.E. Thomas, “The Combination of Scheduling, Alloca-
tion, and Mapping in a Single Algorithm”,Proc. 27th ACM/IEEE Design
Automation Conf., pp.71-76, Orlando, USA, June 1990.

27. C. N. Coelho Jr and G. De Micheli, “Dynamic Scheduling and Synchroniza-
tion Synthesis of Concurrent Digital Systems under System-Level Con-
straints”, Proc. IEEE Int. Conf. Computer-Aided Design, p.175-181, San

121

Jose, USA, Nov. 1994.

28. O. Coudert, C. Berthet and J. C. Madre “Verification of Synchronous
Sequential Machines Based on Symbolic Execution”,Proc. Workshop on
Automatic Verification Methods for Finite State Systems, pp.365-373, Greno-
ble, France, 1989.

29. O. Coudert and J. C. Madre. “A Unified Framework for the Formal Verifica-
tion of Sequential Circuits,”Proc. Int. Conf. Computer-Aided Design,
pp.126-129, San Jose, USA, Nov. 1990.

30. O. Coudert, “Two-level Logic Minimization: An Overview”,Integration, the
VLSI journal, pp.97-140, Oct. 1994.

31. S. Davidson,et al., “Some Experiments in Local Microcode Compaction for
Horizontal Machines”,IEEE Trans. Computers, pp.460-477, July 1981.

32. G. De Micheli,Synthesis and Optimization of Digital Circuits, McGraw-Hill,
Inc., 1994.

33. D. Du, S.Yen and S. Ghanta, “On the General False Path Problem in Timing
Analysis”, Proc. 26th ACM/IEEE Design Automation Conference Proc.,
pp.555-560, Las Vegas, USA, June 1989.

34. C. Ewering, “Automated High Level Synthesis of Partitioned Busses”Proc.
IEEE Int. Conf. Computer-Aided Design, pp.93-102, San Jose, USA, Nov.
1990

35. S. J. Friedman and K. J. Supowit, “Finding the Optimal Variable Ordering
for Binary Decision Diagrams”,IEEE Trans. Computers, pp.710-713, May
1990.

36. M. Fujita, et al., “Application of Boolean Unification to Combinational
Logic Synthesis”,Proc. IEEE Int. Conf. Computer-Aided Design, pp.510-
513, San Jose, USA, Nov. 1991

37. D. Gajski,et al., High-Level Synthesis: Introduction to Chip and System
Design, Kluwer Academic Publishers, 1992.

38. D. Gajski and L. Ramachandran, “Introduction to high-level synthesis”,
IEEE Design & Test of Computers, pp.44-54, Winter 1994.

39. T. Granlund and R. Kenner, “Eliminating Branches using a Superoptimizer
and the GNU C Compiler”,Proc. of the ACM SIGPLAN’92 Conference on
Programming Language Design and Implementation (PLDI), pp.341-352,
San Francisco, USA, 1992

40. K. Hamaguchi, A. Morita and S. Yajima, “Efficient Construction of Binary
Moment Diagrams for Verifying Arithmetic Circuits”,Proc. Int. Conf. Com-
puter-Aided Design, pp. 78-82, San Jose, USA, Nov. 1995.

122

41. B.S. Haroun and M.I. Elmasry, “Architectural Synthesis for DSP Silicon
Compiler”, IEEE Trans. CAD/ICAS, pp.431-47, April 1989.

42. A. Hu, et al., “Higher Level Specification and Verification with BDD’s”
Computer-Aided Verification: Fifth Int. Conference, 93, Lecutre Notes in
Computer Science v.697, Springer-Verlag, 1993.

43. S. H. Huang,et al.. “A Tree-Based Scheduling Algorithm for Control Domi-
nated Circuits”,Proc. 30th ACM/IEEE Design Automation Conf., pp.578-
582, Dallas, USA, June 1993.

44. C.-T. Hwang, J.-H. Lee and Y.-C. Hsu, “A Formal Approach to the Schedul-
ing Problem in High Level Synthesis”,IEEE Trans. CAD/ICAS, pp.464-475,
Apr. 1991.

45. S.-W. Jeong and F. Somenzi, “A New Algorithms for the Binate Covering
Problem and its Application to the Minimization of Boolean Relations”,
Proc. IEEE Int. Conf. Computer-Aided Design, pp.417-420, San Jose, USA,
Nov. 1992.

46. T. Y. K. Kam and R. K. Brayton,Multi-valued Decision Diagrams, Memo.
no. UCB/ERL M90/125, UC Berkeley, Dec. 1990.

47. S. Kimura, “Residue BDD and its Application to the Verification of Arith-
metic Circuits”,Proc. 32th ACM/IEEE Design Automation Conf., pp.542-
545, San Francisco, USA, June 1995.

48. D. W. Knapp, “Fasolt: A Program for Feedback-Driven Data-Path Optimiza-
tion”, IEEE Trans. CAD, pp.677-695, June 1992.

49. Y.-T. Lai, M. Pedram and S. B. K. Vrudhula, “EVBDD-Based Algorithms for
Integer Linear Programming, Spectral Transformation, and Function Decom-
position”, IEEE Trans. CAD/ICAS, pp.959-975, Aug. 1994.

50. R. Leupers and P. Marwedel, “Time Constrained Code Compaction for
DSPs” inIEEE Trans. on VLSI Systems, pp.112-122, 1997

51. R. Leupers and P. Marwedel, “Retargetable Generation of Code Selectors
from HDL Processor Model”Proc. of European Design & Test Conference,
p.140-144, Paris, France, March 1997

52. R. Leupers and P. Marwedel, “Algorithms for Address Assignment in DSP
Code Generation”Proc. Int. Conf. Computer-Aided Design, pp.109-112, San
Jose, USA, Nov. 1996.

53. R. Leupers and P. Marwedel, “A BDD-based Frontend for Retargetable
Compilers” Proc. the European Design & Test Conference, pp.239-243,
Paris, France, March 1995

54. S. Liao,et al., “Code Optimization Techniques for Embedded DSP Micro-

123

processors”,Proc. 32nd ACM/IEEE Design Automation Conference Proc.,
pp.599-604, San Francisco, USA, June 1995.

55. S. Liao,et al., “Storage Assignment to Decrease Code Size”,ACM Trans. on
Programming Languages and Systems, vol.18, (no.3), ACM, May 1996.
pp.235-53.

56. H.-T. Liaw and C.-S, Lin, “On OBDD-Representation of General Boolean
Functions”,IEEE Trans. Computers, pp. 661-664, June 1992.

57. B. Lin, Synthesis of VLSI Designs with Symbolic Techniques, PhD thesis,
memo. no. UCB/ERL M91/105, UC Berkeley, Nov. 1991.

58. B. Lin and S. Devadas, “Synthesis of Hazard-Free Multi-level Logic under
Multiple-Input Changes from Binary Decision Diagrams”,Proc. IEEE Int.
Conf. Computer-Aided Design, pp. 542-549, San Jose, USA, Nov. 1994.

59. C-C. Lin, et al., “Logic Synthesis for Engineering Change”,Proc. 32nd
ACM/IEEE Design Automation Conference Proc., pp. 647-652, San Fran-
cisco, USA, June 1995.

60. S. Malik,et al., “Logic Verification using Binary Decision Diagrams in a
Logic Synthesis Environment”,Proc. IEEE Int. Conf. Computer-Aided
Design, pp. 6-9, San Jose, USA, Nov. 1988.

61. P. Marwedel and G. Goosens (eds.),Code Generation for Embedded Proces-
sors, Kluwer Academic Publishers, 1995.

62. H. Massalin, “Superoptimizer -- A Look at the Smallest Problem” inProc. of
the Second Int. Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pp.122-126, 1987

63. M. C. McFarland, A. C. Parker, and R. Camposano, “The High-Level Syn-
thesis of Digital Systems”,Proc. IEEE, vol. 78, no. 2, pp.301-318, Feb.
1990.

64. M. C. McFarland and T. J. Kowalski, “Incorporating Bottom-Up Design into
Hardware Synthesis”,IEEE Trans. CAD/ICAS, pp.938-50, Sept. 1990.

65. S.-I. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinato-
rial Problems”,Proc. 30th ACM/IEEE Design Automation Conf., pp.272-
277, Dallas, USA, June 1993.

66. S.-I. Minato, “BDD-Based Manipulation of Polynomials and Its Applica-
tions”, Proc. Intl. Workshop on Logic Synthesis, pp.5.31-5.43, 1995.

67. S.-I. Minato,Binary Decision Diagrams and Applications for VLSI CAD,
Kluwer Academic Publishers, 1995.

68. D. Mintz and C. Dangelo, “Timing Estimation for Behavioral Descriptions”

124

Proceedings of the Seventh International Symposium on High-Level Synthe-
sis, pp.42-47, Niagara-on-the-Lake, Canada, May 1994.

69. T. Miyazaki and M. Ikeda, “High Level Synthesis Using Given Datapath
Information”, IEECE Trans. Fundamentals, p.1617-1625, Oct 1993

70. C. Monahan and F.Brewer, “Communication Driven Interconnection Synthe-
sis”, Proc. of 6th International Workshop on High Level Synthesis, Dana
Point CA, Nov. 1992

71. C. Monahan and F. Brewer, “Symbolic Modeling and Evaluation of Data
Paths”, Proc. 32nd ACM/IEEE Design Automation Conference Proc.,
pp.389-394, San Francisco, USA, June 1995.

72. M. Nourani and C. Papachristou, “False Path Exclusion in Delay Analysis of
RTL-Based Datapath-Controller Designs”Proceedings EURO-DAC ’96.
European Design Automation Conference with EURO-VHDL ’96, pp.336-
341, Geneva, Switzerland, Sept. 1996.

73. S. Note,et al., “Combined Hardware Selection and Pipelining in High-Per-
formance Data-Path Design”IEEE Trans. CAD/ICAS, pp.413-423, April
1992.

74. S. Panda, F. Somenzi and B. F. Plessier, “Symmetry Detection and Dynamic
Variable Ordering of Decision Diagrams”,Proc. IEEE Int. Conf. Computer-
Aided Design, pp.628-631, San Jose, USA, Nov. 1994.

75. S. Panda and F. Somenzi, “Who Are the Variables in Your Neighborhood”,
Proc. Int. Conf. Computer-Aided Design, pp.74-77, San Jose, USA, Nov.
1995.

76. B. M. Pangrle and D. D. Gajski, “Design Tools for Intelligent Silicon Compi-
lation”, IEEE Trans. CAD/ICAS, pp.1098-1112, Nov. 1987.

77. N. Park and F. Kurdahi, “Module Assignment and Interconnect Sharing in
Register Transfer Synthesis of Pipelined Data-Paths”Proc. IEEE Int. Conf.
Computer-Aided Design, pp.16-19, San Jose, USA, Nov. 1989.

78. N. Park and A. C. Parker., “SEHWA: A Software Package for Synthesis of
Pipelines from Behavioral Specifications”,IEEE Trans. CAD/ICAS, pp.356-
370, March 1988.

79. P.G. Paulin and J.P. Knight, “Force-Directed Scheduling for the Behavioral
Synthesis of ASIC’s”,IEEE Trans. CAD/ICAS, pp.661-79, June, 1989.

80. S. Perremans, L. Claesen and H. De Man, “Static Timing Analysis of
Dynamically Sensitizable Paths”, Proc. 26th ACM/IEEE Design Automation
Conference Proc., pp.568-573, Las Vegas, USA, June 1989.

81. I. Radivojevi′c and F. Brewer, “A New Symbolic Technique for Control-

125

Dependent Scheduling”,IEEE Trans. CAD/ICAS, pp.45-57, Jan. 1996.

82. R. Rudell, “Dynamic Variable Ordering for Binary Decision Diagrams”,
Proc. IEEE Int. Conf. Computer-Aided Design, pp.42-47, San Jose, USA,
Nov. 1993.

83. T. Shinsha,et al., “Incremental Logic Synthesis through gate logic structure
identification”,Proc. 23rd ACM/IEEE Design Automation Conference Proc.,
pp.391-397, San Francisco, USA, June 1986.

84. D. E. Thomas,et al., “Automatic Data Path Synthesis”,Computer, pp.59-70,
Dec. 1983.

85. A. Timmer,From Design Space Exploration to Code Generation, Ph.D. The-
sis Eindhoven University of Technology, 1996

86. H. J. Touati,et al., “Implicit State Enumeration of Finite State Machines
using BDD’s,” Proc. Int. Conf. Computer-Aided Design, pp.130-133, San
Jose, USA, Nov. 1990.

87. F. S. Tsai and Y.C. Hsu, “Data Path Construction and Refinement”,Proc.
IEEE Int. Conf. Computer-Aided Design, pp.308-311, San Jose, USA, Nov.
1990.

88. J. Van Praet,et al., “A Graph Based Processor Model for Retargetable Code
Generation”,Proc. of European Design and Test Conference, pp.102-7,
Paris, France, 1996

89. K. Wakabayashi and H. Tanaka, “Global Scheduling Independent of Control
Dependencies Based on Condition Vectors”,Proc. 29th ACM/IEEE Design
Automation Conf.,pp.112-115, Anaheim, USA, June 1992.

90. R. A. Walker and R. Camposano,A Survey of High-Level Synthesis Systems,
Kluwer Academic Publishers, 1991.

91. Y. Wantanabe and R. Brayton, “Incremental Synthesis for Engineering
Change”,Proc. IEEE ICCD, pp.40-43, Boston, 1991.

92. J. C.-Y. Yang, G. De Micheli and M. Damiani, “Scheduling and Control Gen-
eration with Environmental Constraints based on Automata Representa-
tions”, IEEE Trans. CAD/ICAS, p.166-83, Feb. 1996.

126

Appendix A

Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are one of the biggest breakthroughs in

CAD in the last decade. BDDs are acanonical andefficient way to represent and

manipulate Boolean functions and have been successfully used in numerous CAD

applications. Although the basic idea has been around for more than 30 years (e.g.

[1]), it was Bryant who described a canonical BDD representation [13] and

efficient implementation algorithms [9]. References [14,16,67] are very readable

introductions to BDD representations and applications.

Ordered Binary Decision Diagram of a Boolean functionf can be obtained by

iterative application of the Shannon decomposition with respect to a specified

variable ordering:

(EQ 7.1)

A decision tree obtained in such a manner is reduced using two rules: (i)

eliminate all nodes that have isomorphic sons (“don’t care” elimination), and (ii)

identify and share all isomorphic subgraphs. This process results in a Reduced

Ordered BDD which is a canonical representation of a Boolean function for a

specific variable ordering.

Using theite (if-the-else) terminology, the Equation (7.1) can be re-written as:

f xfx xfx+=

127

(EQ 7.2)

All basic Boolean function manipulations can be described usingite templates.

For example:

(EQ 7.3)

and:

(EQ 7.4)

The property that all Boolean manipulations can be treated in a unique manner

(usingite calls) enables efficient implementations using computer hashing/ cashing

techniques [9].

Figure 7.1 illustrates ROBDD forms of for two different variable

orderings. An edge labeled by “1” (“0”) corresponds to a variable’s phasex (x) in

the decomposition formula above. The problem of finding the ordering that results

in the smallest ROBDD (in terms of the number of nodes in the graph) is NP-

complete. An exact variable ordering algorithm was developed in [35], but found a

very limited application due to its computational complexity. Moreover,

f ite x fx fx, ,()=

And g h,() ite g h 0, ,()=

Not g() ite g 0 1, ,()=

1

0
c

b

a

01

1

1 1

1

1

0

0

0 0

0

01
b

cc

a

01

Figure 7.1ROBDD forms of f=AB+C using different orderings

(a) (b)

f AB C+=

128

theoretical analysis of general Boolean functions [56] indicates that, for the

majority of functions, “good” orderings do not exist (i.e. the best ordering still

leads to exponentially complex graphs). However, ROBDDs have performed

extremely well in many practical CAD applications. Typically, the underlying

structure of the problem solved using ROBDDs allows development of efficient

heuristic ordering strategies (e.g. [60]).

Decision diagrams and their applications are a very active research area. Some

interesting, more recent developments include:

• algebraic decision diagrams [3],

• asynchronous circuit synthesis [58],

• binate covering problem (BCP) solver [45],

• BDDs for implicit set representation in combinatorial problems [65] and

applications to polynomial algebra [66],

• efficiency improvements through dynamic variable reordering [74,75,82]

and breadth-first manipulations [2],

• exact and approximate FSM traversal techniques [23,28,29,86],

• formal verification of arithmetic circuits [15,40,47],

• integer linear programming (ILP) solver based on edge-valued BDDs [49],

• implicit prime generation and two-level minimization [30],

• matrix representation and manipulations using multi-terminal BDDs [25],

• multi-valued decision diagrams [46],

129

• symbolic model checking [17],

• symbolic synthesis techniques [57].

This list isby no means complete!

130

Glossary

Aj: Active operand set

ALAP(e): As late as possible for operation e.

Bk: The set of children for operand pk

C: Set of data path components

ci: data path component

: function returns the component associated with input port

: function returns the component associated with output port

Dj: Dead operand set for cycle j

: Suboptimal dead op set;

E: operation set

e: operation

: Conditions under which operand pk is computed.

: Conditions which support the spec. operation.

: Conditions under which operand pk is read from memory

: State relation

: State relation for memory device ci

: Storage of opk in memory device ci.

: Conditions under which opk reaches memory device ci

: State relation for memory device ci on cycle j

: Relation on cycle j where opk is stored in mem-

ory device ci

C φ() φ

C θ() θ

D
j
′

F
k

ϒ Θ Σ V, , ,()

F ′
θ σ, Π p Φ, , ,

Θ ϒ Σ V, , ,()

M
k

Θ Σ V, ,()

N ϒ V V ′, ,()

N
i

ϒ Σ V V ′
i

,, ,()

N
i k, ϒ Σ V V ′

i
, , ,()

N ′
i k, ϒ Σ V, ,()

N °
i j, ϒ Σ V V ′

i
, , ,()

N °
i j k, , ϒ Σ V V ′

i
, , ,()

131

null: special operand meaning “not of operand set”

P: Operand set =

: operands

Pi: operands at a memory device

P0: set of operands created by external inputs

P1: set of signals

Pi,j: operands at input ports of device ci at cycle j

Rj: The state relation between cycle j-1 and j

: a reachable state relation

: state relation which leads to a solution

S: State set

 init states

 final states

: reachable states

: frontier states

: suboptimal state set

: extraction states

Tj: Total reachable states at cycle j

ti,j: cumulative delay to port i based on condition

V: State variables

: Next state set

: System wide operand state set

: State set for memory device ci

: Next state set for memory device ci

: state encoding for operand pk in memory device ci

P ′ P 1 null, ,{ }

P ′

R
j

ϒ V V ′, ,()

R °
j

ϒ V V ′, ,()

S 0 ϒ V,()

S
f

ϒ V ′,()

S
j

ϒ V,()

S ′
j

S ″
j

S °
j

Λ
i j,

ϒ Σ,()

V ′

V ″

V
i

V
i
′

v
i k,

132

: state encoding for operand pk not in memory device ci

: next state encoding for operand pk in memory device ci

: next state encoding for operand pk not in memory device ci

: Output port set

: Output port set for component ci

: Set of output ports connected to wires

: Set of output ports connected to wires for component ci

: Set of output ports connected to control

: Set of output ports connected to control for component ci

: Output port

: Input operands for an operantion, ei

: the ith operand for a given set

: Control line set

: Control line set for component ci

: Control line set w/o dedicated control lines

: control line

: symbolic control line request for operand pk from output port of a

register file.

: a control setting

: mux. control setting to select input port on component ci

: input port set of component ci

: input port

: input port on component ci used for input operand pk

: Output port set that reach wire wi crossing any number of memory devices

: Output port set that reach wire wi crossing only x memory devices

v i k,

v
i k, ′

v i k, ′

Θ

Θ
i

Θ ′

Θ
i
′

Θ ″

Θ
i
″

θ
i

Π
i

π
i

Π

Σ

Σ
i

Σ ′

σ
i

σ
k θ,

θ

σ

σ
i

φ() φ

Φ
i

φ

φ
i p k,

τ ′
i

τ
j x,

133

: minimum number memory devices to link and .

: Restriction for the jth relation.

: relation of control and ports to connect to input port

: Set of network topologies

: a given network topology

: Set of interconnections

: Output port and topology relation set for each input port,

: element of linking an input port to a network topology

: Component delay

: throughput delay

: read delay

: write delay

: Set of dealys from PI to ith port

: element of consisting of

: Set of descrete timing ranges

: a descrete timing range

: network path condition linking PI to ith port

τ θ
i

w
j

,() θ
i

w
j

χ
j

Ω
i

ϒ Σ Θ, ,() φ
i

ϒ

υ

Ψ

Ψ
i

Θ ϒ,() φ
i

ψ Ψ
i

Θ ϒ,()

∆
i

∆
i

σ φ θ, ,()

∆
i

σ ∅ θ, ,()

∆
i

∅ φ ∅, ,()

∆ ′
i

δ ′
i j,

∆ ′
i

t
i j, Λ

i j,
ϒ Σ,(),()

∆ °

δ °
i

Λ
i j,

ϒ Σ,()

